Nanomaterials for CO2 Hydrogenation

The use of fossil fuels such as coal, oil, and natural gas has allowed a fast and unprecedented development of human society. However, this has led to a continuous increase in anthropogenic CO2 emissions, which affect human life and the ecological environment through global warming and climate chang...

Full description

Autores:
Romero Sáez, Manuel
Jaramillo Zapata, Leyla Yamile
Henao Sierra, Wilson Albeiro
De La Torre Larrañaga, Unai
Tipo de recurso:
Part of book
Fecha de publicación:
2019
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/3975
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/3975
Palabra clave:
Nanomaterials
Nanomateriales
Nanomatériau
Carbon monoxide
Monóxido de carbono
Oxyde de carbone
Methanol
Metanol
Methane
Metano
Carbon nanotubes
Nanotubos de Carbono
Nanotubes de carbone
Nanoparticles
Nanopartículas
Nanoparticules
CO2 hydrogenation
Hidrogenación de CO2
Carbon nanofibers
Nanofibras de carbono
Graphene oxide
Óxido de grafeno
Transition metal carbide
Carburo de metal de transición
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id RepoTdea2_284cc1ce9caf0eaef4b94c4e67df19c8
oai_identifier_str oai:dspace.tdea.edu.co:tdea/3975
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Nanomaterials for CO2 Hydrogenation
title Nanomaterials for CO2 Hydrogenation
spellingShingle Nanomaterials for CO2 Hydrogenation
Nanomaterials
Nanomateriales
Nanomatériau
Carbon monoxide
Monóxido de carbono
Oxyde de carbone
Methanol
Metanol
Methane
Metano
Carbon nanotubes
Nanotubos de Carbono
Nanotubes de carbone
Nanoparticles
Nanopartículas
Nanoparticules
CO2 hydrogenation
Hidrogenación de CO2
Carbon nanofibers
Nanofibras de carbono
Graphene oxide
Óxido de grafeno
Transition metal carbide
Carburo de metal de transición
title_short Nanomaterials for CO2 Hydrogenation
title_full Nanomaterials for CO2 Hydrogenation
title_fullStr Nanomaterials for CO2 Hydrogenation
title_full_unstemmed Nanomaterials for CO2 Hydrogenation
title_sort Nanomaterials for CO2 Hydrogenation
dc.creator.fl_str_mv Romero Sáez, Manuel
Jaramillo Zapata, Leyla Yamile
Henao Sierra, Wilson Albeiro
De La Torre Larrañaga, Unai
dc.contributor.author.none.fl_str_mv Romero Sáez, Manuel
Jaramillo Zapata, Leyla Yamile
Henao Sierra, Wilson Albeiro
De La Torre Larrañaga, Unai
dc.subject.agrovoc.none.fl_str_mv Nanomaterials
Nanomateriales
Nanomatériau
Carbon monoxide
Monóxido de carbono
Oxyde de carbone
Methanol
Metanol
Methane
Metano
topic Nanomaterials
Nanomateriales
Nanomatériau
Carbon monoxide
Monóxido de carbono
Oxyde de carbone
Methanol
Metanol
Methane
Metano
Carbon nanotubes
Nanotubos de Carbono
Nanotubes de carbone
Nanoparticles
Nanopartículas
Nanoparticules
CO2 hydrogenation
Hidrogenación de CO2
Carbon nanofibers
Nanofibras de carbono
Graphene oxide
Óxido de grafeno
Transition metal carbide
Carburo de metal de transición
dc.subject.decs.none.fl_str_mv Carbon nanotubes
Nanotubos de Carbono
Nanotubes de carbone
Nanoparticles
Nanopartículas
Nanoparticules
dc.subject.proposal.none.fl_str_mv CO2 hydrogenation
Hidrogenación de CO2
Carbon nanofibers
Nanofibras de carbono
Graphene oxide
Óxido de grafeno
Transition metal carbide
Carburo de metal de transición
description The use of fossil fuels such as coal, oil, and natural gas has allowed a fast and unprecedented development of human society. However, this has led to a continuous increase in anthropogenic CO2 emissions, which affect human life and the ecological environment through global warming and climate changes. There are various strategies to mitigate the atmospheric concentration of CO2, such as capture, separation, and utilization. Among them, CO2 hydrogenation to obtain different products through catalytic processes is a strategy of great interest. Thus, the catalytic combination of CO2 and hydrogen not only mitigates anthropogenic emissions into Earth’s atmosphere, but it also produces carbon compounds that can be used as fuel or precursors for the production of different chemicals. This chapter reviews the use of different nanomaterials for CO2 hydrogenation. Three different processes are distinguished, depending on the final product: (i) CO2 hydrogenation to carbon monoxide, (ii) methanol production by CO2 hydrogenation, and (iii) CO2 hydrogenation to methane. It has been included both nanomaterials that act as support and those that can replace the active metal phase. Concerning CO2 hydrogenation to CO, one-dimensional transition metal carbides have received increasing attention because their unique electronic structure allows similar catalytic properties to the expensive noble metals. Attending the high thermal requirements of CO synthesis, emerging metal oxides nanocatalysts are focused to prevent the metal sintering by increasing the metal-support interactions. Controlling the support’s morphology at nanoscale can enhance both catalytic activity and stability at high temperatures up to twice with respect to those conventional micro-sized catalysts. Regarding to methanol production, the nanomaterials most commonly used as supports are those based on carbon, e.g., carbon nanotubes, carbon nanofibers, and graphene oxide. The main advantage of using these materials is their high surface area, which improves metallic phase dispersion, higher thermal and electrical conductivities, and greater mechanical resistance. In addition, the use of intermetallic nanoparticles as an active phase is very promising. The combination of two metals in the same nanoparticle greatly increases the interface between components, which clearly leads to a synergistic effect between them. The use of these nanomaterials improves the activity and selectivity to methanol between 2 and ~50%, compared with classical catalysts. Moreover, similar strategies are equally valid in methane production. Catalysts based on nanoparticles, such as Ni or NiO, supported on traditional metal oxides have been recently reported to improve catalytic activity in CO2 methanation with high resistance to coke deposition. Other supports, such as carbon nanofibers and carbon nanotubes previously mentioned, have shown excellent results, with CO2 conversions higher than 90% and complete selectivity to methane. Finally, TiO2-based catalysts are a promising solution for methane production by the still undeveloped photocatalytic reduction. This reaction can be performed under mild temperatures and pressure conditions, which is a clear advantage for methane synthesis. Keywords CO2 hydrogenation Nanomaterials Carbon monoxide Methanol Methane Carbon nanotubes Carbon nanofibers Graphene oxide Nanoparticles Transition metal carbide
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2023-10-19T20:56:27Z
dc.date.available.none.fl_str_mv 2023-10-19T20:56:27Z
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_3248
status_str publishedVersion
dc.identifier.isbn.spa.fl_str_mv 978-3-030-04473-2
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/3975
dc.identifier.eisbn.spa.fl_str_mv 978-3-030-04474-9
identifier_str_mv 978-3-030-04473-2
978-3-030-04474-9
url https://dspace.tdea.edu.co/handle/tdea/3975
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv Environmental Chemistry for a Sustainable World;volumen 23
dc.relation.citationendpage.spa.fl_str_mv 214
dc.relation.citationstartpage.spa.fl_str_mv 173
dc.relation.ispartofbook.spa.fl_str_mv Emerging Nanostructured Materials for Energy and Environmental Science
dc.relation.references.spa.fl_str_mv Albo J, Irabien A (2016) Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J Catal 343:232–239. https://doi.org/10.1016/j.jcat.2015.11.014
Ali KA, Abdullah AZ, Mohamed AR (2015) Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review. Renew Sustain Energ Rev 44:508–518. https://doi.org/10.1016/j.rser.2015.01.010
Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR (2014) Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl Catal B Environ 147:359–368. https://doi.org/10.1016/j.apcatb.2013.09.015
Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Covillle NJ (2005) Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes. Appl Catal A Gen 287:60–67. https://doi.org/10.1016/j.apcata.2005.03.029
Balakumar V, Prakash P (2016) A facile in situ synthesis of highly active and reusable ternary Ag-PPy-GO nanocomposite for catalytic oxidation of hydroquinone in aqueous solution. J Catal 344:795–805. https://doi.org/10.1016/j.jcat.2016.08.010
Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. https://doi.org/10.1002/adma.200904093
Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212(1–2):17–60. https://doi.org/10.1016/S0926-860X(00)00843-7
Berber S, Kwon Y-K, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616. https://doi.org/10.1103/PhysRevLett.84.4613
Bhanja P, Modak A, Bhaumik A (2018) Supported porous nanomaterials as efficient heterogeneous catalysts for CO2 fixation reactions. Chem Eur J. https://doi.org/10.1002/chem.201800075
Brooks KP, Hu J, Zhu H, Kee RJ (2007) Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chem Eng Sci 62:1161–1170. https://doi.org/10.1016/j.ces.2006.11.020
Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731. https://doi.org/10.1039/c3ee00056g
Chabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1596. https://doi.org/10.1039/c3ee43385d
Chen L, Li Y, Chen L, Li N, Dong C, Chen Q, Liu B, Ai Q, Si P, Feng J, Zhang L, Suhr J, Lou J, Ci L (2018) A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. Chem Eng J 345:536–544. https://doi.org/10.1016/j.cej.2018.03.136
Chesnokov VV, Podyacheva OY, Richards RM (2017) Influence of carbon nanomaterials on the properties of Pd/C catalysts in selective hydrogenation of acetylene. Mater Res Bull 88:78–84. https://doi.org/10.1016/j.materresbull.2016.12.013
Chiang CL, Lin KS, Hsu PJ, Lin YG (2017) Synthesis and characterization of magnetic zinc and manganese ferrite catalysts for decomposition of carbon dioxide into methane. Inter J Hydro Energy 42:22123–22137. https://doi.org/10.1016/j.ijhydene.2017.06.033
Collins SE, Baltanás MA, Bonivardi AL (2004) An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3. J Catal 226(2):410–421. https://doi.org/10.1016/j.jcat.2004.06.012
Collins SE, Delgado JJ, Mira C, Calvino JJ, Bernal S, Chiavassa DL, Baltanás MA, Bonivardi AL (2012) The role of Pd–Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst. J Catal 292:90–98. https://doi.org/10.1016/j.jcat.2012.05.005
Daza YA, Kuhn JN (2016) CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv 6(55):49675–49691. https://doi.org/10.1039/C6RA05414E
Deerattrakul V, Dittanet P, Sawangphruk M, Kongkachuichay P (2016) CO2 hydrogenation to methanol using Cu-Zn catalyst supported on reduced graphene oxide nanosheets. J CO2 Util 16:104–113. https://doi.org/10.1016/j.jcou.2016.07.002
Díaz-Taboada C, Batista J, Pintar A, Levec J (2009) Preparation, characterization and catalytic properties of carbon nanofiber-supported Pt, Pd, Ru monometallic particles in aqueous-phase reactions. Appl Catal B Environ 89:375–382. https://doi.org/10.1016/j.apcatb.2008.12.016
Díez-Ramírez J, Sánchez P, Rodríguez-Gómez A, Valverde JL, Dorado F (2016) Carbon nanofiber-based palladium/zinc catalysts for the hydrogenation of carbon dioxide to methanol at atmospheric pressure. Ind Eng Chem Res 55(12):3556–3567. https://doi.org/10.1021/acs.iecr.6b00170
Dou J, Sheng Y, Choong C, Chen L, Zeng HC (2017) Silica nanowires encapsulated Ru nanoparticles as stable nanocatalysts for selective hydrogenation of CO2 to CO. Appl Catal B Environ 219:580–591. https://doi.org/10.1016/j.apcatb.2017.07.083
Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49(6):705–814. https://doi.org/10.1080/000187300413184
Du G, Lim S, Yang Y, Wang C, Pfefferle L, Haller G (2007) Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: the influence of catalyst pretreatment and study of steady-state reaction. J Catal 249:370–379. https://doi.org/10.1016/j.jcat.2007.03.029
Fan YJ, Wu SF (2016) A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol. J CO2 Util 16:150–156. https://doi.org/10.1016/j.jcou.2016.07.001
Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5):3919–3945. https://doi.org/10.3390/ma7053919
Fiordaliso EM, Sharafutdinov I, Carvalho HW, Grunwaldt JD, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catal 5(10):5827–5836. https://doi.org/10.1021/acscatal.5b01271
Fishman ZS, He Y, Yang KR, Lounsbury A, Zhu J, Tran TM, Zimmerman JB, Batista VS, Pfefferle LD (2017) Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2 to CO conversion via the reverse water shift reaction. Nanoscale 9:12984–12995. https://doi.org/10.1039/C7NR03522E
Frey M, Édouard D, Roger AC (2015) Optimization of structured cellular foam-based catalysts for low-temperature carbon dioxide methanation in a platelet milli-reactor. C R Chim 18:283–292. https://doi.org/10.1016/j.crci.2015.01.002
Gac W, Zawadzki W, Słowik G, Sienkiewicz A, Kierys A (2018) Nickel catalysts supported on silica microspheres for CO2 methanation. Microporous Mesoporous Mater 272:79–91. https://doi.org/10.1016/j.micromeso.2018.06.022
Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv 2:2358–2368. https://doi.org/10.1039/c2ra00632d
Gao J, Wu Y, Jia C, Zhong Z, Gao F, Yang Y, Liu B (2016) Controllable synthesis of α-MoC1-x and β-Mo2C nanowires for highly selective CO2 reduction to CO. Catal Commun 84(5):147–150. https://doi.org/10.1016/j.catcom.2016.06.026
Ghaib K, Ben-Fares FZ (2018) Power-to-methane: a state-of-the-art review. Renew Sustain Energ Rev 81:433–446. https://doi.org/10.1016/j.rser.2017.08.004
Ghaib K, Nitz K, Ben-Fares FZ (2016) Chemical methanation of CO2: a review. Chem Bio Eng Rev 3(6):266–275. https://doi.org/10.1002/cben.201600022
Goeppert A, Czaun M, Jones JP, Prakash GS, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem Soc Rev 43(23):7995–8048. https://doi.org/10.1039/c4cs00122b
Götz M, Ortloff F, Reimert R, Basha O, Morsi BI, Kolb T (2013) Evaluation of organic and ionic liquids for three-phase methanation and biogas purification processes. Energy Fuel 27(8):4705–4716. https://doi.org/10.1021/ef400334p
Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T (2015) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390. https://doi.org/10.1016/j.renene.2015.07.066
Habazaki H, Yamasaki M, Zhang B, Kawashima A, Kohno S, Takai T, Hashimoto K (1998) Co-methanation of carbon monoxide and carbon dioxide on supported nickel and cobalt catalysts prepared from amorphous alloys. Appl Catal A Gen 172(1):131–140. https://doi.org/10.1016/S0926-860X(98)00121-5
Hartadi Y, Widmann D, Behm RJ (2015) CO2 hydrogenation to methanol on supported au catalysts under moderate reaction conditions: support and particle size effects. ChemSusChem 8(3):456–465. https://doi.org/10.1002/cssc.201402645
Hashimoto K, Yamasaki M, Fujimura K, Matsui T, Izumiya K, Komori M, El-Moneim AA, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Asami A (1999) Global CO2 recycling – novel materials and prospect for prevention of global warming and abundant energy supply. Mater Sci Eng A 267(2):200–206. https://doi.org/10.1016/S0921-5093(99)00092-1
He S, Li C, Chen H, Su D, Zhang B, Cao X, Wang B, Wei M, Evans DG, Duan X (2013) A surface defect-promoted Ni nanocatalyst with simultaneously enhanced activity and stability. Chem Mater 25:1040–1046. https://doi.org/10.1021/cm303517z
Hiller H, Reimert R (2006) Types of gases. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 10
Hou Z, Gao J, Guo J, Liang D, Lou H, Zheng X (2007) Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor. J Catal 250(2):331–341. https://doi.org/10.1016/j.jcat.2007.06.023
Hu J, Brooks KP, Holladay JD, Howe DT, Simon TM (2007) Catalyst development for microchannel reactors for martian in situ propellant production. Catal Today 125(1–2):103–110. https://doi.org/10.1016/j.cattod.2007.01.067
Hu B, Yin Y, Liu G, Chen S, Hong X, Tsang SCE (2018) Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts. J Catal 359:17–26. https://doi.org/10.1016/j.jcat.2017.12.029
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0
Jacob-Lopes E, Scoparo CHG, Queiroz MI, Franco TT (2010) Biotransformations of carbon dioxide in photobioreactors. Energy Convers Manag 51(5):894–900. https://doi.org/10.1016/j.enconman.2009.11.027
Jiménez V, Sánchez P, Panagiotopoulou P, Valverde JL, Romero A (2010) Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts. Appl Catal A Gen 390(1–2):35–44. https://doi.org/10.1016/j.apcata.2010.09.026
Jiménez V, Jiménez-Borja C, Sánchez P, Romero A, Papaioannou EI, Theleritis D, Souentie S, Brosdac S, Valverde JL (2011) Electrochemical promotion of the CO2 hydrogenation reaction on composite Ni or Ru impregnated carbon nanofiber catalyst-electrodes deposited on YSZ. Appl Catal B Environ 107(1–2):210–220. https://doi.org/10.1016/j.apcatb.2011.07.016
Jin J, Yu J, Cui C, Ho W (2015) A hierarchical Z-scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity. Small 11(39):5262–5271. https://doi.org/10.1002/smll.201500926
Jurković DL, Pohar A, Dasireddy DBC, Likozar B (2017) Effect of copper-based catalyst support on reverse water-gas shift reaction (RWGS) activity for CO2 reduction. Chem Eng Technol 40(5):973–980. https://doi.org/10.1002/ceat.201600594
Jwa E, Lee SB, Lee HW, Mok YS (2013) Plasma-assisted catalytic methanation of CO and CO2 over Ni–zeolite catalysts. Fuel Process Technol 108:89–93. https://doi.org/10.1016/j.fuproc.2012.03.008
Kang SH, Ryu JH, Kim JH, Seo SJ, Yoo YD, Prasad PSS, Lim H-J, Byun C-D (2011) Co-methanation of CO and CO2 on the Nix-Fe1-x/Al2O3 catalysts; effect of Fe contents. Korean J Chem Eng 28(12):2282–2286. https://doi.org/10.1007/s11814-011-0125-2
Kao YL, Lee PH, Tseng YT, Chien IL, Ward JD (2014) Design, control and comparison of fixed-bed methanation reactor systems for the production of substitute natural gas. J Taiwan Inst Chem E 45(5):2346–2357. https://doi.org/10.1016/j.jtice.2014.06.024
Kattel S, Liu P, Chen JG (2017) Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J Am Chem Soc 139(29):9739–9754. https://doi.org/10.1021/jacs.7b05362
Kesavan JK, Luisetto I, Tuti S, Meneghini C, Battocchio C, Iucci G (2017) Ni supported on YSZ: XAS and XPS characterization and catalytic activity for CO2 methanation. J Mater Sci 57(17):10331–10340. https://doi.org/10.1007/s10853-017-1179-2
Kesavan JK, Luisetto I, Tuti S, Meneghini C, Iucci G, Battocchio C, Mobilio S, Casciardi S, Sisto R (2018) Nickel supported on YSZ: the effect of Ni particle size on the catalytic activity for CO2 methanation. J CO2 Util 23:200–211. https://doi.org/10.1016/j.jcou.2017.11.015
Khorasani-Motlagh M, Noroozifar M, Ahanin-Jan A (2012) Ultrasonic and microwave-assisted co-precipitation synthesis of pure phase LaFeO3 perovskite nanocrystals. J Iran Chem Soc 9(5):833–839. https://doi.org/10.1007/s13738-012-0100-9
Kierzkowska-Pawlak H, Tracz P, Redzynia W, Tyczkowski J (2017) Plasma deposited novel nanocatalysts for CO2 hydrogenation to methane. J CO2 Util 17:312–319. https://doi.org/10.1016/j.jcou.2016.12.013
Kim DH, Han SW, Yoon HS, Kim YD (2015) Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability. J Ind Eng Chem 23:67–71. https://doi.org/10.1016/j.jiec.2014.07.043
Kim SM, Abdala PM, Broda M, Hosseini D, Copéret C, Müller CR (2018) Integrated CO2 capture and conversion as an efficient process for fuels from greenhouse gases. ACS Catal 8:2815–2823. https://doi.org/10.1021/acscatal.7b03063
Kiss AA, Pragt JJ, Vos HJ, Bargeman G, de Groot MT (2016) Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem Eng J 284:260–269. https://doi.org/10.1016/j.cej.2015.08.101
Kovacevic M, Mojet BL, Van Ommen JG, Lefferts L (2016) Effects of morphology of cerium oxide catalysts for reverse water gas shift reaction. Catal Lett 146(4):770–777. https://doi.org/10.1007/s10562-016-1697-6
Kunkel C, Viñes F, Illas F (2016) Transition metal carbides as novel materials for CO2 capture, storage, and activation. Energy Environ Sci 9(1):141–144. https://doi.org/10.1039/C5EE03649F
Kurtz M, Wilmer H, Genger T, Hinrichsen O, Muhler M (2003) Deactivation of supported copper catalysts for methanol synthesis. Catal Lett 86(1–3):77–80. https://doi.org/10.1023/A:1022663125977
Kwak JH, Kovarik L, Szanyi J (2013) CO2 reduction on supported Ru/Al2O3 catalysts: cluster size dependence of product selectivity. ACS Catal 3(11):2449–2455. https://doi.org/10.1021/cs400381f
Kwak JH, Kovarik L, Szanyi J (2013a) Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal 3:2094–2100. https://doi.org/10.1021/cs4001392
La Tempa TJ, Rani S, Bao N, Grimes CA (2012) Generation of fuel from CO2 saturated liquids using a p-Si nanowire k n-TiO2 nanotube array photoelectrochemical cell. Nanoscale 4(7):2245–2250. https://doi.org/10.1039/c2nr00052k
Ledoux MC, Pham-Huu C (2005) Carbon nanostructures with macroscopic shaping for catalytic applications. Catal Today 102–103:2–14. https://doi.org/10.1016/j.cattod.2005.02.036
Lefebvre J, Götz M, Bajohr S, Reimert R, Kolb T (2015) Improvement of three-phase methanation reactor performance for steady-state and transient operation. Fuel Process Technol 132:83–90. https://doi.org/10.1016/j.fuproc.2014.10.040
Li Q, Zong L, Li C, Yang J (2014) Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films. Appl Surf Sci 314:458–463. https://doi.org/10.1016/j.apsusc.2014.07.019
Li M, Zhou S, Xu M (2017) Graphene oxide supported magnesium oxide as an efficient cathode catalyst for power generation and wastewater treatment in single chamber microbial fuel cells. Chem Eng J 328:106–116. https://doi.org/10.1016/j.cej.2017.07.031
Liang XL, Dong X, Lin G-D, Zhang H-B (2009) Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl Catal B Environ 88(3–4):315–322. https://doi.org/10.1016/j.apcatb.2008.11.018
Liang XL, Xie J-R, Liu Z-M (2015) A novel Pd-decorated carbon nanotubes-promoted Pd-ZnO catalyst for CO2 hydrogenation to methanol. Catal Lett 145(5):1138–1147. https://doi.org/10.1007/s10562-015-1505-8
Lin L, Yao S, Liu Z, Zhang F, Na L, Vovchok D, Martínez-Arias A, Castañeda R, Lin J, Senanayake SD, Su D, Ma D, Rodriguez JA (2018) In-situ characterization of Cu/CeO2 nanocatalysts during CO2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity. J Phys Chem C 122(24):12934–12943. https://doi.org/10.1021/acs.jpcc.8b03596
Liu G, Hoivik N, Wang K, Jakobsen H (2012a) Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol Energy Mater Sol Cells 105:53–68. https://doi.org/10.1016/j.solmat.2012.05.037
Liu Z, Chu B, Zhai X, Jin Y, Cheng Y (2012b) Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor. Fuel 95:599–605. https://doi.org/10.1016/j.fuel.2011.12.045
Liu Y, Li Z, Xu H, Han Y (2016) Reverse water-gas shift reaction over ceria nanocube synthesized by hydrothermal method. Catal Commun 76(3):1–6. https://doi.org/10.1016/j.catcom.2015.12.011
Liu Z, Wang Z, Qing S, Xue N, Jia S, Zhang L, Li L, Li N, Shi L, Chen J (2018) Improving methane selectivity of photo-induced CO2 reduction on carbon dots through modification of nitrogen-containing groups and graphitization. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2018.03.045
Low J, Yu J, Ho W (2015) Graphene-based photocatalysts for CO2 reduction to solar fuel. J Phys Chem Lett 6(21):4244–4251. https://doi.org/10.1021/acs.jpclett.5b01610
Luisetto I, Tuti S, Battocchio C, Lo Mastro S, Sodo A (2015) Ni/CeO2–Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance. Appl Catal A Gen 500:12–22. https://doi.org/10.1016/j.apcata.2015.05.004
Luisetto I, Tuti S, Battocchio C, Lo Mastro S, Sodo A (2015) Ni/CeO2–Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance. Appl Catal A Gen 500:12–22. https://doi.org/10.1016/j.apcata.2015.05.004
Lunde PJ, Kester FL (1974) Carbon dioxide methanation on a ruthenium catalyst. Ind Eng Chem Proc Des Dev 13(1):27–33. https://doi.org/10.1021/i260049a005
Ma J, Sun NN, Zhang XL, Zhao N, Mao FK, Wei W, Sun YH (2009) A short review of catalysis for CO2 conversion. Catal Today 148(3–4):221–231. https://doi.org/10.1016/j.cattod.2009.08.015
Mao J, Peng TY, Zhang XH, Li K, Ye LQ, Zan L (2012) Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation. Catal Commun 28:38–41. https://doi.org/10.1016/j.catcom.2012.08.008
Mao J, Peng TY, Zhang XH, Li K, Ye LQ, Zan L (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Cat Sci Technol 3(5):1253–1260. https://doi.org/10.1039/c3cy20822b
Martin O, Mondelli C, Cervellino A, Ferri D, Curulla-Ferre D, Perez-Ramirez J (2016) Operando synchrotron X-ray powder diffraction and modulated-excitation infrared spectroscopy elucidate the CO2 promotion on a commercial methanol synthesis catalyst. Angew Chem Int Ed 55(37):11031–11036. https://doi.org/10.1002/anie.201603204
Martin O, Mondelli C, Cervellino A, Ferri D, Curulla-Ferre D, Perez-Ramirez J (2016) Operando synchrotron X-ray powder diffraction and modulated-excitation infrared spectroscopy elucidate the CO2 promotion on a commercial methanol synthesis catalyst. Angew Chem Int Ed 55(37):11031–11036. https://doi.org/10.1002/anie.201603204
Mateo D, Albero J, García H (2018) Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl Catal B Environ 224:563–571. https://doi.org/10.1016/j.apcatb.2017.10.071
Miguel CV, Soria MA, Mendes A, Madeira LM (2015) Direct CO2 hydrogenation to methane or methanol from post-combustion exhaust streams – a thermodynamic study. J Nat Gas Sci Eng 22:1–8. https://doi.org/10.1016/j.jngse.2014.11.010
Mills GA, Steffgen FW (1974) Catalytic methanation. Catal Rev 8:159–210. https://doi.org/10.1080/01614947408071860
Mutz B, Sprenger P, Wang W, Wang D, Kleist W, Grunwaldt JD (2018) Operando Raman spectroscopy on CO2 methanation over alumina-supported Ni, Ni3Fe and NiRh0.1 catalysts: role of carbon formation as possible deactivation pathway. Appl Catal A Gen 556:160–171. https://doi.org/10.1016/j.apcata.2018.01.026
Nishimura N, Kitaura S, Mimura A, Takahara Y (1992) Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions. J Ferment Bioeng 73(6):477–480. https://doi.org/10.1016/0922-338X(92)90141-G
NOAA – National Oceanic and Atmospheric Administration (2018) Recent monthly average Mauna Loa CO2. Available online at https://www.esrl.noaa.gov/gmd/webdata/ccgg/ trends/co2_trend_mlo.pdf. Accessed Mar 2018
Ocampo F, Louis B, Kiwi-Minsker L, Roger A-C (2011) Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1−xO2 catalysts for carbon dioxide methanation. Appl Catal A Gen 392(1–2):36–44. https://doi.org/10.1016/j.apcata.2010.10.025
Olah GA, Goeppert A, Prakash GS (2008) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Organomet Chem 74(2):487–498. https://doi.org/10.1021/jo801260f
Ota A, Kunkes EL, Kasatkin I, Groppo E, Ferri D, Poceiro B, Navarro Yerga RM, Behrens M (2012) Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts. J Catal 293:27–38. https://doi.org/10.1016/j.jcat.2012.05.020
Oyola-Rivera O, Baltanás MA, Cardona-Martínez N (2015) CO2 hydrogenation to 1methanol and dimethyl ether by Pd–Pd2Ga catalysts supported over Ga2O3 polymorphs. J CO2 Util 9:8–15. https://doi.org/10.1016/j.jcou.2014.11.003
Park JN, McFarland EW (2009) A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. J Catal 266(1):92–97. https://doi.org/10.1016/j.jcat.2009.05.018
Pastor-Pérez L, Baibars F, Le Sache E, Arellano-García H, Gu S, Reina TR (2017) CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts. J CO2 Util 21:423–428. https://doi.org/10.1016/j.jcou.2017.08.009
Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Crit Rev Environ Control 21(5–6):411–490. https://doi.org/10.1080/10643389109388424
Peillex JP, Fardeau ML, Boussand R, Navarro JM, Belaich JP (1988) Growth of Methanococcus thermolithotrophicus in batch and continuous culture on H2 and CO2: influence of agitation. Appl Microbiol Biotechnol 29(6):560–564. https://doi.org/10.1007/BF00260985
Pendashteh A, Rahmanifar MS, Mousavi MF (2014) Morphologically controlled preparation of CuO nanostructures under ultrasound irradiation and their evaluation as pseudocapacitor materials. Ultrason Sonochem 21(2):643–652. https://doi.org/10.1016/j.ultsonch.2013.08.009
Pöhlmann F, Jess A (2016) Influence of syngas composition on the kinetics of Fischer-Tropsch synthesis of using cobalt as catalyst. Energy Technol 4(1):55–64. https://doi.org/10.1002/ente.201500216
Porosoff MD, Yang X, Boscoboinik JA, Chen JG (2014) Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chem Int Ed 53(26):6705–6709. https://doi.org/10.1002/anie.201404109
Porosoff MD, Yan B, Chen JG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 9(1):62–73. https://doi.org/10.1039/C5EE02657A
Porosoff MD, Baldwin JW, Peng X, Mpourmpakis G, Willauer HD (2017) Potassium-promoted molybdenum carbide as a highly active and selective catalyst for CO2 conversion to CO. ChemSusChem 10(11):2408–2415. https://doi.org/10.1002/cssc.201700412
Posada-Pérez S, Viñes F, Ramirez PJ, Vidal AB, Rodriguez JA, Illas F (2014) The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Phys Chem Chem Phys 16(28):14912–14921. https://doi.org/10.1039/C4CP01943A
Posada-Pérez S, Viñes F, Rodriguez JA, Illas F (2015) Fundamentals of methanol synthesis on metal carbide based catalysts: activation of CO2 and H2. Top Catal 58(2–3):159–173. https://doi.org/10.1007/s11244-014-0355-8
Prasad K, Pinjari DV, Pandit AB, Mhaske ST (2010) Synthesis of titanium dioxide by ultrasound assisted sol-gel technique: effect of amplitude (power density) variation. Ultrason Sonochem 17:697–703. https://doi.org/10.1016/j.ultsonch.2010.01.005
Qu J, Zhang X, Wang Y, Xie C (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50(16–17):3576–3580. https://doi.org/10.1016/j.electacta.2004.11.061
Qu J, Zhou X, Xu F, Gong XQ, Tsang SCE (2014) Shape effect of Pd-promoted Ga2O3 nanocatalysts for methanol synthesis by CO2 hydrogenation. J Phys Chem C 118(42):24452–24466. https://doi.org/10.1021/jp5063379
Quesne MG, Roldan A, de Leeuw NH, Catlow CRA (2018) Bulk and surface properties of metal carbides: implications for catalysis. Phys Chem Chem Phys 20:6905–6916. https://doi.org/10.1039/C7CP06336A
Ramachandriya KD, Kundiyana DK, Wilkins MR, Terrill JB, Atiyeh HK, Huhnke RL (2013) Carbon dioxide conversion to fuels and chemicals using a hybrid green process. Appl Energy 112:289–299. https://doi.org/10.1016/j.apenergy.2013.06.017
Rodriguez JA, Evans J, Feria L, Vidal AB, Liu P, Nakamura K, Illas F (2013) CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: production of CO, methanol, and methane. J Catal 307:162–169. https://doi.org/10.1016/j.jcat.2013.07.023
Rodriguez JA, Liu P, Stacchiola DJ, Senanayake SD, White MG, Chen JG (2015) Hydrogenation of CO2 to methanol: importance of metal–oxide and metal–carbide interfaces in the activation of CO2. ACS Catal 5(11):6696–6706
Romero-Sáez M, Dongil AB, Benito N, Espinoza-González R, Escalona N, Gracia F (2018) CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: a comparison between two impregnation strategies. Appl Catal B Environ 237:817–825. https://doi.org/10.1016/j.apcatb.2018.06.045
Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Review on methanation – from fundamentals to current projects. Fuel 166:276–296. https://doi.org/10.1016/j.fuel.2015.10.111
Sabatier P, Senderens JB (1902) New synthesis of methane. Compt Rend 134:514–516
Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products – a review and potential future developments. J CO2 Util 5:66–81. https://doi.org/10.1016/j.jcou.2013.12.005
Sahebdelfar S, Ravanchi MT (2015) Carbon dioxide utilization for methane production: a thermodynamic analysis. J Pet Sci Eng 134:14–22. https://doi.org/10.1016/j.petrol.2015.07.015
Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2365–2387. https://doi.org/10.1021/cr068357u
Samei E, Taghizadeh M, Bahmani M (2012) Enhancement of stability and activity of Cu/ZnO/Al2O3 catalysts by colloidal silica and metal oxides additives for methanol synthesis from a CO2-rich feed. Fuel Process Technol 96:128–133. https://doi.org/10.1016/j.fuproc.2011.12.028
Schubert K, Brandner J, Fichtner M, Linder G, Schygulla U, Wenka A (2001) Microstructure devices for application in thermal and chemical process engineering. Microscale Thermophys Eng 5(1):17–39. https://doi.org/10.1080/108939501300005358
Schulte KL, DeSario PA, Gray KA (2010) Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light. Appl Catal B Environ 97(3–4):354–360. https://doi.org/10.1016/j.apcatb.2010.04.017
Seemann L (2006) Methanation of biosyngas in a fluidized bed reactor – development of a one-step synthesis process, featuring simultaneous methanation, watergas shift and low temperature tar reforming. PhD thesis. ETH Zurich
Seifert AH, Rittmann S, Herwig C (2014) Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Appl Energy 132:155–162. https://doi.org/10.1016/j.apenergy.2014.07.002
Sepehri S, Rezaei M (2015) Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline gamma-Al2O3 for methane autothermal reforming. Chem Eng Technol 38(9):1637–1645. https://doi.org/10.1002/ceat.201400566
Sharafutdinov I, Elkjær CF, de Carvalho HWP, Gardini D, Chiarello GL, Damsgaard CD, Wagner JB, Grunwaldt JD, Dahl S, Chorkendorff I (2014) Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. J Catal 320:77–88. https://doi.org/10.1016/j.jcat.2014.09.025
Shui J, Wang M, Du F, Dai L (2015) N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv 1(1):e1400129. https://doi.org/10.1126/sciadv.1400129
Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State 26(3):145–249. https://doi.org/10.1080/20014091104189
Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115(1–4):2–32. https://doi.org/10.1016/j.cattod.2006.02.029
Song F, Zhong Q, Yu Y, Shi M, Wu Y, Hu J, Song Y (2017) Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method. Int J Hydrog Energy 42(7):4174–4183. https://doi.org/10.1016/j.ijhydene.2016.10.141
Sterner M (2009) Bioenergy and renewable power methane in integrated 100% renewable energy systems – limiting global warming by transforming energy systems. PhD thesis. University of Kassel
Studt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6(4):320–324. https://doi.org/10.1038/nchem.1873
Su X, Yang X, Zhao B, Huang Y (2017) Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. J Energy Chem 26(5):854–867. https://doi.org/10.1016/j.jechem.2017.07.006
Tan JZY, Fernandez Y, Liu D, Maroto-Valer M, Bian J, Zhang X (2012) Photo-reduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior. Chem Phys Lett 531:149–154. https://doi.org/10.1016/j.cplett.2012.02.016
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. https://doi.org/10.1038/nrmicro1931
Tóth M, Kiss J, Oszkó A, Pótári G, László B, Erdőhelyi A (2012) Hydrogenation of carbon dioxide on Rh, Au and Au–Rh bimetallic clusters supported on titanate nanotubes, nanowires and TiO2. Top Catal 55(11–13):747–756. https://doi.org/10.1007/s11244-012-9862-7
Tursunov O, Tilyabaev Z (2017) Hydrogenation of CO2 over Co supported on carbon nanotube, carbón nanotube-Nb2O5, carbon nanofiber, low-layered graphite fragments and Nb2O5. J Energy Inst. https://doi.org/10.1016/j.joei.2017.12.004
Ud Din I, Shaharun MS, Subbarao D, Naeem A (2015) Synthesis, characterization and activity pattern of carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: influence of calcination temperature. J Power Sources 274:619–628. https://doi.org/10.1016/j.jpowsour.2014.10.087
Ud Din I, Shaharun MS, Subbarao D, Naeem A, Hussain F (2016) Influence of niobium on carbon nanofibres based Cu/ZrO2 catalysts for liquid phase hydrogenation of CO2 to methanol. Catal Today 259(2):303–311. https://doi.org/10.1016/j.cattod.2015.06.019
Ud Din I, Shaharun MS, Naeem A, Tasleem S, Johan MR (2017) Carbon nanofiber-based copper/zirconia catalyst for hydrogenation of CO2 to methanol. J CO2 Util 21:145–155. https://doi.org/10.1016/j.jcou.2017.07.010
Vargas E, Romero-Saéz M, Denardin JC, Gracia F (2016) The ultrasound-assisted synthesis of effective monodisperse nickel nanoparticles: magnetic characterization and its catalytic activity in CO2 methanation. New J Chem 40:7307–7310. https://doi.org/10.1039/C6NJ01574C
Vijayan B, Dimitrijevic NM, Rajh T, Gray K (2010) Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. J Phys Chem C 114(30):12994–13002. https://doi.org/10.1021/jp104345h
Wang J, Lu S, Li J, Li C (2015) Remarkable difference in CO2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes. Chem Commun 51(99):17615–17618. https://doi.org/10.1039/C5CC07079A
Wang W, Chu W, Wang N, Yang W, Jiang C (2016) Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation. Int J Hydrog Energy 41:967–975. https://doi.org/10.1016/j.ijhydene.2015.11.133
Weatherbee GD, Bartholomew CH (1981) Hydrogenation of CO2 on group VIII metals: I. specific activity of Ni/SiO2. J Catal 68(1):67–76. https://doi.org/10.1016/0021-9517(81)90040-3
Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77(2):219–262. https://doi.org/10.1021/cr60306a003
Witoon T, Numpilai T, Phongamwong T, Donphai W, Boonyuen C, Warakulwit C, Chareonpanich M, Limtrakul J (2018) Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol. Chem Eng J 334:1781–1791. https://doi.org/10.1016/j.cej.2017.11.117
Wu HC, Chang YC, Wu JH, Lin JH, Lin IK, Chen CS (2015) Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway. Cat Sci Technol 5(8):4154–4163. https://doi.org/10.1039/C5CY00667H
Xia X, Jia Z, Yu Y, Liang Y, Wang Z, Ma L (2007) Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 45(4):717–721. https://doi.org/10.1016/j.carbon.2006.11.028
Xiaoding X, Moulijn JA (1996) Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energ Fuels 10(2):305–325. https://doi.org/10.1021/ef9501511
Xu W, Ramírez PJ, Stacchiola D, Brito JL, Rodriguez JA (2015) The carburization of transition metal molybdates (MxMoO4, M = Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO2 hydrogenation. Catal Lett 145(7):1365–1373. https://doi.org/10.1007/s10562-015-1540-5
Yin G, Yuan X, Du X, Zhao W, Bi Q, Huang F (2018) Efficient reduction of CO2 to CO using cobalt–cobalt oxide core–shell catalysts. Chem Eur J 24(9):2157–2163. https://doi.org/10.1002/chem.201704596
Yu KP, Yu WY, Kuo MC, Liou YC, Chien SH (2008) Pt/titania-nanotube: a potential catalyst for CO2 adsorption and hydrogenation. Appl Catal B Environ 84(1–2):112–118. https://doi.org/10.1016/j.apcatb.2008.03.009
Zhang QH, Han WD, Hong YJ, Yu JG (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148(3–4):335–340. https://doi.org/10.1016/j.cattod.2009.07.081
Zhang Q, Zuo Y-Z, Han M-H, Wang J-F, Jin Y, Wei F (2010) Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether. Catal Today 50(1–2):55–60. https://doi.org/10.1016/j.cattod.2009.05.018
Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. https://doi.org/10.1007/s10853-013-7705-y
Zhang J, An B, Hong Y, Meng Y, Hu X, Wang C, Lin J, Lin W, Wang Y (2017a) Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation. Mater Chem Front 1:2405–2409. https://doi.org/10.1039/C7QM00328E
Zhang X, Zhu X, Lin L, Yao S, Zhang M, Liu X, Wang X, Li Y, Shi C, Ma D (2017b) Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catal 7(1):912–918. https://doi.org/10.1021/acscatal.6b02991
Zhu X, Qu X, Li X, Liu J, Liu J, Zhu B, Shi C (2016) Selective reduction of carbon dioxide to carbon monoxide over Au/CeO2 catalyst and identification of reaction intermediate. Chin J Catal 37(12):2053–2058. https://doi.org/10.1016/S1872-2067(16)62538-X
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 42 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer
dc.publisher.place.spa.fl_str_mv Suiza
dc.source.spa.fl_str_mv https://link.springer.com/content/pdf/bfm:978-3-030-04474-9/1?pdf=chapter%20toc
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/3975/3/Nanomaterials%20for%20CO2%20Hydrogenation.jpg.jpg
https://dspace.tdea.edu.co/bitstream/tdea/3975/2/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/3975/1/Nanomaterials%20for%20CO2%20Hydrogenation.jpg
bitstream.checksum.fl_str_mv d7b187f1d4143f8687923678dd0ac975
2f9959eaf5b71fae44bbf9ec84150c7a
19ad6a80b50d80f0954a182a0dcd510e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812189245875421184
spelling Romero Sáez, Manuel8e4243e1-7bb8-49ed-89c5-5047c839090bJaramillo Zapata, Leyla Yamile807c25da-7580-489a-aa2e-e2ef132a48b0Henao Sierra, Wilson Albeiro56920ace-08c8-402d-a2fa-a84a5a6d6ad3De La Torre Larrañaga, Unai07a39cfc-2191-42b9-90ae-4497047949ef2023-10-19T20:56:27Z2023-10-19T20:56:27Z2019978-3-030-04473-2https://dspace.tdea.edu.co/handle/tdea/3975978-3-030-04474-9The use of fossil fuels such as coal, oil, and natural gas has allowed a fast and unprecedented development of human society. However, this has led to a continuous increase in anthropogenic CO2 emissions, which affect human life and the ecological environment through global warming and climate changes. There are various strategies to mitigate the atmospheric concentration of CO2, such as capture, separation, and utilization. Among them, CO2 hydrogenation to obtain different products through catalytic processes is a strategy of great interest. Thus, the catalytic combination of CO2 and hydrogen not only mitigates anthropogenic emissions into Earth’s atmosphere, but it also produces carbon compounds that can be used as fuel or precursors for the production of different chemicals. This chapter reviews the use of different nanomaterials for CO2 hydrogenation. Three different processes are distinguished, depending on the final product: (i) CO2 hydrogenation to carbon monoxide, (ii) methanol production by CO2 hydrogenation, and (iii) CO2 hydrogenation to methane. It has been included both nanomaterials that act as support and those that can replace the active metal phase. Concerning CO2 hydrogenation to CO, one-dimensional transition metal carbides have received increasing attention because their unique electronic structure allows similar catalytic properties to the expensive noble metals. Attending the high thermal requirements of CO synthesis, emerging metal oxides nanocatalysts are focused to prevent the metal sintering by increasing the metal-support interactions. Controlling the support’s morphology at nanoscale can enhance both catalytic activity and stability at high temperatures up to twice with respect to those conventional micro-sized catalysts. Regarding to methanol production, the nanomaterials most commonly used as supports are those based on carbon, e.g., carbon nanotubes, carbon nanofibers, and graphene oxide. The main advantage of using these materials is their high surface area, which improves metallic phase dispersion, higher thermal and electrical conductivities, and greater mechanical resistance. In addition, the use of intermetallic nanoparticles as an active phase is very promising. The combination of two metals in the same nanoparticle greatly increases the interface between components, which clearly leads to a synergistic effect between them. The use of these nanomaterials improves the activity and selectivity to methanol between 2 and ~50%, compared with classical catalysts. Moreover, similar strategies are equally valid in methane production. Catalysts based on nanoparticles, such as Ni or NiO, supported on traditional metal oxides have been recently reported to improve catalytic activity in CO2 methanation with high resistance to coke deposition. Other supports, such as carbon nanofibers and carbon nanotubes previously mentioned, have shown excellent results, with CO2 conversions higher than 90% and complete selectivity to methane. Finally, TiO2-based catalysts are a promising solution for methane production by the still undeveloped photocatalytic reduction. This reaction can be performed under mild temperatures and pressure conditions, which is a clear advantage for methane synthesis. Keywords CO2 hydrogenation Nanomaterials Carbon monoxide Methanol Methane Carbon nanotubes Carbon nanofibers Graphene oxide Nanoparticles Transition metal carbide42 páginasapplication/pdfengSpringerSuizaEnvironmental Chemistry for a Sustainable World;volumen 23214173Emerging Nanostructured Materials for Energy and Environmental ScienceAlbo J, Irabien A (2016) Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J Catal 343:232–239. https://doi.org/10.1016/j.jcat.2015.11.014Ali KA, Abdullah AZ, Mohamed AR (2015) Recent development in catalytic technologies for methanol synthesis from renewable sources: a critical review. Renew Sustain Energ Rev 44:508–518. https://doi.org/10.1016/j.rser.2015.01.010Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR (2014) Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl Catal B Environ 147:359–368. https://doi.org/10.1016/j.apcatb.2013.09.015Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Covillle NJ (2005) Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes. Appl Catal A Gen 287:60–67. https://doi.org/10.1016/j.apcata.2005.03.029Balakumar V, Prakash P (2016) A facile in situ synthesis of highly active and reusable ternary Ag-PPy-GO nanocomposite for catalytic oxidation of hydroquinone in aqueous solution. J Catal 344:795–805. https://doi.org/10.1016/j.jcat.2016.08.010Bang JH, Suslick KS (2010) Applications of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059. https://doi.org/10.1002/adma.200904093Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212(1–2):17–60. https://doi.org/10.1016/S0926-860X(00)00843-7Berber S, Kwon Y-K, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613–4616. https://doi.org/10.1103/PhysRevLett.84.4613Bhanja P, Modak A, Bhaumik A (2018) Supported porous nanomaterials as efficient heterogeneous catalysts for CO2 fixation reactions. Chem Eur J. https://doi.org/10.1002/chem.201800075Brooks KP, Hu J, Zhu H, Kee RJ (2007) Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chem Eng Sci 62:1161–1170. https://doi.org/10.1016/j.ces.2006.11.020Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731. https://doi.org/10.1039/c3ee00056gChabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1596. https://doi.org/10.1039/c3ee43385dChen L, Li Y, Chen L, Li N, Dong C, Chen Q, Liu B, Ai Q, Si P, Feng J, Zhang L, Suhr J, Lou J, Ci L (2018) A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. Chem Eng J 345:536–544. https://doi.org/10.1016/j.cej.2018.03.136Chesnokov VV, Podyacheva OY, Richards RM (2017) Influence of carbon nanomaterials on the properties of Pd/C catalysts in selective hydrogenation of acetylene. Mater Res Bull 88:78–84. https://doi.org/10.1016/j.materresbull.2016.12.013Chiang CL, Lin KS, Hsu PJ, Lin YG (2017) Synthesis and characterization of magnetic zinc and manganese ferrite catalysts for decomposition of carbon dioxide into methane. Inter J Hydro Energy 42:22123–22137. https://doi.org/10.1016/j.ijhydene.2017.06.033Collins SE, Baltanás MA, Bonivardi AL (2004) An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3. J Catal 226(2):410–421. https://doi.org/10.1016/j.jcat.2004.06.012Collins SE, Delgado JJ, Mira C, Calvino JJ, Bernal S, Chiavassa DL, Baltanás MA, Bonivardi AL (2012) The role of Pd–Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst. J Catal 292:90–98. https://doi.org/10.1016/j.jcat.2012.05.005Daza YA, Kuhn JN (2016) CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv 6(55):49675–49691. https://doi.org/10.1039/C6RA05414EDeerattrakul V, Dittanet P, Sawangphruk M, Kongkachuichay P (2016) CO2 hydrogenation to methanol using Cu-Zn catalyst supported on reduced graphene oxide nanosheets. J CO2 Util 16:104–113. https://doi.org/10.1016/j.jcou.2016.07.002Díaz-Taboada C, Batista J, Pintar A, Levec J (2009) Preparation, characterization and catalytic properties of carbon nanofiber-supported Pt, Pd, Ru monometallic particles in aqueous-phase reactions. Appl Catal B Environ 89:375–382. https://doi.org/10.1016/j.apcatb.2008.12.016Díez-Ramírez J, Sánchez P, Rodríguez-Gómez A, Valverde JL, Dorado F (2016) Carbon nanofiber-based palladium/zinc catalysts for the hydrogenation of carbon dioxide to methanol at atmospheric pressure. Ind Eng Chem Res 55(12):3556–3567. https://doi.org/10.1021/acs.iecr.6b00170Dou J, Sheng Y, Choong C, Chen L, Zeng HC (2017) Silica nanowires encapsulated Ru nanoparticles as stable nanocatalysts for selective hydrogenation of CO2 to CO. Appl Catal B Environ 219:580–591. https://doi.org/10.1016/j.apcatb.2017.07.083Dresselhaus MS, Eklund PC (2000) Phonons in carbon nanotubes. Adv Phys 49(6):705–814. https://doi.org/10.1080/000187300413184Du G, Lim S, Yang Y, Wang C, Pfefferle L, Haller G (2007) Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: the influence of catalyst pretreatment and study of steady-state reaction. J Catal 249:370–379. https://doi.org/10.1016/j.jcat.2007.03.029Fan YJ, Wu SF (2016) A graphene-supported copper-based catalyst for the hydrogenation of carbon dioxide to form methanol. J CO2 Util 16:150–156. https://doi.org/10.1016/j.jcou.2016.07.001Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5):3919–3945. https://doi.org/10.3390/ma7053919Fiordaliso EM, Sharafutdinov I, Carvalho HW, Grunwaldt JD, Hansen TW, Chorkendorff I, Wagner JB, Damsgaard CD (2015) Intermetallic GaPd2 nanoparticles on SiO2 for low-pressure CO2 hydrogenation to methanol: catalytic performance and in situ characterization. ACS Catal 5(10):5827–5836. https://doi.org/10.1021/acscatal.5b01271Fishman ZS, He Y, Yang KR, Lounsbury A, Zhu J, Tran TM, Zimmerman JB, Batista VS, Pfefferle LD (2017) Hard templating ultrathin polycrystalline hematite nanosheets: effect of nano-dimension on CO2 to CO conversion via the reverse water shift reaction. Nanoscale 9:12984–12995. https://doi.org/10.1039/C7NR03522EFrey M, Édouard D, Roger AC (2015) Optimization of structured cellular foam-based catalysts for low-temperature carbon dioxide methanation in a platelet milli-reactor. C R Chim 18:283–292. https://doi.org/10.1016/j.crci.2015.01.002Gac W, Zawadzki W, Słowik G, Sienkiewicz A, Kierys A (2018) Nickel catalysts supported on silica microspheres for CO2 methanation. Microporous Mesoporous Mater 272:79–91. https://doi.org/10.1016/j.micromeso.2018.06.022Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv 2:2358–2368. https://doi.org/10.1039/c2ra00632dGao J, Wu Y, Jia C, Zhong Z, Gao F, Yang Y, Liu B (2016) Controllable synthesis of α-MoC1-x and β-Mo2C nanowires for highly selective CO2 reduction to CO. Catal Commun 84(5):147–150. https://doi.org/10.1016/j.catcom.2016.06.026Ghaib K, Ben-Fares FZ (2018) Power-to-methane: a state-of-the-art review. Renew Sustain Energ Rev 81:433–446. https://doi.org/10.1016/j.rser.2017.08.004Ghaib K, Nitz K, Ben-Fares FZ (2016) Chemical methanation of CO2: a review. Chem Bio Eng Rev 3(6):266–275. https://doi.org/10.1002/cben.201600022Goeppert A, Czaun M, Jones JP, Prakash GS, Olah GA (2014) Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem Soc Rev 43(23):7995–8048. https://doi.org/10.1039/c4cs00122bGötz M, Ortloff F, Reimert R, Basha O, Morsi BI, Kolb T (2013) Evaluation of organic and ionic liquids for three-phase methanation and biogas purification processes. Energy Fuel 27(8):4705–4716. https://doi.org/10.1021/ef400334pGötz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T (2015) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390. https://doi.org/10.1016/j.renene.2015.07.066Habazaki H, Yamasaki M, Zhang B, Kawashima A, Kohno S, Takai T, Hashimoto K (1998) Co-methanation of carbon monoxide and carbon dioxide on supported nickel and cobalt catalysts prepared from amorphous alloys. Appl Catal A Gen 172(1):131–140. https://doi.org/10.1016/S0926-860X(98)00121-5Hartadi Y, Widmann D, Behm RJ (2015) CO2 hydrogenation to methanol on supported au catalysts under moderate reaction conditions: support and particle size effects. ChemSusChem 8(3):456–465. https://doi.org/10.1002/cssc.201402645Hashimoto K, Yamasaki M, Fujimura K, Matsui T, Izumiya K, Komori M, El-Moneim AA, Akiyama E, Habazaki H, Kumagai N, Kawashima A, Asami A (1999) Global CO2 recycling – novel materials and prospect for prevention of global warming and abundant energy supply. Mater Sci Eng A 267(2):200–206. https://doi.org/10.1016/S0921-5093(99)00092-1He S, Li C, Chen H, Su D, Zhang B, Cao X, Wang B, Wei M, Evans DG, Duan X (2013) A surface defect-promoted Ni nanocatalyst with simultaneously enhanced activity and stability. Chem Mater 25:1040–1046. https://doi.org/10.1021/cm303517zHiller H, Reimert R (2006) Types of gases. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, p 10Hou Z, Gao J, Guo J, Liang D, Lou H, Zheng X (2007) Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor. J Catal 250(2):331–341. https://doi.org/10.1016/j.jcat.2007.06.023Hu J, Brooks KP, Holladay JD, Howe DT, Simon TM (2007) Catalyst development for microchannel reactors for martian in situ propellant production. Catal Today 125(1–2):103–110. https://doi.org/10.1016/j.cattod.2007.01.067Hu B, Yin Y, Liu G, Chen S, Hong X, Tsang SCE (2018) Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts. J Catal 359:17–26. https://doi.org/10.1016/j.jcat.2017.12.029Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0Jacob-Lopes E, Scoparo CHG, Queiroz MI, Franco TT (2010) Biotransformations of carbon dioxide in photobioreactors. Energy Convers Manag 51(5):894–900. https://doi.org/10.1016/j.enconman.2009.11.027Jiménez V, Sánchez P, Panagiotopoulou P, Valverde JL, Romero A (2010) Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts. Appl Catal A Gen 390(1–2):35–44. https://doi.org/10.1016/j.apcata.2010.09.026Jiménez V, Jiménez-Borja C, Sánchez P, Romero A, Papaioannou EI, Theleritis D, Souentie S, Brosdac S, Valverde JL (2011) Electrochemical promotion of the CO2 hydrogenation reaction on composite Ni or Ru impregnated carbon nanofiber catalyst-electrodes deposited on YSZ. Appl Catal B Environ 107(1–2):210–220. https://doi.org/10.1016/j.apcatb.2011.07.016Jin J, Yu J, Cui C, Ho W (2015) A hierarchical Z-scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity. Small 11(39):5262–5271. https://doi.org/10.1002/smll.201500926Jurković DL, Pohar A, Dasireddy DBC, Likozar B (2017) Effect of copper-based catalyst support on reverse water-gas shift reaction (RWGS) activity for CO2 reduction. Chem Eng Technol 40(5):973–980. https://doi.org/10.1002/ceat.201600594Jwa E, Lee SB, Lee HW, Mok YS (2013) Plasma-assisted catalytic methanation of CO and CO2 over Ni–zeolite catalysts. Fuel Process Technol 108:89–93. https://doi.org/10.1016/j.fuproc.2012.03.008Kang SH, Ryu JH, Kim JH, Seo SJ, Yoo YD, Prasad PSS, Lim H-J, Byun C-D (2011) Co-methanation of CO and CO2 on the Nix-Fe1-x/Al2O3 catalysts; effect of Fe contents. Korean J Chem Eng 28(12):2282–2286. https://doi.org/10.1007/s11814-011-0125-2Kao YL, Lee PH, Tseng YT, Chien IL, Ward JD (2014) Design, control and comparison of fixed-bed methanation reactor systems for the production of substitute natural gas. J Taiwan Inst Chem E 45(5):2346–2357. https://doi.org/10.1016/j.jtice.2014.06.024Kattel S, Liu P, Chen JG (2017) Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J Am Chem Soc 139(29):9739–9754. https://doi.org/10.1021/jacs.7b05362Kesavan JK, Luisetto I, Tuti S, Meneghini C, Battocchio C, Iucci G (2017) Ni supported on YSZ: XAS and XPS characterization and catalytic activity for CO2 methanation. J Mater Sci 57(17):10331–10340. https://doi.org/10.1007/s10853-017-1179-2Kesavan JK, Luisetto I, Tuti S, Meneghini C, Iucci G, Battocchio C, Mobilio S, Casciardi S, Sisto R (2018) Nickel supported on YSZ: the effect of Ni particle size on the catalytic activity for CO2 methanation. J CO2 Util 23:200–211. https://doi.org/10.1016/j.jcou.2017.11.015Khorasani-Motlagh M, Noroozifar M, Ahanin-Jan A (2012) Ultrasonic and microwave-assisted co-precipitation synthesis of pure phase LaFeO3 perovskite nanocrystals. J Iran Chem Soc 9(5):833–839. https://doi.org/10.1007/s13738-012-0100-9Kierzkowska-Pawlak H, Tracz P, Redzynia W, Tyczkowski J (2017) Plasma deposited novel nanocatalysts for CO2 hydrogenation to methane. J CO2 Util 17:312–319. https://doi.org/10.1016/j.jcou.2016.12.013Kim DH, Han SW, Yoon HS, Kim YD (2015) Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability. J Ind Eng Chem 23:67–71. https://doi.org/10.1016/j.jiec.2014.07.043Kim SM, Abdala PM, Broda M, Hosseini D, Copéret C, Müller CR (2018) Integrated CO2 capture and conversion as an efficient process for fuels from greenhouse gases. ACS Catal 8:2815–2823. https://doi.org/10.1021/acscatal.7b03063Kiss AA, Pragt JJ, Vos HJ, Bargeman G, de Groot MT (2016) Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem Eng J 284:260–269. https://doi.org/10.1016/j.cej.2015.08.101Kovacevic M, Mojet BL, Van Ommen JG, Lefferts L (2016) Effects of morphology of cerium oxide catalysts for reverse water gas shift reaction. Catal Lett 146(4):770–777. https://doi.org/10.1007/s10562-016-1697-6Kunkel C, Viñes F, Illas F (2016) Transition metal carbides as novel materials for CO2 capture, storage, and activation. Energy Environ Sci 9(1):141–144. https://doi.org/10.1039/C5EE03649FKurtz M, Wilmer H, Genger T, Hinrichsen O, Muhler M (2003) Deactivation of supported copper catalysts for methanol synthesis. Catal Lett 86(1–3):77–80. https://doi.org/10.1023/A:1022663125977Kwak JH, Kovarik L, Szanyi J (2013) CO2 reduction on supported Ru/Al2O3 catalysts: cluster size dependence of product selectivity. ACS Catal 3(11):2449–2455. https://doi.org/10.1021/cs400381fKwak JH, Kovarik L, Szanyi J (2013a) Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal 3:2094–2100. https://doi.org/10.1021/cs4001392La Tempa TJ, Rani S, Bao N, Grimes CA (2012) Generation of fuel from CO2 saturated liquids using a p-Si nanowire k n-TiO2 nanotube array photoelectrochemical cell. Nanoscale 4(7):2245–2250. https://doi.org/10.1039/c2nr00052kLedoux MC, Pham-Huu C (2005) Carbon nanostructures with macroscopic shaping for catalytic applications. Catal Today 102–103:2–14. https://doi.org/10.1016/j.cattod.2005.02.036Lefebvre J, Götz M, Bajohr S, Reimert R, Kolb T (2015) Improvement of three-phase methanation reactor performance for steady-state and transient operation. Fuel Process Technol 132:83–90. https://doi.org/10.1016/j.fuproc.2014.10.040Li Q, Zong L, Li C, Yang J (2014) Photocatalytic reduction of CO2 on MgO/TiO2 nanotube films. Appl Surf Sci 314:458–463. https://doi.org/10.1016/j.apsusc.2014.07.019Li M, Zhou S, Xu M (2017) Graphene oxide supported magnesium oxide as an efficient cathode catalyst for power generation and wastewater treatment in single chamber microbial fuel cells. Chem Eng J 328:106–116. https://doi.org/10.1016/j.cej.2017.07.031Liang XL, Dong X, Lin G-D, Zhang H-B (2009) Carbon nanotube-supported Pd–ZnO catalyst for hydrogenation of CO2 to methanol. Appl Catal B Environ 88(3–4):315–322. https://doi.org/10.1016/j.apcatb.2008.11.018Liang XL, Xie J-R, Liu Z-M (2015) A novel Pd-decorated carbon nanotubes-promoted Pd-ZnO catalyst for CO2 hydrogenation to methanol. Catal Lett 145(5):1138–1147. https://doi.org/10.1007/s10562-015-1505-8Lin L, Yao S, Liu Z, Zhang F, Na L, Vovchok D, Martínez-Arias A, Castañeda R, Lin J, Senanayake SD, Su D, Ma D, Rodriguez JA (2018) In-situ characterization of Cu/CeO2 nanocatalysts during CO2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity. J Phys Chem C 122(24):12934–12943. https://doi.org/10.1021/acs.jpcc.8b03596Liu G, Hoivik N, Wang K, Jakobsen H (2012a) Engineering TiO2 nanomaterials for CO2 conversion/solar fuels. Sol Energy Mater Sol Cells 105:53–68. https://doi.org/10.1016/j.solmat.2012.05.037Liu Z, Chu B, Zhai X, Jin Y, Cheng Y (2012b) Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor. Fuel 95:599–605. https://doi.org/10.1016/j.fuel.2011.12.045Liu Y, Li Z, Xu H, Han Y (2016) Reverse water-gas shift reaction over ceria nanocube synthesized by hydrothermal method. Catal Commun 76(3):1–6. https://doi.org/10.1016/j.catcom.2015.12.011Liu Z, Wang Z, Qing S, Xue N, Jia S, Zhang L, Li L, Li N, Shi L, Chen J (2018) Improving methane selectivity of photo-induced CO2 reduction on carbon dots through modification of nitrogen-containing groups and graphitization. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2018.03.045Low J, Yu J, Ho W (2015) Graphene-based photocatalysts for CO2 reduction to solar fuel. J Phys Chem Lett 6(21):4244–4251. https://doi.org/10.1021/acs.jpclett.5b01610Luisetto I, Tuti S, Battocchio C, Lo Mastro S, Sodo A (2015) Ni/CeO2–Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance. Appl Catal A Gen 500:12–22. https://doi.org/10.1016/j.apcata.2015.05.004Luisetto I, Tuti S, Battocchio C, Lo Mastro S, Sodo A (2015) Ni/CeO2–Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance. Appl Catal A Gen 500:12–22. https://doi.org/10.1016/j.apcata.2015.05.004Lunde PJ, Kester FL (1974) Carbon dioxide methanation on a ruthenium catalyst. Ind Eng Chem Proc Des Dev 13(1):27–33. https://doi.org/10.1021/i260049a005Ma J, Sun NN, Zhang XL, Zhao N, Mao FK, Wei W, Sun YH (2009) A short review of catalysis for CO2 conversion. Catal Today 148(3–4):221–231. https://doi.org/10.1016/j.cattod.2009.08.015Mao J, Peng TY, Zhang XH, Li K, Ye LQ, Zan L (2012) Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation. Catal Commun 28:38–41. https://doi.org/10.1016/j.catcom.2012.08.008Mao J, Peng TY, Zhang XH, Li K, Ye LQ, Zan L (2013) Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light. Cat Sci Technol 3(5):1253–1260. https://doi.org/10.1039/c3cy20822bMartin O, Mondelli C, Cervellino A, Ferri D, Curulla-Ferre D, Perez-Ramirez J (2016) Operando synchrotron X-ray powder diffraction and modulated-excitation infrared spectroscopy elucidate the CO2 promotion on a commercial methanol synthesis catalyst. Angew Chem Int Ed 55(37):11031–11036. https://doi.org/10.1002/anie.201603204Martin O, Mondelli C, Cervellino A, Ferri D, Curulla-Ferre D, Perez-Ramirez J (2016) Operando synchrotron X-ray powder diffraction and modulated-excitation infrared spectroscopy elucidate the CO2 promotion on a commercial methanol synthesis catalyst. Angew Chem Int Ed 55(37):11031–11036. https://doi.org/10.1002/anie.201603204Mateo D, Albero J, García H (2018) Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl Catal B Environ 224:563–571. https://doi.org/10.1016/j.apcatb.2017.10.071Miguel CV, Soria MA, Mendes A, Madeira LM (2015) Direct CO2 hydrogenation to methane or methanol from post-combustion exhaust streams – a thermodynamic study. J Nat Gas Sci Eng 22:1–8. https://doi.org/10.1016/j.jngse.2014.11.010Mills GA, Steffgen FW (1974) Catalytic methanation. Catal Rev 8:159–210. https://doi.org/10.1080/01614947408071860Mutz B, Sprenger P, Wang W, Wang D, Kleist W, Grunwaldt JD (2018) Operando Raman spectroscopy on CO2 methanation over alumina-supported Ni, Ni3Fe and NiRh0.1 catalysts: role of carbon formation as possible deactivation pathway. Appl Catal A Gen 556:160–171. https://doi.org/10.1016/j.apcata.2018.01.026Nishimura N, Kitaura S, Mimura A, Takahara Y (1992) Cultivation of thermophilic methanogen KN-15 on H2-CO2 under pressurized conditions. J Ferment Bioeng 73(6):477–480. https://doi.org/10.1016/0922-338X(92)90141-GNOAA – National Oceanic and Atmospheric Administration (2018) Recent monthly average Mauna Loa CO2. Available online at https://www.esrl.noaa.gov/gmd/webdata/ccgg/ trends/co2_trend_mlo.pdf. Accessed Mar 2018Ocampo F, Louis B, Kiwi-Minsker L, Roger A-C (2011) Effect of Ce/Zr composition and noble metal promotion on nickel based CexZr1−xO2 catalysts for carbon dioxide methanation. Appl Catal A Gen 392(1–2):36–44. https://doi.org/10.1016/j.apcata.2010.10.025Olah GA, Goeppert A, Prakash GS (2008) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Organomet Chem 74(2):487–498. https://doi.org/10.1021/jo801260fOta A, Kunkes EL, Kasatkin I, Groppo E, Ferri D, Poceiro B, Navarro Yerga RM, Behrens M (2012) Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts. J Catal 293:27–38. https://doi.org/10.1016/j.jcat.2012.05.020Oyola-Rivera O, Baltanás MA, Cardona-Martínez N (2015) CO2 hydrogenation to 1methanol and dimethyl ether by Pd–Pd2Ga catalysts supported over Ga2O3 polymorphs. J CO2 Util 9:8–15. https://doi.org/10.1016/j.jcou.2014.11.003Park JN, McFarland EW (2009) A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. J Catal 266(1):92–97. https://doi.org/10.1016/j.jcat.2009.05.018Pastor-Pérez L, Baibars F, Le Sache E, Arellano-García H, Gu S, Reina TR (2017) CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts. J CO2 Util 21:423–428. https://doi.org/10.1016/j.jcou.2017.08.009Pavlostathis SG, Giraldo-Gomez E (1991) Kinetics of anaerobic treatment: a critical review. Crit Rev Environ Control 21(5–6):411–490. https://doi.org/10.1080/10643389109388424Peillex JP, Fardeau ML, Boussand R, Navarro JM, Belaich JP (1988) Growth of Methanococcus thermolithotrophicus in batch and continuous culture on H2 and CO2: influence of agitation. Appl Microbiol Biotechnol 29(6):560–564. https://doi.org/10.1007/BF00260985Pendashteh A, Rahmanifar MS, Mousavi MF (2014) Morphologically controlled preparation of CuO nanostructures under ultrasound irradiation and their evaluation as pseudocapacitor materials. Ultrason Sonochem 21(2):643–652. https://doi.org/10.1016/j.ultsonch.2013.08.009Pöhlmann F, Jess A (2016) Influence of syngas composition on the kinetics of Fischer-Tropsch synthesis of using cobalt as catalyst. Energy Technol 4(1):55–64. https://doi.org/10.1002/ente.201500216Porosoff MD, Yang X, Boscoboinik JA, Chen JG (2014) Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO. Angew Chem Int Ed 53(26):6705–6709. https://doi.org/10.1002/anie.201404109Porosoff MD, Yan B, Chen JG (2016) Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci 9(1):62–73. https://doi.org/10.1039/C5EE02657APorosoff MD, Baldwin JW, Peng X, Mpourmpakis G, Willauer HD (2017) Potassium-promoted molybdenum carbide as a highly active and selective catalyst for CO2 conversion to CO. ChemSusChem 10(11):2408–2415. https://doi.org/10.1002/cssc.201700412Posada-Pérez S, Viñes F, Ramirez PJ, Vidal AB, Rodriguez JA, Illas F (2014) The bending machine: CO2 activation and hydrogenation on δ-MoC(001) and β-Mo2C(001) surfaces. Phys Chem Chem Phys 16(28):14912–14921. https://doi.org/10.1039/C4CP01943APosada-Pérez S, Viñes F, Rodriguez JA, Illas F (2015) Fundamentals of methanol synthesis on metal carbide based catalysts: activation of CO2 and H2. Top Catal 58(2–3):159–173. https://doi.org/10.1007/s11244-014-0355-8Prasad K, Pinjari DV, Pandit AB, Mhaske ST (2010) Synthesis of titanium dioxide by ultrasound assisted sol-gel technique: effect of amplitude (power density) variation. Ultrason Sonochem 17:697–703. https://doi.org/10.1016/j.ultsonch.2010.01.005Qu J, Zhang X, Wang Y, Xie C (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50(16–17):3576–3580. https://doi.org/10.1016/j.electacta.2004.11.061Qu J, Zhou X, Xu F, Gong XQ, Tsang SCE (2014) Shape effect of Pd-promoted Ga2O3 nanocatalysts for methanol synthesis by CO2 hydrogenation. J Phys Chem C 118(42):24452–24466. https://doi.org/10.1021/jp5063379Quesne MG, Roldan A, de Leeuw NH, Catlow CRA (2018) Bulk and surface properties of metal carbides: implications for catalysis. Phys Chem Chem Phys 20:6905–6916. https://doi.org/10.1039/C7CP06336ARamachandriya KD, Kundiyana DK, Wilkins MR, Terrill JB, Atiyeh HK, Huhnke RL (2013) Carbon dioxide conversion to fuels and chemicals using a hybrid green process. Appl Energy 112:289–299. https://doi.org/10.1016/j.apenergy.2013.06.017Rodriguez JA, Evans J, Feria L, Vidal AB, Liu P, Nakamura K, Illas F (2013) CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: production of CO, methanol, and methane. J Catal 307:162–169. https://doi.org/10.1016/j.jcat.2013.07.023Rodriguez JA, Liu P, Stacchiola DJ, Senanayake SD, White MG, Chen JG (2015) Hydrogenation of CO2 to methanol: importance of metal–oxide and metal–carbide interfaces in the activation of CO2. ACS Catal 5(11):6696–6706Romero-Sáez M, Dongil AB, Benito N, Espinoza-González R, Escalona N, Gracia F (2018) CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: a comparison between two impregnation strategies. Appl Catal B Environ 237:817–825. https://doi.org/10.1016/j.apcatb.2018.06.045Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Review on methanation – from fundamentals to current projects. Fuel 166:276–296. https://doi.org/10.1016/j.fuel.2015.10.111Sabatier P, Senderens JB (1902) New synthesis of methane. Compt Rend 134:514–516Saeidi S, Amin NAS, Rahimpour MR (2014) Hydrogenation of CO2 to value-added products – a review and potential future developments. J CO2 Util 5:66–81. https://doi.org/10.1016/j.jcou.2013.12.005Sahebdelfar S, Ravanchi MT (2015) Carbon dioxide utilization for methane production: a thermodynamic analysis. J Pet Sci Eng 134:14–22. https://doi.org/10.1016/j.petrol.2015.07.015Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2365–2387. https://doi.org/10.1021/cr068357uSamei E, Taghizadeh M, Bahmani M (2012) Enhancement of stability and activity of Cu/ZnO/Al2O3 catalysts by colloidal silica and metal oxides additives for methanol synthesis from a CO2-rich feed. Fuel Process Technol 96:128–133. https://doi.org/10.1016/j.fuproc.2011.12.028Schubert K, Brandner J, Fichtner M, Linder G, Schygulla U, Wenka A (2001) Microstructure devices for application in thermal and chemical process engineering. Microscale Thermophys Eng 5(1):17–39. https://doi.org/10.1080/108939501300005358Schulte KL, DeSario PA, Gray KA (2010) Effect of crystal phase composition on the reductive and oxidative abilities of TiO2 nanotubes under UV and visible light. Appl Catal B Environ 97(3–4):354–360. https://doi.org/10.1016/j.apcatb.2010.04.017Seemann L (2006) Methanation of biosyngas in a fluidized bed reactor – development of a one-step synthesis process, featuring simultaneous methanation, watergas shift and low temperature tar reforming. PhD thesis. ETH ZurichSeifert AH, Rittmann S, Herwig C (2014) Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Appl Energy 132:155–162. https://doi.org/10.1016/j.apenergy.2014.07.002Sepehri S, Rezaei M (2015) Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline gamma-Al2O3 for methane autothermal reforming. Chem Eng Technol 38(9):1637–1645. https://doi.org/10.1002/ceat.201400566Sharafutdinov I, Elkjær CF, de Carvalho HWP, Gardini D, Chiarello GL, Damsgaard CD, Wagner JB, Grunwaldt JD, Dahl S, Chorkendorff I (2014) Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanol. J Catal 320:77–88. https://doi.org/10.1016/j.jcat.2014.09.025Shui J, Wang M, Du F, Dai L (2015) N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci Adv 1(1):e1400129. https://doi.org/10.1126/sciadv.1400129Sinnott SB, Andrews R (2001) Carbon nanotubes: synthesis, properties, and applications. Crit Rev Solid State 26(3):145–249. https://doi.org/10.1080/20014091104189Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115(1–4):2–32. https://doi.org/10.1016/j.cattod.2006.02.029Song F, Zhong Q, Yu Y, Shi M, Wu Y, Hu J, Song Y (2017) Obtaining well-dispersed Ni/Al2O3 catalyst for CO2 methanation with a microwave-assisted method. Int J Hydrog Energy 42(7):4174–4183. https://doi.org/10.1016/j.ijhydene.2016.10.141Sterner M (2009) Bioenergy and renewable power methane in integrated 100% renewable energy systems – limiting global warming by transforming energy systems. PhD thesis. University of KasselStudt F, Sharafutdinov I, Abild-Pedersen F, Elkjær CF, Hummelshøj JS, Dahl S, Chorkendorff I, Nørskov JK (2014) Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat Chem 6(4):320–324. https://doi.org/10.1038/nchem.1873Su X, Yang X, Zhao B, Huang Y (2017) Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. J Energy Chem 26(5):854–867. https://doi.org/10.1016/j.jechem.2017.07.006Tan JZY, Fernandez Y, Liu D, Maroto-Valer M, Bian J, Zhang X (2012) Photo-reduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior. Chem Phys Lett 531:149–154. https://doi.org/10.1016/j.cplett.2012.02.016Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. https://doi.org/10.1038/nrmicro1931Tóth M, Kiss J, Oszkó A, Pótári G, László B, Erdőhelyi A (2012) Hydrogenation of carbon dioxide on Rh, Au and Au–Rh bimetallic clusters supported on titanate nanotubes, nanowires and TiO2. Top Catal 55(11–13):747–756. https://doi.org/10.1007/s11244-012-9862-7Tursunov O, Tilyabaev Z (2017) Hydrogenation of CO2 over Co supported on carbon nanotube, carbón nanotube-Nb2O5, carbon nanofiber, low-layered graphite fragments and Nb2O5. J Energy Inst. https://doi.org/10.1016/j.joei.2017.12.004Ud Din I, Shaharun MS, Subbarao D, Naeem A (2015) Synthesis, characterization and activity pattern of carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: influence of calcination temperature. J Power Sources 274:619–628. https://doi.org/10.1016/j.jpowsour.2014.10.087Ud Din I, Shaharun MS, Subbarao D, Naeem A, Hussain F (2016) Influence of niobium on carbon nanofibres based Cu/ZrO2 catalysts for liquid phase hydrogenation of CO2 to methanol. Catal Today 259(2):303–311. https://doi.org/10.1016/j.cattod.2015.06.019Ud Din I, Shaharun MS, Naeem A, Tasleem S, Johan MR (2017) Carbon nanofiber-based copper/zirconia catalyst for hydrogenation of CO2 to methanol. J CO2 Util 21:145–155. https://doi.org/10.1016/j.jcou.2017.07.010Vargas E, Romero-Saéz M, Denardin JC, Gracia F (2016) The ultrasound-assisted synthesis of effective monodisperse nickel nanoparticles: magnetic characterization and its catalytic activity in CO2 methanation. New J Chem 40:7307–7310. https://doi.org/10.1039/C6NJ01574CVijayan B, Dimitrijevic NM, Rajh T, Gray K (2010) Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. J Phys Chem C 114(30):12994–13002. https://doi.org/10.1021/jp104345hWang J, Lu S, Li J, Li C (2015) Remarkable difference in CO2 hydrogenation to methanol on Pd nanoparticles supported inside and outside of carbon nanotubes. Chem Commun 51(99):17615–17618. https://doi.org/10.1039/C5CC07079AWang W, Chu W, Wang N, Yang W, Jiang C (2016) Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation. Int J Hydrog Energy 41:967–975. https://doi.org/10.1016/j.ijhydene.2015.11.133Weatherbee GD, Bartholomew CH (1981) Hydrogenation of CO2 on group VIII metals: I. specific activity of Ni/SiO2. J Catal 68(1):67–76. https://doi.org/10.1016/0021-9517(81)90040-3Wilhelm E, Battino R, Wilcock RJ (1977) Low-pressure solubility of gases in liquid water. Chem Rev 77(2):219–262. https://doi.org/10.1021/cr60306a003Witoon T, Numpilai T, Phongamwong T, Donphai W, Boonyuen C, Warakulwit C, Chareonpanich M, Limtrakul J (2018) Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol. Chem Eng J 334:1781–1791. https://doi.org/10.1016/j.cej.2017.11.117Wu HC, Chang YC, Wu JH, Lin JH, Lin IK, Chen CS (2015) Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway. Cat Sci Technol 5(8):4154–4163. https://doi.org/10.1039/C5CY00667HXia X, Jia Z, Yu Y, Liang Y, Wang Z, Ma L (2007) Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 45(4):717–721. https://doi.org/10.1016/j.carbon.2006.11.028Xiaoding X, Moulijn JA (1996) Mitigation of CO2 by chemical conversion: plausible chemical reactions and promising products. Energ Fuels 10(2):305–325. https://doi.org/10.1021/ef9501511Xu W, Ramírez PJ, Stacchiola D, Brito JL, Rodriguez JA (2015) The carburization of transition metal molybdates (MxMoO4, M = Cu, Ni or Co) and the generation of highly active metal/carbide catalysts for CO2 hydrogenation. Catal Lett 145(7):1365–1373. https://doi.org/10.1007/s10562-015-1540-5Yin G, Yuan X, Du X, Zhao W, Bi Q, Huang F (2018) Efficient reduction of CO2 to CO using cobalt–cobalt oxide core–shell catalysts. Chem Eur J 24(9):2157–2163. https://doi.org/10.1002/chem.201704596Yu KP, Yu WY, Kuo MC, Liou YC, Chien SH (2008) Pt/titania-nanotube: a potential catalyst for CO2 adsorption and hydrogenation. Appl Catal B Environ 84(1–2):112–118. https://doi.org/10.1016/j.apcatb.2008.03.009Zhang QH, Han WD, Hong YJ, Yu JG (2009) Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal Today 148(3–4):335–340. https://doi.org/10.1016/j.cattod.2009.07.081Zhang Q, Zuo Y-Z, Han M-H, Wang J-F, Jin Y, Wei F (2010) Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether. Catal Today 50(1–2):55–60. https://doi.org/10.1016/j.cattod.2009.05.018Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. https://doi.org/10.1007/s10853-013-7705-yZhang J, An B, Hong Y, Meng Y, Hu X, Wang C, Lin J, Lin W, Wang Y (2017a) Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation. Mater Chem Front 1:2405–2409. https://doi.org/10.1039/C7QM00328EZhang X, Zhu X, Lin L, Yao S, Zhang M, Liu X, Wang X, Li Y, Shi C, Ma D (2017b) Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catal 7(1):912–918. https://doi.org/10.1021/acscatal.6b02991Zhu X, Qu X, Li X, Liu J, Liu J, Zhu B, Shi C (2016) Selective reduction of carbon dioxide to carbon monoxide over Au/CeO2 catalyst and identification of reaction intermediate. Chin J Catal 37(12):2053–2058. https://doi.org/10.1016/S1872-2067(16)62538-XThis work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliationsinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbhttps://link.springer.com/content/pdf/bfm:978-3-030-04474-9/1?pdf=chapter%20tocNanomaterials for CO2 HydrogenationCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttp://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85NanomaterialsNanomaterialesNanomatériauCarbon monoxideMonóxido de carbonoOxyde de carboneMethanolMetanolMethaneMetanoCarbon nanotubesNanotubos de CarbonoNanotubes de carboneNanoparticlesNanopartículasNanoparticulesCO2 hydrogenationHidrogenación de CO2Carbon nanofibersNanofibras de carbonoGraphene oxideÓxido de grafenoTransition metal carbideCarburo de metal de transiciónTHUMBNAILNanomaterials for CO2 Hydrogenation.jpg.jpgNanomaterials for CO2 Hydrogenation.jpg.jpgGenerated Thumbnailimage/jpeg11648https://dspace.tdea.edu.co/bitstream/tdea/3975/3/Nanomaterials%20for%20CO2%20Hydrogenation.jpg.jpgd7b187f1d4143f8687923678dd0ac975MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/3975/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessORIGINALNanomaterials for CO2 Hydrogenation.jpgNanomaterials for CO2 Hydrogenation.jpgimage/jpeg462875https://dspace.tdea.edu.co/bitstream/tdea/3975/1/Nanomaterials%20for%20CO2%20Hydrogenation.jpg19ad6a80b50d80f0954a182a0dcd510eMD51open accesstdea/3975oai:dspace.tdea.edu.co:tdea/39752023-10-20 03:02:25.965open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=