Prácticas y herramientas de sostenibilidad
La Facultad de Ingeniería y los grupos de investigación GITIMA e INTEGRA del Tecnológico de Antioquia – Institución Universitaria, conscientes de las múltiples herramientas y prácticas implementadas por diferentes investigadores en torno a la sostenibilidad, y trabajadas desde las ciencias ambiental...
- Autores:
-
Marulanda Tobón, Alejandro
Lorduy Hernández, Sara
Mosquera Adriana, Isabel Osorio
Puerta Cortés, Carlos
Jaramillo Zapata, Leyla
Upegui Sosa, Sergio
Gutiérrez, Jonatan
Pérez, Juan F
Rubio Clemente, Ainhoa
Zapata Martínez, Juan Felipe
Cardona Echeverry, Andrés
García Ávila, Carolina
Loaiza González, Jinna Marcela
León, Cristina
Rodríguez, Diana Catalina
Peñuela Gustavo, Antonio
Salcedo Hurtado, Kellys Nallith
Arroyave Acevedo, Laura
Bermúdez Moreno, Yuliana
Wilches L., Lisett V.
Marín Pareja, Nathalia
Pérez Monterroza, Ezequiel
Rojas, Luisa F.
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2021
- Institución:
- Tecnológico de Antioquia
- Repositorio:
- Repositorio Tdea
- Idioma:
- spa
- OAI Identifier:
- oai:dspace.tdea.edu.co:tdea/1535
- Acceso en línea:
- https://dspace.tdea.edu.co/handle/tdea/1535
- Palabra clave:
- 620 Ingeniería y operaciones afines
Ciencia, ingeniería y tecnología medioambientales
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
RepoTdea2_23dce3a1b25ddf4d81a82a70670c857b |
---|---|
oai_identifier_str |
oai:dspace.tdea.edu.co:tdea/1535 |
network_acronym_str |
RepoTdea2 |
network_name_str |
Repositorio Tdea |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Prácticas y herramientas de sostenibilidad |
title |
Prácticas y herramientas de sostenibilidad |
spellingShingle |
Prácticas y herramientas de sostenibilidad 620 Ingeniería y operaciones afines Ciencia, ingeniería y tecnología medioambientales |
title_short |
Prácticas y herramientas de sostenibilidad |
title_full |
Prácticas y herramientas de sostenibilidad |
title_fullStr |
Prácticas y herramientas de sostenibilidad |
title_full_unstemmed |
Prácticas y herramientas de sostenibilidad |
title_sort |
Prácticas y herramientas de sostenibilidad |
dc.creator.fl_str_mv |
Marulanda Tobón, Alejandro Lorduy Hernández, Sara Mosquera Adriana, Isabel Osorio Puerta Cortés, Carlos Jaramillo Zapata, Leyla Upegui Sosa, Sergio Gutiérrez, Jonatan Pérez, Juan F Rubio Clemente, Ainhoa Zapata Martínez, Juan Felipe Cardona Echeverry, Andrés García Ávila, Carolina Loaiza González, Jinna Marcela León, Cristina Rodríguez, Diana Catalina Peñuela Gustavo, Antonio Salcedo Hurtado, Kellys Nallith Arroyave Acevedo, Laura Bermúdez Moreno, Yuliana Wilches L., Lisett V. Marín Pareja, Nathalia Pérez Monterroza, Ezequiel Rojas, Luisa F. |
dc.contributor.author.none.fl_str_mv |
Marulanda Tobón, Alejandro Lorduy Hernández, Sara Mosquera Adriana, Isabel Osorio Puerta Cortés, Carlos Jaramillo Zapata, Leyla Upegui Sosa, Sergio Gutiérrez, Jonatan Pérez, Juan F Rubio Clemente, Ainhoa Zapata Martínez, Juan Felipe Cardona Echeverry, Andrés García Ávila, Carolina Loaiza González, Jinna Marcela León, Cristina Rodríguez, Diana Catalina Peñuela Gustavo, Antonio Salcedo Hurtado, Kellys Nallith Arroyave Acevedo, Laura Bermúdez Moreno, Yuliana Wilches L., Lisett V. Marín Pareja, Nathalia Pérez Monterroza, Ezequiel Rojas, Luisa F. |
dc.subject.ddc.none.fl_str_mv |
620 Ingeniería y operaciones afines |
topic |
620 Ingeniería y operaciones afines Ciencia, ingeniería y tecnología medioambientales |
dc.subject.proposal.spa.fl_str_mv |
Ciencia, ingeniería y tecnología medioambientales |
description |
La Facultad de Ingeniería y los grupos de investigación GITIMA e INTEGRA del Tecnológico de Antioquia – Institución Universitaria, conscientes de las múltiples herramientas y prácticas implementadas por diferentes investigadores en torno a la sostenibilidad, y trabajadas desde las ciencias ambientales y agrícolas, compilan resultados de investigaciones de la comunidad académica del país, exponiendo diferentes enfoques y metodologías, a través de la edición del libro denominado: Prácticas y herramientas para la sostenibilidad como aportes a las ciencias ambientales y agrícolas. |
publishDate |
2021 |
dc.date.available.none.fl_str_mv |
2021-12-22 2022-03-03T20:20:43Z |
dc.date.issued.none.fl_str_mv |
2021-12-22 |
dc.date.accessioned.none.fl_str_mv |
2022-03-03T20:20:43Z |
dc.type.spa.fl_str_mv |
Libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/book |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/LIB |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2f33 |
status_str |
publishedVersion |
dc.identifier.isbn.none.fl_str_mv |
978-958-8628-70-7 |
dc.identifier.uri.none.fl_str_mv |
https://dspace.tdea.edu.co/handle/tdea/1535 |
identifier_str_mv |
978-958-8628-70-7 |
url |
https://dspace.tdea.edu.co/handle/tdea/1535 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.none.fl_str_mv |
Investigación; |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
229 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Sello Editorial Tecnológico de Antioquia |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Tecnológico de Antioquia |
bitstream.url.fl_str_mv |
https://dspace.tdea.edu.co/bitstream/tdea/1535/1/Pr%c3%a1cticas%20y%20herramientas%20de%20sostenibilidad.pdf https://dspace.tdea.edu.co/bitstream/tdea/1535/2/license.txt https://dspace.tdea.edu.co/bitstream/tdea/1535/3/Pr%c3%a1cticas%20y%20herramientas%20de%20sostenibilidad.pdf.txt https://dspace.tdea.edu.co/bitstream/tdea/1535/4/Pr%c3%a1cticas%20y%20herramientas%20de%20sostenibilidad.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a45c801c912090d6ce364ddfc640efc 2f9959eaf5b71fae44bbf9ec84150c7a 3868394ed960968f576a475ccb3f8a06 a175178d9b57a8c82683457b5b356389 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Tecnologico de Antioquia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1812189246404952064 |
spelling |
Marulanda Tobón, Alejandrof4dc2d62-af33-433d-a314-fac2a9e24fabLorduy Hernández, Saraf533c478-a55c-4f36-b5f5-b844c61e1c07Mosquera Adriana, Isabel Osorio3b81a331-d11d-4b43-96ba-e6b1eae7c0fePuerta Cortés, Carlos4a76960e-a299-4d36-bf87-314587c812eaJaramillo Zapata, Leyla92221833-cefc-4497-ad55-b6f255f9b863Upegui Sosa, Sergio72651c91-1492-44d1-ba54-1ab1a58b0117Gutiérrez, Jonatand0307193-30a3-40c2-a651-7bd2e8f12543Pérez, Juan Fd1f77411-bdc0-4bad-89bf-6fc81e2f952aRubio Clemente, Ainhoa8924cc9a-a600-460b-b180-3288281741e5Zapata Martínez, Juan Felipee468b1d6-bfd8-4d55-b462-78f4e93ea37aCardona Echeverry, Andrés094591ff-d8d6-4846-a8ba-251d2d0f3571García Ávila, Carolina456799f2-12e4-4bfa-897c-535672ce94fbLoaiza González, Jinna Marcelaf843798e-f8a1-4fb1-abc6-f04f2a2299e7León, Cristinab1f7f3b1-b290-47df-a492-672c6a1ddf8cRodríguez, Diana Catalina4d50c5be-b450-4c42-9f67-459b69f1fa1ePeñuela Gustavo, Antonio20bae813-aae0-43fc-86d3-29c5bd172731Salcedo Hurtado, Kellys Nallith0ed88956-44b2-4073-911a-f474d120caf6Arroyave Acevedo, Lauraa60f6ab6-ddfa-484b-a737-b2e0af9e9327Bermúdez Moreno, Yuliana38f21c29-86c9-4384-99b5-04bd386cf662Wilches L., Lisett V.43867a59-dc9d-4eb9-8e98-3953d7e99b56Marín Pareja, Nathalia6fd247d2-5701-4b36-af19-df5fb2a393fdPérez Monterroza, Ezequiel2b792e56-e5b8-48e1-8604-be8ef0431ab8Rojas, Luisa F.33145018-6784-44b9-9308-b4ae667400fe2022-03-03T20:20:43Z2021-12-222022-03-03T20:20:43Z2021-12-22978-958-8628-70-7https://dspace.tdea.edu.co/handle/tdea/1535La Facultad de Ingeniería y los grupos de investigación GITIMA e INTEGRA del Tecnológico de Antioquia – Institución Universitaria, conscientes de las múltiples herramientas y prácticas implementadas por diferentes investigadores en torno a la sostenibilidad, y trabajadas desde las ciencias ambientales y agrícolas, compilan resultados de investigaciones de la comunidad académica del país, exponiendo diferentes enfoques y metodologías, a través de la edición del libro denominado: Prácticas y herramientas para la sostenibilidad como aportes a las ciencias ambientales y agrícolas.Prefacio..................................................................................... 5 Propuesta metodológica preliminar para la detección de Sigatoka negra (Mycosphaerella fijiensis) en cultivos de musáceas mediante vehículos aéreos no tripulados (UAV).... 7 Valorización de cascarilla de arroz en diferentes sectores industriales............................................................................... 45 Biocarbón derivado de pellets de Pinus patula para la enmienda de suelos degradados............................................. 113 Bioprecipitación de carbonato de calcio mediada por aislados nativos de Bacillus spp................................................. 135 Recurrencia de toxinas cianobacterianas en cuerpos de agua eutrofizados..................................................................... 153 Comparativo del número de propágulos de hongos micorrízico arbusculares entre un inóculo crudo multiespórico y el suelo de un monocultivo de Allium fistulosum .................................................................................... 183 Potencial biotecnológico de la miel de café como sustrato en bioprocesos usando gránulos de kéfir de agua.................. 2071a ed.229application/pdfspaSello Editorial Tecnológico de AntioquiaMedellínInvestigación;Los capítulos publicados en este libro incorporan contenidos derivados de procesos de investigación y estos no representan, necesariamente, los criterios institucionales del Tecnológico de Antioquia. Los contenidos son responsabilidad exclusiva de sus autores. Obra protegida por el derecho de autor. Queda estrictamente prohibida su reproducción, comunicación, divulgación, copia, distribución, comercialización, transformación, puesta a disposición o transferencia en cualquier forma y por cualquier medio, sin la autorización previa, expresa y por escrito de su titular. El incumplimiento de la mencionada restricción podrá dar lugar a las acciones civiles y penales correspondientes.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2620 Ingeniería y operaciones afinesCiencia, ingeniería y tecnología medioambientalesPrácticas y herramientas de sostenibilidadLibrohttp://purl.org/coar/resource_type/c_2f33Textinfo:eu-repo/semantics/bookhttps://purl.org/redcol/resource_type/LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85ColombiaComunidad científica, docentes[1] FAO, “Conferencia Regional de la FAO para Europa,” de La ciberagricultura: uso de tecnologías de la información y la comunicación (TIC) para el fomento de sistemas alimentarios sosteniibles e inclusivos y la integración del comercio, Vorónezh (Federación de Rusia), 2018. [2] B. &. M. M. Bryant, “Determining crop water stress from crop temperature variability,” Proceedings of the Fourth International Airborne Remote Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing, vol. 1, no 21, pp. 289-296, 1999. [3] FAO, “Análisis del mercado del banano. Panorama general de febrero de 2020,” Roma, 2020. [4] Ministerio de Agricultura, “Indicadores e Instrumentos cadena Plátano,” Bogota, 2018. [5] FAO, “FAOSTAT,” [Online]. Available: http://www.fao.org/faostat/ es/#home. [Último acceso: 22 Julio 2020]. [6] CIAT/FAO, “La Sigatoka negra en plátano y banano. Guia para el reconocimiento y manejo de la enfermedad, aplicado a la agricultura familiar,” CIAT, Cali, 2013. [7] M. H. Mayorga Pinzón, “Manchas de Sigatoka de las musáceas,” de Ultimos avances en la tecnología del cultivo del plátano en Colombia, Villavicencio , CORPOICA, pp. 32-38, 2010. [8] E. Chuvieco, “Fundamentos de teledetección espacial,” Madrid, Ediciones Rialp, 1990. [9] F. Greenwood, “How To Make Maps With Drones,” de Drones and Aerial Observation: New Technologies for Property Rights, Human Rights, and Global Development, New America, p. 13, 2015. [10] F. Lopez Granados, “Uso de Vehículos Aéreos no tripulados (UAV) para la evaluación de la producción agraria,” Ambienta, vol. 1, no 105, pp. 40-52, 2013. [11] IDEAM, “Geoservicios Institucionales,” IDEAM, 2014. [Online]. Available: http://www.ideam.gov.co/geoservicios-institucionales. [Último acceso: 22 Julio 2020].[12] P. M. I. Colomina, “Unmanned aerial systems for photogrammetry and remote sensing: A review,” ISPRS Journal of Photogrammetry and Remote Sensing, no 92, pp. 79-97, 2014. [13] ArduPilot, “Mission Planner,” 2016. [Online]. Available: http://ardupilot. org/planner/docs/mission-planner-overview.html. [Último acceso: 21 Septiembre 2017]. [14] E. Santana, “XDRONES,” 23 Febrero 2017. [Online]. Available: http:// www.xdrones.es/mavlink/. [Último acceso: 7 Noviembre 2017]. [15] Pix4D, “Getting GCPs on the field or through other sources (optional but recommended),” 2016. [Online]. Available: https://support.pix4d. com/hc/en-us/articles/202557489#gsc.tab=0.. [16] R. Ruiz Marín, y L. Ruiz Fernández, “Generación de una ortoimagen digital a partir de un sensor espacial de alta resolución,” Valencia, 2005. [17] B. Froment, “Fotografias aéreas,” 2007. [18] J. J. Ruiz, “Generación de mapas 3D a partr de imagenes aéreas,” Sevilla, 2013. [19] 3D Robotics (3DR), “Solo User Manual V7,” California , 2015. [20] D. G. Marcovecchio, J. Ferrari, L. F. Costa, G. Díaz, y C. A. Delrieux, “Ortomosaicos utilizando Imágenes Aéreas tomadas por Drones y su aplicación en la Agricultura de Precisión,” Bahía Blanca, 2014. [21] J. O. Escalante Torrado, “Ortomosaicos y modelos digitales de elevación generados a partir de imágenes tomadas con sistemas UAV,” Tecnura, vol. 20, no 50, p. 23, 2016. [22] J. A. Beltrán Arciniegas, y S. L. Ortiz Parada, “Ortofotografía del predio El Tibar perteneciente a la Universidad Distrital Francisco José De Caldas,” Bógota, 2017.[1] M. Acevedo, W. Castrillo, y U. Belmonte, “Origen, evolución y diversidad del arroz,” Agronomía Tropical, vol. 56, no 2, p. 18, 2006. [2] S. Gnanamanickam, “Biological control of rice diseases,” Springer Science & Business Media, vol. 8, 2009. [3] M. Gonçalves, and C. Bergmann, “Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure,” Construction and Building Materials, vol. 21, pp. 2059-2065, 2007. [4] L. Zen, G. Ocácia, and D. Sadhu, “Prospect of an environmentally balanced energy system from rice husk and wind,” Renewable Energy, vol. 3, no 8, pp. 885-889, 1993. [5] J. Cunha, y E. Canepa, “Aproveitamento energético da casca de arroz,” Programa energia. Research Project Report, Porto Alegre, 1986. [6] R. Vásquez, y P. Bach, “Las cenizas de cáscara de arroz; adición puzolánica en cemento y concreto,” Piura, Perú, 2000. [7] D. Dendy, y B. Dobraszczyk, “Cereales y productos derivados química y tecnología,” Zaragoza, Editorial Acribia, S.A., 2004. [8] S. Olmos, “Apunte de morfología, fenología, ecofisiología, y mejoramiento genético del arroz,” 2007. [9] F. García, B. Lanfranco, y G. Hareau, “Efecto sobre el comercio y bienestar de distintas estrategias tecnológicas para el arroz uruguayo,” vol. 197, 2012. [10] Organización de las Naciones Unidas para la Alimentación y la Agricultura-FAO, “Perspectivas alimentarias. Resúmenes de mercadeo,” 2019. [Online]. Available: http://www.fao.org/3/ ca5040es/ca5040es.pdf. [Último acceso: 13 Julio 2020]. [11] J. Sierra, “Alternativas de aprovechamiento de la cascarilla de arroz en Colombia,” Universidad de Sucre, Sincelejo, 2009.[12] Unidad De Planificación Rural Agropecuaria, “Análisis situacional Cadena productiva del arroz en Colombia,” 2019. [Online]. Available: https://www. upra.gov.co/documents/10184/101496/20190709_ DOCUMENTO+ANALISIS+SITUACIONAL.pdf/9051a2a6-a998- 4386-8c6b-ded8309e8f4f. [Último acceso: 13 Julio 2020]. [13] Federación nacional de arroceros - Fondo nacional del arroz- FEDEARROZ, “Estadísticas del arroz,” Revista Arroz, vol. 67, no 541, 2019. [14] Federación nacional de arroceros - Fondo nacional del arroz- FEDEARROZ, “Estadísticas arroceras,” Revista arroz, vol. 68, no 545, p. 48, 2020. [15] I. C. Becerra, A. Díaz, E. García, J. Giraldo, A. Maluendas, L. Quintero, D. Reina, M. Ortegón, H. Samacá, y J. Viveros, “Análisis situacional cadena productiva del arroz en Colombia,” Unidad de Planificación Rural Agropecuaria, Bogotá, 2019. [16] Departamento administrativo nacional de estadística - DANE, “Boletín Técnico, Encuesta Nacional de Arroz Mecanizado (ENAM), Segundo semestre 2019,” 2019. [Online]. Available: https://www.dane.gov.co/files/investigaciones/boletines/arroz/ bol_arroz_IIsem19.pdf. [Último acceso: 13 Julio 2020]. [17] R. Ferraro, and A. Nanni, “Effect of off-white rice husk ash on strength, porosity, conductivity and corrosion resistance of white concrete,” Construction and Building Materials, vol. 31, pp. 220-225, 2012. [18] E. Chicaiza, y F. Oña, “Estabilización de arcillas expansivas de la Provincia de Manabí con puzonala extraída de ceniza de cascarilla de arroz,” Escuela Politécnica Nacional, Quito, 2018. [19] Ministerio de Agricultura y Desarrollo Rural., “La cadena del arroz en Colombia”, 2005. [Online]. Available: http://bibliotecadigital. agronet.gov.co/bitstream/11348/6376/1/2005112141728_ caracterizacion_arroz.pdf. [Último acceso: 13 Julio 2020].[20] C. Najar, y J. Alvárez, “Mejoras en el proceso productivo y modernización mediante sustitución y tecnologías limpias en un molino de arroz,” 2007. [21] E. Aprianti, “A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production – a review part II,” Journal of Cleaner Production, vol. 142, pp. 4178-4194, 2017. [22] B. S. Thomas, “Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 3913-3923, 2018. [23] A. P. Gursel, H. Maryman, and C. Ostertag, “A life-cycle approach to environmental, mechanical, and durability properties of “green” concrete mixes with rice husk ash,” Journal of Cleaner Production, vol. 112, pp. 823-836, 2015. [24] Unidad De Planificación Rural Agropecuaria, “Línea base cadena productiva del cultivo de arroz,” 2019. [Online]. Available: https:// www.upra.gov.co/documents/10184/101496/20190611_ DDT_LB-Arroz.pdf/a86401e0-d235-46fa-a749-abd1cf291352. [Último acceso: 13 Julio 2020]. [25] G. Sensale, “Effect of rice-husk ash on durability of cementitious materials,” Cement and Concrete Composites, vol. 32, no 9, pp. 718-725, 2010. [26] A. Valverde, B. Sarria, y J. Monteagudo, “Análisis comparativo de las características fisicoquímicas de la cascarilla de arroz,” Scientia et Technica, vol. XIII, no 37, pp. 255-260, 2007. [27] B. I. Treviño Cardona, I. Gómez, y D. Fuente, “Obtención y caracterización de carburo y nitruro de silicio a partir de cascarilla de arroz,” Ingenierías, vol. 6, no 19, pp. 21-27, 2003. [28] S. Huang, S. Jing, J. Wang, Z. Wang, and Y. Jin, “Silica white obtained from rice husk in a fluidized bed,” Powder Technology, vol. 117, no 3, pp. 232-238, 2001.[29] E. Ayswarya, K. Vidya Francis, V. Renju, and E. Thachil, “Rice husk ash – A valuable reinforcement for high density polyethylene,” Materials & Design, vol. 41, no 1, pp. 1-7, 2012. [30] V. Jittin, A. Bahurudeen, and S. Ajinkya, “Utilisation of rice husk ash for cleaner production of different construction products,” Journal of Cleaner Production, vol. 263, 2020. [31] J. Martínez Ángel, T. Vásquez, J. Zapata, y M. Vélez, “Experimentos de combustión con cascarilla de arroz en lecho fluidizado para la producción de ceniza rica en sílice,” Revista Facultad de Ingeniería Universidad de Antioquia, vol. 51, pp. 97-104, 2010. [32] A. Salas, S. Delvasto, R. De Gutierrez, and D. Lange, “Comparison of two processes for treating rice husk ash for use in high performance concrete,” Cement and Concrete Research, vol. 39, no 9, pp. 773-778, 2009. [33] Banco de Desarrollo de Latinoamérica, CAF, “Economía circular e innovación tecnológica en residuos sólidos, oportunidades en Latinoamérica”, Corporación Andina de Fomento, 2018. [34] “The European Cement Association, CEMBUREAU, Activity Report,” 2013. [En línea]. Available: www.cembureau.eu [35] M. Gonçalves, “Thermal insulators made with rice husk ashes: production and correlation between properties and microstructure,” Construction and Building Materials, vol. 21, pp. 2059-2065, 2007. [36] R. Tomoshige, T. Ashitani, H. Yatsukawa, R. Nagase, A. Kato, and K. Sakai, “Synthesis of ceramic compounds utilizing woody waste materials and rice husk,” Materials Science Forum, Vols. %1 de %2437-438, pp. 411-414, 2003. [37] E. Basha, R. Hashim, H. Mahmud, and A. Muntobar, “Muntohar, Stabilization of residual soil with RHA and cement,” Construction and Building Materials, vol. 19, no 6, pp. 448-453, 2005.[38] G. Cordeiro, R. Toledo, L. Tavares, and E. Fairbairn, “Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes,” Construction and Building Materials, vol. 29, pp. 641-646, 2012. [39] N. Farzadnia, S. Bahmani, A. Asadi, and S. Hosseini, “Mechanical and microstructural properties of cement pastes with rice husk ash coated with carbon nanofibers using a natural polymer binder,” Construction and Building Materials, vol. 175, pp. 691- 704, 2018. [40] H. Huang, X. Gao, H. Wang, and H. Ye, “Influence of rice husk ash on strength and permeability of ultra-high,” Construction and Building Materials, vol. 149, pp. 621 - 628, 2017. [41] H. Mahmud, S. Bahri, Y. Yee, and Y. Yeap, “Effect of rice husk ash on strength and durability of high strengh high performance concrete.World,” World Academy of Science, Engineering and Technology, vol. 10, pp. 390 - 395, 2016. [42] Wahyuni, F. Supriani, and G. A. Elhusna, “Performance of concrete with rice husk ash, sea shell ash and bamboo fibre addition,” Procedia Engineering, vol. 95, pp. 473-478, 2014. [43] J. Wei, and C. Meyer, “Utilization of rice husk ash in green natural fiber-reinforced cement composites: mitigating degradation of sisal fiber,” Cement and Concrete Research, vol. 81, pp. 94- 111, 2016. [44] S. Azhagarsamy, and K. Jaiganesan, “A Study on Strength Properties of Concrete with Rice Husk Ash and Silica Fume with Addition of Glass,” International Research Journal of Engineering and Technology (IRJET), vol. 03, pp. 1681 - 1684, 2016. [45] M. Koushkbaghi, M. Kazemi, H. Mosavi, and E. Mohseni, “Acid resistance and durability properties of steel fiber-reinforced.” Construction and Building Materials, no 202, pp. 266 - 275, 2019.[46] E. Mohseni, M. Mehrinejad, F. Naseri, and M. Monazami, “Polypropylene fiber reinforced cement mortars containing rice husk ash and nano-alumina,” Construction and Building Materials, vol. 111, pp. 429-439, 2016. [47] N. Fuentes, O. Fragozo, y L. Vizcaino, “Residuos agroindustriales como adiciones en la elaboración de bloques de concreto no estructural,” Ciencia e ingeniería neogranadina, vol. 25, no 2, pp. 99-116, 2015. [48] C. Hendriks, E. Worrell, D. de Jager, and K. R. P. Blok, “Emission reduction of greenhouse gases from the cement industry,” In IEA Greenhouse Gas Control Technologies Conference, 2004. [49] V. Ajiwe, C. Okeke, and F. Akigwe, “A preliminary study of manufacture of cement from rice husk ash,” Bioresource Technology, vol. 73, pp. 37-39, 2000. [50] S. Sinyoung, K. Kunchariyakun, and S. Asavapisit, “Synthesis of belite cement from nano-silica extracted from two rice husk ashes,” Journal of Environmental Management, vol. 190, pp. 53- 60, 2017. [51] S. Kazmi, S. Abbas, M. Saleem, M. Munir, and A. Khitab, “Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes,” Construction and Building Materials, vol. 120, pp. 29-41, 2016. [52] L. Zhang, “Production of bricks from waste materials: a review,” Construction and Building Materials, vol. 47, pp. 643-655, 2013. [53] L. Henry, B. Shankha, J. William, and S. Melissa, “Test on mercury vapour emission from fly ash bricks,” World of Coal Ash, Covington, Kentucky, USA., 2017. [54] A. Kadir, and N. Maasom, “Recycling sugarcane bagasse waste into fired clay brick,” International Journal of Zero Waste Generation, vol. 1, no 1, pp. 21-26, 2013.[55] J. Lucas, “Azulejos ou Ladrilhos Ceramicos,” Descricao Geral, Exigencias Normativas, Classificacao Funcional, LNEC, Lisboa, 2003. [56] G. Görhan, and O. Şimşek, “Porous clay bricks manufactured with rice husks,” Construction and Building Materials, vol. 40, 2013. [57] N. Phonphuak, C. Saengthong and A. Srisuwan, “Physical and mechanical properties of fired clay bricks with rice husk waste addition as construction materials,” Materials Today: Proceedings, vol. 17, no 4, pp. 1668-1674, 2019. [58] G. S. D. Silva, and B. Perera, “Effect of waste rice husk ash (RHA) on structural, thermal and acoustic properties of fired clay bricks,” Journal of Building Engineering, vol. 18, pp. 252-259, 2018. [59] S. Kazmi, S. Abbas, M. Munir, and A. Khitab, “Exploratory study on the effect of waste rice husk and sugarcane bagasse ashes in burnt clay bricks,” Journal of Building Engineering, vol. 7, pp. 372-378, 2016. [60] S. Ganta, “Soil Stabilization with Rice Husk Ash and Lime Sludge,” International Journal of Research, vol. 4, no 14, pp. 1112-1119, 2017. [61] R. Montejo, J. Raymundo, y J. Chávez, “Materiales alternativos para estabilizar suelos: el uso de ceniza de cáscara de arroz en vías de bajo tránsito de piura,” TZHOECOEN, vol. 12, no 1, pp. 131-140, 2020. [62] R. Brooks, “Soil Stabilization with fly ash and rice husk ash,” International Journal of Research and Reviews in Applied Sciences, vol. 1, no 1, 2009. [63] Y. Cheng, S. Wang, J. Li, X. Huang, C. Li, and J. Wu, “Engineering and mineralogical properties of stabilized expansive soil compositing lime and natural pozzolans,” Construction and Building Materials, vol. 187, pp. 1031-1038, 2018. [64] C. Licuy, y K. Román, “Estudio de la estabilización de arcillas expansivas utilizando el 10,20 y 30% en peso, de puzolanas de ceniza del volcán Tungurahua y ceniza de la cascarilla de arroz en composiciones iguales,” Quito, 2020.[65] C. Aponte, y B. Calderon, “Evaluación del comportamiento de la resistencia de un suelo limoso con adición de ceniza de cascarilla de arroz,” Girardot, 2020. [66] J. Dávalos, A. Bonilla, M. Villaquirán, R. Gutiérrez, and J. Rincón, “Preparation of glass–ceramic materials from coalash and rice husk ash: Microstructural, physicaland mechanical properties,” Boletín de la Sociedad Española de Cerámica y Vidrio, 2020. [67] K. Patel, R. Shettigar, and N. Misra, “Recent advance in silica production technologies from agricultural waste stream: review,” Journal of Advanced Agricultural Technologies, vol. 4, pp. 274-279, 2017. [68] S. Chandrasekhar, K. G. Satyanarayana, P. N. Pramada, P. Raghavan, and T. N. Gupta, “Review Processing, properties and applications of reactive silica from rice husk—an overview,” Journal of Materials Science, vol. 38, p. 3159–3168, 2003. [69] R. Ghosh, “A Review Study on Precipitated Silica and Activated Carbon from Rice Husk,” Journal of Chemical Engineering & Process Technology, vol. 4, 2013. [70] S. Pratap Singh, and N. Endley, “Fabrication of nano-silica from agricultural residue and their application,” de Nanomaterials for Agriculture and Forestry Applications, ElSevier, pp. 107-134, 2020. [71] V. S. N. Yalçin, “Studies on silica obtained from rice hus,” Ceramics International, vol. 29, no 2, pp. 219-224, 2001. [72] M. d. Souza, W. Magalhaes, and M. PERSEGIL, “Silica Derived from Burned Rice Hulls,” Materials Research, vol. 5, no 4, pp. 467- 474, 2002. [73] P. Deshmukh, J. Bhatt, D. Peshwe, and S. Pathak, “Etermination of silica activity index and XRD, SEM and EDS studies of amorphous SiO 2 extracted from rice Husk Ash,” Transactions of the Indian Institute of Metals, vol. 65, pp. 63-70, 2011.[74] M. Alam, M. Hossain, M. Hossain, M. Johir, J. Hossen, M. Rahman, J. Zhou, A. Hasan, A. Karmakar, and M. Ahmed, “The Potentiality of Rice Husk-Derived Activated Carbon: From Synthesis to Application,” Processes 2020, 8, 203, vol. 8, no 2, p. 203, 2020. [75] R. Pode, “Potential applications of rice husk ash waste from rice husk biomass power plant,” Renewable and Sustainable Energy Reviews, vol. 16, pp. 1468-1485, 2016. [76] E. Menya, P. Olupot, H. Storz, M. Lubwama, and Y. Kiros, “Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review,” Chemical Engineering Research and Design, vol. 129, pp. 271-296, 2018. [77] I. Ríos, I. Luzardo, J. García, J. Santos, and C. Gutiérrez, “Production and characterization of fuel pellets from rice husk and wheat straw,” Renewable Energy, vol. 145, pp. 500-507, 2019. [78] M. Jakob, and J. Steckel, “How climate change mitigation could harm development in poor countries,” WIRE Climate Change, vol. 5, no 2, pp. 161-168, 2014. [79] G. Alemán, V. Casiano, D. Cárdenas, R. Díaz, N. Scarlat, J. Mahlknecht, J. Dallemand, and R. Parra, “Renewable energy research progress in Mexico: a review,” Renewable and Sustainable Energy Reviews, vol. 32, pp. 140-153, 2014. [80] Z. Liu, B. Fei, Z. Jiang, Cai, and Y. Z, “The properties of pellets from mixing bamboo and rice straw,” Renewable Energy, vol. 55, pp. 1-5, 2013. [81] S. Yoon, Y. Son, Y. Kim, and J. Lee, “Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier,” Renewable Energy, vol. 42, pp. 163-167, 2012. [82] I. Quispe, R. Navia, and R. Kahhat, “Energy potential from rice husk through direct combustion and fast pyrolisis- a review,” Waste Management, vol. 59, pp. 200-210, 2017.[83] J. Arévalo, G. Quispe, and C. Raymundo, “Sustainable Energy Model for the production of biomass briquettes,” Energy Procedia, vol. 141, pp. 138 - 145, 2017. [84] I. Quispe, R. Navia y R. Kahhat, “Energy potential from rice husk through direct combustion and fast pyrolysis: A review,” Waste Management, vol. 59, pp. 200-210, 2017. [85] S. Ndindeng, J. Mbassi, W. Mbacham, J. Manful, S. Graham- Acquaah, J. Moreira, J. Dossou, and K. Futakuchi, “Quality optimization in briquettes made from rice milling by-products,” Energy for Sustainable Development, vol. 29, pp. 24-31, 2015. [86] F. Vitali, S. Parmigiani, M. Vaccari, and C. Collivignarelli, “Agricultural waste as household fuel: Techno-economic assessment of a new rice-husk cookstove for developing countries,” Waste Management, vol. 33, no 12, pp. 2762-2770, 2013. [87] S. Ramón-Ramón, J. Cárdenas, y J. Rojas, “Poder calorífico de la cascarilla de arroz usada como combustible en hornos de secado,” Mundo Fesc, vol. 8, no 16, pp. 63-67, 2018. [88] S. Shackley, S. Carter, T. Knowles, E. Middelink, S. Haefele, S. Sohi, A. Cross, and S. Haszeldine, “Ustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context chemical properties, environmental and health and safety issues,” Energy Policy, vol. 41, pp. 49-58, 2012. [89] R. Blissett, R. Sommerville, N. Rowson, J. Jones, and B. Laughlin, “Valorisation of rice husks using a TORBED® combustion process,” Fuel Processing Technology, vol. 159, pp. 247-255, 2017. [90] F. Okasha, G. Zaater, S. El-Emam, M. Awad, and E. Zeidan, “Co- combustion of biomass and gaseous fuel in a novel configuration of fluidized bed: Combustion characteristics,” Fuel, vol. 133, pp. 143-152, 2014. [91] E. R. Abaide, M. V. Tres, G. L. Zabot, and M. A. Mazutti, “Reasons for processing of rice coproducts: Reality and expectations,” Biomass and Bioenergy, vol. 20, pp. 240-256, 2019.[92] M. Balat, M. Balat, E. Kırtay, and H. Balat, “Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems,” Energy Conversion and Management, vol. 50, no 12, pp. 3147-3157, 2009. [93] H. S. Heo, H. J. Park, J.-I. Dong, S. H. Park, S. Kim, D. J. Suh, Y.- W. Suh, S.-S. Kim, and Y.-K. Park, “Fast pyrolysis of rice husk under different reaction conditions,” Journal of Industrial and Engineering Chemistry, vol. 16, no 1, pp. 27-31, 2010. [94] P. Díaz Navarro, “Gestión Energética Empresarial en la “Unidad Económica Básica Industrial Victoria de Girón”,” Pinar del Río., 2014. [95] P. Díaz, J. Rivero, y D. Regalado, “Diseño de un horno para calentar aire empleando la cascarilla del arroz como combustible,” Revista Científica Avances, vol. 18, no 3, pp. 201-212, 2016. [96] A. Abbas, and S. Ansumali, “Global potential of rice husk as a renewable feedstock foethanol biofuel production,” Bioenergy Research, vol. 3, pp. 328-334, 2010. [97] F. Momayez, K. Karimi, and I. Sárvári, “Enhancing ethanol and methane production from rice straw by pretreatment with liquid waste from biogas plant,” Energy Conversion and Management, vol. 178, pp. 290-298, 2018. [98] B. A. Goodman, “Utilization of waste straw and husks from rice production: A review,” Journal of Bioresources and Bioproducts, vol. 5, no 3, pp. 143-162, 2020. [99] C. Lamb, B. Martini, D. Souza, F. Fornasier, L. Riça, Larissa Brixner, and R. Souza, “Bioethanol production from rice hull and evaluation of the final solid residue,” Chemical Engineering Communications, pp. 1-13, 2018. [100] M. Hans, S. Kumar, A. Chandel, and I. Polikarpov, “A review on bioprocessing of paddy straw to ethanol using simultaneous saccharification and fermentation,” Process Biochemistry, vol. 85, pp. 125-134, 2018.[101] [102] [103] [104] [105] [106] [107] [108] M. Nikzad, K., Movagharnejad, G. D. Najafpour, and F. Talebnia, “Comparative studies on the effect of pretreatment of rice husk on enzymatic digestibility and bioethanol production,” International Journal of Engineering, Transactions B: Applications, vol. 26, no 5, pp. 455-464, 2013. W. Zhong, Z. Zhang, W. Qiao, P. Fu, and M. Liu, “Comparison of chemical and biological pretreatment of corn straw for biogas production by anaerobic digestion,” Renewable Energy, vol. 36, no 6, pp. 1875-1879, 2011. L. M. Contreras, H. C. Schelle, R. Sebrango, and I. Pereda, “Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process,” Water science & technology, vol. 65.6, pp. 1142-1149, 2012. Y. Huang, and L. Shang-lien, “Chapter 19. Utilization of rice hull and straw,” de Rice, 2019, pp. 627-661. B. J. Poddar, S. P. Nakhate, R. K. Gupta, A. R. Chavan, A. K. Singh, A. A. Khardenavis, and H. J. Purohit, “A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion,” International Journal of Environmental Science and Technology, vol. Marzo, 2021. C. Okeh, C. O. Onwosi, and F. J. C. Odibo, “Biogas production from rice husks generated from various rice mills in,” Renewable Energy, no 62, pp. 204 - 208, 2014. A. David, O. Labunmi, L. Albert, A. Bodunde, and J. Owolabi, “Enhanced Biogas Production from Rice Husk Through Solid- State Chemical Pretreatments,” Waste and Biomass Valorization, vol. 11, no 6, pp. 2397-2407, 2020. F. Kuhn, E. Berghahn, M. Marder, O. Konrad, R. A. Sperotto, and C. Eichelberger Granada, “Inoculation of environmental fungal isolates improve the methane biochemical potential of rice hulls in anaerobic digestion processes,” Journal of Material Cycles and Waste Management, vol. 23, no 2, pp. 717-726, 2021.[109] [110] [111] [112] [113] [114] [115] [116] R. Ruan, Y. Zhang, P. Chen, S. Liu, L. Fan, N. Zhou, K. Ding, P. Peng, M. Addy, Y. Cheng, E. Anderson, Y. Wang, Y. Liu, H. Lei, and. B. Li, “Biofuels: Introduction,” de Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, El Sevier, pp. 3-43, 2019. R. Singh, M. Srivastava, and A. Shukla, Environmental sustainability of bioethanol production from rice straw in India: a review,” Renewable and Sustainable Energy Reviews, vol. 54, pp. 202-2016, 2016. R. Wuana, and F. Okieimen, “Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation,” International Scholarly Research Notices, 2011. U. Ashraf, A. Kanu, Z. Mo, S. Hussain, S. Anjum, I. Khan, R. Abbas, and X. Tang, “Lead toxicity in rice: effects, mechanisms and mitigation strategies: a minireview,” Environmental Science and Pollution Research, vol. 22, p. 18318–18332, 2015. M. Laidlaw, G. Filippelli, S. Brown, J. Paz-Ferreiro, S. Reichman, P. Netherway, A. Truskewycz, A. Ball, and H. Mielke, “Case studies and evidence-based approaches to addressing urban soil lead contamination,” Applied Geochemistry, vol. 83, pp. 14-30, 2017. C. Atkinson, J. Fitzgerald, and N. Hipps, “Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review,” Plant Soil, vol. 337, pp. 1-18, 2010. F. N. Quintero Peralta, y R. I. Umanzor Amador, “Evaluación del efecto de cascarilla de arroz carbonizada en propiedades físicas y retención de nitrógeno en el suelo,” Universidad Católica del Trópico Seco, Estelí, 2018. D.-L. A. Evelin, G.-R. C. Abelardo, P.-G. Francisco, V.-I. J. Roberto, and A.-S. Otilio, “Fitorremediación: una alternativa para eliminar la contaminación,” Tropical and Subtropical Agroecosystems, vol. 14, no 2, pp. 597-612, 2011.[117] [118] [119] [120] [121] [122] [123] [124] B. Kiran, and M. Prasad, “Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L. for lead- spiked soils,” Ecotoxicology and Environmental Safety, vol. 183, 2019. Samsuri, F. Tariq, D. Karam, A. Aris, and G. Jamilu, “The effects of rice husk ashes and inorganic fertilizers application rates on the phytoremediation of gold mine tailings by vetiver grass,” Applied Geochemistry, vol. 108, 2019. K. Foo, and B. Hameed, “Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste,” Advances in Colloid and Interface Science, vol. 152, pp. 39-47, 2009. B. Kumar, D. Sengupta, T. Dasgupta, S. Mandal, and S. Datta, “Recovery of value-added products from rice husk ash to explore an economic way for recycle and reuse of agricultural waste,” Reviews in Environmental Science and Biotechnology, vol. 15, p. 47–65, 2016. X. Liu, X. Chen, L. Yang, H. Chen, Y. Tian, and Z. Wang, “A review on recent advances in the comprehensive application of rice husk ash,” Research Chemistry Intermedia, vol. 42, pp. 893-913, 2016. B. Mathew, M. Jaishankar, V. Biju, and K. Beeregowda, “Role of Bioadsorbents in Reducing Toxic Metals,” Journal of Toxicology, pp. 1-13, 2016. S. Higuera, “Biofiltro con cascarilla de arroz y pasto vetiver (Chrysopogon zizanioides) para el tratamiento del efluente de la PTAR del INPEC,” Grupo de Investigación CAZAO. Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente – ECAPMA. Universidad Nacional Abierta y a Distancia UNAD., Yopal, 2016. D. He, A. Ikeda-Ohno, D. D. Boland, and T. D. Waite, “Synthesis and Characterization of Antibacterial Silver Nanoparticle- Impregnated Rice Husks and Rice Husk Ash,” Environmental Science & Technology, vol. 47, no 10, pp. 5276-5284, 2013.[125] C. Malhotra, R. Patil, S. Kausley, and D. Ahmad, “Novel uses of rice-husk-ash (a natural silica-carbon matrix) in low-cost water purification applications,” AIP Conference Proceedings, vol. 113, p. 1538, 2013.[1] S. P. Vilardy-Quiroga, y J. A. González Novoa, “Repensando la ciénaga: Nuevas miradas y estrategias para la sostenibilidad en la Ciénaga Grande de Santa Marta,” vol. 1, 2011. [2] World Health Organization, “Biodiversity and Health,” 2015. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/ biodiversity-and-health. [Accessed: 24 Marzo 2021]. [3] Instituto Nacional de Salud, “Carga de enfermedad ambiental en Colombia,” 2019. [Online]. Available: https://www.ins.gov.co/ Direcciones/ONS/Informes/10 Carga de enfermedad ambiental en Colombia.pdf. [Accessed: 30 Septiembre 2019]. [4] G. Martínez, A. Corredor, y Á. Silva, “Problemática de la Pudrición del cogollo en Tumaco e instrumentos para su manejo y la renovación del cultivo,” Revista Palmas, vol. 29, no 3, pp. 11–16, 2008. [5] J. E. Lim, M. Ahmad, A. Usman, S. Lee, W. Jeon, S. Oh, J. Yang, and Y. Ok, “Effects of natural and calcined poultry waste on Cd, Pb and As mobility in contaminated soil,” Environmental Earth Science, vol. 69, no 1, pp. 11–20, 2013. [6] X. Zhang, H. Wang, L. He, K. Lu, A. Sarmah, J. Li, N. Bolan, J. Pei, H. Huang, “Using biochar for remediation of soils contaminated with heavy metals and organic pollutants,” Environmental Science and Pollution Research, vol. 20, no 12, pp. 8472–8483, 2013. [7] S. P. Sohi, “Carbon storage with benefits,” Science (80), vol. 338, no 6110, pp. 1034–1035, 2012.[8] F. Verheijen, S. Jeffery, A. C. Bastos, M. van der Velde, I. Diafas, and C. Parsons, Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions. Joint Research Centre, 2009. [9] B. Glaser, J. Lehmann, and W. Zech, “Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review,” Biology and Fertility Soils, vol. 35, no 4, pp. 219–230, 2002. [10] J. Lehmann, M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday, and D. Crowley, “Biochar effects on soil biota - A review,” Soil Biology Biochemistry, vol. 43, no. 9, pp. 1812–1836, 2011. [11] “International Biochar Initiative,” What is biochar?, 2019. [Online]. Available: https://biochar-international.org/biochar-in-developing- countries/. [Accessed: 03-Jun-2019]. [12] M. Ahmad, A. Upamali, J. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. Lee, and Y. Ok, “Biochar as a sorbent for contaminant management in soil and water: a review,” Chemosphere, vol. 99. pp. 19–33, 2014. [13] T. Brudey, L. Largitte, C. Jean-Marius, T. Tant, P. C. Dumesnil, and P. Lodewyckx, “Adsorption of lead by chemically activated carbons from three lignocellulosic precursors,” Journal of Analytical and Applied Pyrolysis, vol. 120, pp. 450–463, 2016. [14] N. B. Klinghoffer, M. J. Castaldi, and A. Nzihou, “Catalyst properties and catalytic performance of char from biomass gasification,” Industrial Engineering Chemistry Research, vol. 51, no 40, pp. 13113–13122, 2012. [15] A. García-García, A. Gregório, C. Franco, F. Pinto, D. Boavida, and I. Gulyurtlu, “Unconverted chars obtained during biomass gasification on a pilot-scale gasifier as a source of activated carbon production,” Bioresource Technology, vol. 88, no 1, pp. 27–32, 2003. [16] L. Lundberg, P. A. Tchoffor, D. Pallarès, R. Johansson, H. Thunman, and K. Davidsson, “Influence of surrounding conditions and fuel size on the gasification rate of biomass char in a fluidized bed,” Fuel Processing Technology, vol. 144, pp. 323–333, 2016.[17] J. J. Hernández, M. Lapuerta, and E. Monedero, “Characterisation of residual char from biomass gasification: effect of the gasifier operating conditions,” Journal of Cleaner Production, vol. 138, pp. 83–93, 2016. [18] J. F. Perez, P. N. Benjumea, and A. Melgar, “Sensitivity analysis of a biomass gasification model in fixed bed downdraft reactors: Effect of model and process parameters on reaction front,” Biomass and Bioenergy, vol. 83, pp. 403–421, 2015. [19] J. J. Hernández, M. Lapuerta, and E. Monedero, “Characterisation of residual char from biomass gasification: effect of the gasifier operating conditions,” Journal Cleaner Prodution, vol. 138, pp. 83–93, 2016. [20] K. Qian, A. Kumar, K. Patil, D. Bellmer, D. Wang, W. Yuan, and R. Huhnke, “Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char,” Energies, vol. 6, no 8, pp. 3972–3986, 2013. [21] K. Qian, A. Kumar, H. Zhang, D. Bellmer, and R. Huhnke, “Recent advances in utilization of biochar,” Renewable and Sustainble Energy Reviews, vol. 42, pp. 1055–1064, 2015. [22] J. M. Novak, W. J. Busscher, D. L. Laird, M. Ahmedna, D. W. Watts, and M. A. S. Niandou, “Impact of biochar amendment on fertility of a southeastern coastal plain soil,” Soil Science, vol. 174, no 2, pp. 105– 112, 2010. [23] B. Zhao, D. O’Connor, J. Zhang, T. Peng, Z. Shen, D. Tsang, and D. Hou. “Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar,” Journal Cleaner Production, vol. 174, pp. 977–987, 2018. [24] W. Buss, J. G. Shepherd, K. V. Heal, and O. Mašek, “Spatial and temporal microscale pH change at the soil-biochar interface,” Geoderma, vol. 331, no April, pp. 50–52, 2018. [25] V. Hansen, D. Müller-Stöver, J. Ahrenfeldt, J. K. Holm, U. B. Henriksen, and H. Hauggaard-Nielsen, “Gasification biochar as a valuable by- product for carbon sequestration and soil amendment,” Biomass and Bioenergy, vol. 72, no 1, pp. 300–308, 2015.[26] B. P. Singh, A. L. Cowie, and R. J. Smernik, “Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature,” Environmental Science Technology, vol. 46, no 21, pp. 11770–11778, 2012. [27] Y. Almaroai, A. Usman, M. Ahmad, D. Moon, C. Jeon, S. Lee, and Y. Ok, “Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water,” Environmental Earth Sciences, vol. 71, no 3, pp. 1289–1296, 2014. [28] L. van Zwieten, S. Kimber, S. Morris, K. Y. Chan, A. Dowie, J. Rust, S. Joseph, and A. Cowie, “Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility,” Plant Soil, vol. 327, no 1, pp. 235–246, 2010. [29] F. Rees, M. O. Simonnot, and J. L. Morel, “Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase,” European Journal of Soil Science, vol. 65, no 1, pp. 149–161, 2014. [30] J. Paz-Ferreiro, H. Lu, S. Fu, A. Méndez, and G. Gascó, “Use of phytoremediation and biochar to remediate heavy metal polluted soils: A review,” Solid Earth, vol. 5, no 1, pp. 65–75, 2014. [31] FAO, “FAOSTAT - Forestry production and trade,” 2019. [Online]. Available: http://www.fao.org/faostat/en/#data/FO/visualize. [Accessed: 14 Abril 2020]. [32] J. F. Pérez, and G. L. Ramírez, “Aplicaciones agroenergéticas con maderas cultivadas y oportunidades preliminares de mercado,” 1st ed. Medellín (Colombia), Editorial Universidad de Antioquia, 2019. [33] Minagricultura, “Colombia tiene un potencial forestal de 24 millones de hectáreas para explotación comercial,” 2015. [Online]. Available: https://www.minagricultura.gov.co/noticias/Paginas/Colombia-tiene- un-potencial-forestal.aspx. [Accessed: 14 Abril 2020]. [34] J. F. Pérez, M. R. Pelaez-Samaniego, and M. García-Pérez, “Torrefaction of fast-growing Colombian wood species,” Waste and Biomass Valorization, vol. 10, no 6, pp. 1655–1667, 2019.[35] S. Ramos-Carmona, J. D. Martínez, and J. F. Pérez, “Torrefaction of patula pine under air conditions: A chemical and structural characterization,” Industrial Crops and Products, vol. 118, pp. 302–310, 2018. [36] ASTM, “D5373-08 standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in laboratory samples of coal, ASTM International, West Conshohocken, PA.,” 2008. [37] T. de P. Protásio, L. Bufalino, G. H. Denzin, M. G. Junior, P. F. Trugilho, and L. M. Mendes, “Brazilian lignocellulosic wastes for bioenergy production: Characterization and comparison with fossil fuels,” BioResources, vol. 8, no 1, pp. 1166–1185, 2013. [38] D. Medic, M. Darr, A. Shah, B. Potter, and J. Zimmerman, “Effects of torrefaction process parameters on biomass feedstock upgrading,” Fuel, vol. 91, no 1, pp. 147–154, 2012. [39] NTC, “Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas de suelo - NTC 5167 Standard,” 2011. [40] V. Gunarathne, A. Senadeera, U. Gunarathne, J. K. Biswas, Y. A. Almaroai, and M. Vithanage, “Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil,” Biochar, vol. 2, no 1, pp. 107–120, 2020. [41] D. Vamvuka, M. Pitharoulis, G. Alevizos, E. Repouskou, and D. Pentari, “Ash effects during combustion of lignite/biomass blends in fluidized bed,” Renewable Energy, vol. 34, no 12, pp. 2662–2671, 2009. [42] W. A. González, J. F. Pérez, S. Chapela, and J. Porteiro, “Numerical analysis of wood biomass packing factor in a fixed-bed gasification process,” Renewable Energy, vol. 121, pp. 579–589, 2018. [43] L. Dunnigan, B. J. Morton, P. J. Ashman, X. Zhang, and C. W. Kwong, “Emission characteristics of a pyrolysis-combustion system for the co- production of biochar and bioenergy from agricultural wastes,” Waste Management, vol. 77, pp. 59–66, 2018.[44] P. Pokharel, and S. X. Chang, “Manure pellet, woodchip and their biochars differently affect wheat yield and carbon dioxide emission from bulk and rhizosphere soils,” Science of the Total Environment, vol. 659. pp. 463–472, 2019. [45] D. Bayu, A. Dejene, R. Alemayehu, and B. Gezahegn, “Improving available phosphorus in acidic soil using biochar,” Journal of Soil Science and Environmental Managemet, vol. 8, no 4, pp. 87–94, 2017. [46] H. Schmit, S. Abiven, C. Kammann, and B. Glaser, “European Biochar Certificate - Guidelines for a Sustainable Production of Biochar,” Agronimical Use of Biochar, vol. 8, pp. 1–22, 2019. [47] H. E. Díez, and J. F. Pérez, “Physicochemical characterization of representative firewood species used for cooking in some Colombian regions,” International Journal of Chemical Engeeniring, vol. 2017, pp. 1–13, 2017. [48] Y. Wang, R. Yin, and R. Liu, “Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil,” Journal of Analytical and Applied Pyrolysis, vol. 110, no 1, pp. 375–381, 2014. [49] F. V. Tinaut, A. Melgar, J. F. Pérez, and A. Horrillo, “Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study,” Fuel Processing Technology, vol. 89, no 11, pp. 1076–1089, 2008. [50] I. Baptista, I. Miranda, T. Quilhó, J. Gominho, and H. Pereira, “Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material,” Industrial Crops and Products, vol. 50, pp. 166–175, 2013. [51] H. Blume, G. W. Brümmer, R. Horn, and I. Kögel-knabner, Soil Science. Berlin, Springer, 2016. [52] International Biochar Initiative, “Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil,” IBI, p. 23, 2015.[53] P. Godlewska, Y. S. Ok, and P. Oleszczuk, “The dark side of black gold: Ecotoxicological aspects of biochar and biochar-amended soils,” Journal of Hazardous Materials, vol. 403, 2020-2021. [54] Y. Ok, S. Uchimiya, S. Chang, and N. Bolan, Biochar: production, characterization, and applications. New York, CRC Press, Taylor & Francis Group, 2016. [55] J. W. Lee, M. Kidder, B. Evans, S. Paik, A. Buchanan, C. Garten, and R. Brown, “Characterization of biochars produced from cornstovers for soil amendment,” Environmental Science Technology, vol. 44, n. 20, pp. 7970–7974, 2010. [56] J. L. Gomez-Eyles, T. Sizmur, and E. Moreno-Jiménez, “The potential of biochar amendments to remediate contaminated soils,” Biochar Soil Biota, 2013. [57] S. Mia, N. Uddin, S. A. Al Mamun Hossain, R. Amin, F. Z. Mete, and T. Hiemstra, “Production of Biochar for Soil Application: A Comparative Study of Three Kiln Models,” Pedosphere, vol. 25, no 5, pp. 696–702, 2015. [58] O. Y. Yu, M. Harper, M. Hoepfl, and D. Domermuth, “Characterization of biochar and its effects on the water holding capacity of loamy sand soil: Comparison of hemlock biochar and switchblade grass biochar characteristics,” Environmental Progress and Sustainable Energy, vol. 36, no 5. pp. 1474–1479, 2017. [59] W. A. W. A. K. Ghani, A. Mohd, G. Silva, R. Bachmann, Y. Taufiq, U. Rashid, and A. Muhtaseb, “Biochar production from waste rubber- wood-sawdust and its potential use in C sequestration: Chemical and physical characterization,” Industrial Crops and Products, vol. 44, pp. 18–24, 2013. [60] W. A. González, and J. F. Pérez, “CFD analysis and characterization of biochar produced via fixed-bed gasification of fallen leaf pellets,” Energy, vol. 186, 2019.[61] H. E. Díez and J. F. Pérez, “Effects of wood biomass type and airflow rate on fuel and soil amendment properties of biochar produced in a top-lit updraft gasifier,” Environmental Progress and Sustainable Energy, vol. 38, no 4, pp. 1–14, 2019. [62] H. K. Nsamba, S. E. Hale, G. Cornelissen, and R. T. Bachmann, “Designing and Performance Evaluation of Biochar Production in a Top-Lit Updraft Up-scaled Gasifier,” Journal of Sustainble Bioenergy Systems, vol. 05, no 02, pp. 41–55, 2015.[1] S. K. Ramachandran, V. Ramakrishnan, and S. S. Bang, «Remediation of Concrete Using Microorganisms,» Acid Materials Journal, vol. 98, no 1, pp. 3-9, 2001, doi: 10.14359/10154. [2] B. Krajewska, «Urease-aided calcium carbonate mineralization for engineering applications: A review,» Journal of Advanced Research, vol. 13, pp. 59-67, 2018, doi: 10.1016/j.jare.2017.10.009. [3] S. Weiner, and L. Addadi, «Design strategies in mineralized biological materials,» Juornal Materials Chemistry, vol. 7, no 5, pp. 689-702, ene. 1997, doi: 10.1039/A604512J. [4] E. E. Rios-Valenciana, R. Briones-Gallardo, L. F. Cházaro-Ruiz, N. Martínez-Villegas, and L. B. Celis, «Role of indigenous microbiota from heavily contaminated sediments in the bioprecipitation of arsenic,» Journal of Hazardous Materials, vol. 339, pp. 114-121, oct. 2017, doi: 10.1016/j.jhazmat.2017.06.019. [5] C. Lors, D. Damidot, L. Petit, A. Legrix, N. C. Tran, and B. Masson, «Bioprecipitation of a calcium carbonate – Biofilm composite on the surface of concrete for the maintenance of nuclear reactor enclosures,» Construction and Building Materials, vol. 237, p. 117618, 2020, doi: 10.1016/j.conbuildmat.2019.117618. [6] L. Jiang, X. Liu, H. Yin, Y. Liang, H. Liu, B. Miao, Q. Peng, D. Meng, S. Wang, J. Yang, and Z. Guo, «The utilization of biomineralization technique based on microbial induced phosphate precipitation in remediation of potentially toxic ions contaminated soil: A mini review,» Ecotoxicology and Environmental Safety, vol. 191, p. 110009, 2020, doi: 10.1016/j. ecoenv.2019.110009. [7] Z. Basaran Bundur, M. J. Kirisits, and R. D. Ferron, «Biomineralized cement-based materials: Impact of inoculating vegetative bacterial cells on hydration and strength,» Cement and Concrete Research, vol. 67, pp. 237-245, 2015, doi: 10.1016/j.cemconres.2014.10.002.[8] V. Achal, A. Mukherjee, D. Kumari, and Q. Zhang, «Biomineralization for sustainable construction – A review of processes and applications,» Earth-Science Reviews, vol. 148, pp. 1-17, 2015, doi: 10.1016/j. earscirev.2015.05.008. [9] V. Pasquale, S. Fiore, D. Hlayem, A. Lettino, F. Huertas, E. Chianese, and S. Duomontet, «Biomineralization of carbonates induced by the fungi Paecilomyces inflatus and Plectosphaerella cucumerina,» International Biodeterioration and Biodegradation, vol. 140, pp. 57-66, may 2019, doi: 10.1016/j.ibiod.2019.03.005. [10] S. Anne, O. Rozenbaum, P. Andreazza, and J.-L. Rouet, «Evidence of a bacterial carbonate coating on plaster samples subjected to the Calcite Bioconcept biomineralization technique,» Construction and Building Materials, vol. 24, no 6, pp. 1036-1042, 2010, doi: 10.1016/j. conbuildmat.2009.11.014. [11] N. K. Dhami, M. E. C. Quirin, and A. Mukherjee, «Carbonate biomineralization and heavy metal remediation by calcifying fungi isolated from karstic caves,» Ecological Engineering., vol. 103, pp. 106- 117, 2017, doi: 10.1016/j.ecoleng.2017.03.007. [12] J. Li, K. Benzerara, S. Bernard, and O. Beyssac, «The link between biomineralization and fossilization of bacteria: Insights from field and experimental studies,» Chemical Geology, vol. 359, pp. 49-69, 2013, doi: 10.1016/j.chemgeo.2013.09.013. [13] X. Qian, C. Fang, M. Huang, and V. Achal, «Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil,» Journal Cleaner Productions, vol. 164, pp. 198-208, 2017, doi: 10.1016/j. jclepro.2017.06.195. [14] P. P. F. Brasileiro, R. D. C. F. S. D. Silva, F. C. P. D. R. E. Silva, Y. B. Brandao, L. A. Sarubbo, and M. Benachour, «Biomineralization of Calcium Carbonate by Bacillus Cereus for Self-healing Biocement,» Chemical Engineering Transactions, vol. 79, pp. 97-102, 2020, doi: 10.3303/ CET2079017.15] F. Hammes, and W. Verstraete, «Key roles of pH and calcium metabolism in microbial carbonate precipitation,» Reviews Environmental Science and Bio/Technology, vol. 1, no 1, pp. 3-7, 2002, doi: 10.1023/A:1015135629155. [16] J. Peckmann, J. Paul, and V. Thiel, «Bacterially mediated formation of diagenetic aragonite and native sulfur in Zechstein carbonates (Upper Permian, Central Germany),» Sedimental Geology, vol. 126, no 1, pp. 205-222, 1999, doi: 10.1016/S0037-0738(99)00041-X. [17] S. Wei, H. Cui, Z. Jiang, H. Liu, H. He, and N. Fang, «Biomineralization processes of calcite induced by bacteria isolated from marine sediments,» Brazilian Journal Microbiology, vol. 46, no 2, pp. 455-464, 2015, doi: 10.1590/S1517-838246220140533. [18] D. S. McKay, E. Gibson, K. Thomas, H. Vali, C. Romanek, S. Clemett, X. Chillier, C. Maechiling, and R. Zare, «Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001,» Science, vol. 273, no 5277, pp. 924-930, 1996, doi: 10.1126/science.273.5277.924. [19] C. Rodriguez-Navarro, M. Rodriguez-Gallego, K. Ben Chekroun, and M. T. Gonzalez-Muñoz, «Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization,» Applied and Environmental Microbiology, vol. 69, no 4, pp. 2182-2193, 2003, doi: 10.1128/aem.69.4.2182-2193.2003. [20] P. Tiano, L. Biagiotti, and G. Mastromei, «Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation,» Journal of Microbiological Methods, vol. 36, no 1-2, pp. 139-145, 1999, doi: 10.1016/s0167-7012(99)00019-6. [21] K. L. Bachmeier, A. E. Williams, J. R. Warmington, and S. S. Bang, «Urease activity in microbiologically-induced calcite precipitation,» Journal of Biotechnology, vol. 93, no 2, pp. 171-181, 2002, doi: 10.1016/s0168- 1656(01)00393-5. [22] M. del R. Rodicio, y M. del C. Mendoza, «Identificación bacteriana mediante secuenciación del ARNr 16S: fundamento, metodología y aplicaciones en microbiología clínica,» Enfermedades Infecciosas y Microbiología Clínica, vol. 22, no 4, pp. 238-245, 2004.[23] E. Boquet, A. Boronat, and A. Ramos-Cormenzana, «Production of Calcite (Calcium Carbonate) Crystals by Soil Bacteria is a General Phenomenon,» Nature, vol. 246, n.o 5434, Art. no 5434, 1973, doi: 10.1038/246527a0. [24] M. Marvasi, K. Gallagher, L. Martinez, W. Molina, R. Rodríguez, and G. Vega, «Importance of B4 Medium in Determining Organomineralization Potential of Bacterial Environmental Isolates,» Geomicrobiology, vol. 29, no 10, pp. 916-924, 2012, doi: 10.1080/01490451.2011.636145. [25] N. Ben Omar, J. M. Arias, and M. T. González-Muñoz, «Extracellular bacterial mineralization within the context of geomicrobiology,» Microbiology Madrid Spain, vol. 13, no 2, pp. 161-172, 1997. [26] C. Barabesi, A. Galizzi, G. Mastromei, M. Rossi, E. Tamburini, and B. Perito, «Bacillus subtilis Gene Cluster Involved in Calcium Carbonate Biomineralization,» Journal of Bacteriology, vol. 189, no 1, pp. 228-235, 2007, doi: 10.1128/JB.01450-06. [27] D. A. Rasko, J. Ravel, O. Ostad, E. Helgason, R. Cer, L. Jiang, K. Shores, D. Fouts, N. Tourasse, S. Angiouli, J. Kolonay, W. Nelson, A. Kolsto, C. Fraser, and T. Read, «The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1,» Nucleic Acids Research, vol. 32, no 3, pp. 977- 988, 2004, doi: 10.1093/nar/gkh258. [28] E. Castañeda, and L. C. Sánchez, «Evaluation of growth of four species of the genus Bacillus sp., the first step to understand their biocontrol effect on Fusarium sp.,» Nova, vol. 14, no 26, pp. 53-62, dic. 2016. [29] S. Castanier, G. Le Métayer-Levrel, G. Orial, J.-F. Loubière, and J.- P. Perthuisot, «Bacterial Carbonatogenesis and Applications to Preservation and Restoration of Historic Property,» In Of Microbes and Art: The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage, O. Ciferri, P. Tiano, y G. Mastromei, Eds. Boston, MA, Springer US, pp. 203-218, 2000.[30] M. R. Ferrer, J. Quevedo-Sarmiento, M. A. Rivadeneyra, V. Bejar, R. Delgado, and A. Ramos-Cormenzana, «Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations,» Curr. Microbiology., vol. 17, no 4, pp. 221-227, 1988, doi: 10.1007/BF01589456. [31] B. D. Eyre, A. J. Andersson, and T. Cyronak, «Benthic coral reef calcium carbonate dissolution in an acidifying ocean,» Nature Climate Change, vol. 4, n.o 11, Art. no 11, 2014, doi: 10.1038/nclimate2380. [32] B. B. Williams, J. L. Gidley, J. A. Guin, and R. S. Schechter, «Characterization of Liquid-Solid Reactions. Hydrochloric Acid- Calcium Carbonate Reaction,» Chemistry Industrial and Engineering Chemistry Fundamentals, vol. 9, no 4, pp. 589-596, 1970, doi: 10.1021/ i160036a011.[1] F. M. Buratti, M. Manganelli, S. Vichi, M. Stefanelli, S. Scardala, E. Testai, and E. Funari, “Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation,” Archives of Toxicology, vol. 91, pp. 1049–1130, 2017. [2] G. Kaur, “Freshwater Cyanotoxins,” In Biomarkers in Toxicology, pp. 601–613, 2019. [3] B. A. Whitton, and M. Potts, “The ecology of cyanobacteria: their diversity in time and space,” Springer Science & Business Media, 2007.[4] L. A. Gaysina, A. Saraf, and P. Singh, “Cyanobacteria in diverse habitats,” In Cyanobacteria: From Basic Science to Applications, pp. 1–28, 2019. [5] J. M. O’Neil, T. W. Davis, M. A. Burford, and C.J. Gobler, “The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change,” Harmful Algae, vol. 14, pp. 313–334, 2012. [6] K. Shan, X. Wang, H. Yang, B. Zhou, L. Song, and M. Shang, “Use statistical machine learning to detect nutrient thresholds in Microcystis blooms and microcystin management,” Harmful Algae, vol. 94, pp. 101807, 2020. [7] J. T. Walls, K. H. Wyatt, J. C. Doll, E. M. Rubenstein, and A. R. Rober, “Hot and toxic: Temperature regulates microcystin release from cyanobacteria,” Science of the Total Environment, vol. 610, pp. 786-795, 2018. [8] H. W. Paerl, and T. G. Otten, “Harmful Cyanobacterial Blooms: Causes, Consequences, and Controls,” Microbial Ecology, vol. 65, pp. 995–1010, 2013. [9] M. L. Wells, V. L. Trainer, T. J. Smayda, B. S. O. Karlson, C. G. Trick, R. M. Kudela. A. Ishikawa, S. Bernard, A. Wulff, D. Anderson, and W. P. Cochlan, “Harmful algal blooms and climate change: Learning from the past and present to forecast the future,” Harmful Algae, vol. 49, pp. 68–93, 2015. [10] L. Bláha, P. Babica, and B. Maršálek, “Toxins produced in cyanobacterial water blooms - toxicity and risks,” Interdisciplinary Toxicology, vol. 2, no 2, pp. 36–41, 2009. [11] J. Huisman, G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. Verspagen, and P. M. Visser, “Cyanobacterial blooms,” Nature Reviews Microbiology, vol. 16, no 8, pp. 471–483, 2018.[12] W. W. Carmichael, “Health Effects of Toxin-Producing Cyanobacteria: The CyanoHABs,” Human and Ecological Risk Assessment: An International Journal, vol. 7, no 5, pp. 1393–1407, 2001. [13] I. Stewart, A. A. Seawright, and G. R. Shaw, “Cyanobacterial poisoning in livestock, wild mammals and birds – an overview,” In H. K. Hudnell (Ed.), Advances in Experimental Medicine and Biology Vol. 619, pp. 613–637, 2008. [14] I. Chorus, and J. Bartram, “Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management,” Vol. 73; E & FN Spon, ed., London, 1999. [15] H. W. Paerl, T. G. Otten, and R. Kudela, “Mitigating the Expansion of Harmful Algal Blooms Across the Freshwater-to-Marine Continuum [News],” Environmental Science and Technology, vol. 52, no 10, pp. 5519–5529, 2018. [16] D. Sedan, y D. Andrinolo, “Cianobacterias y cianotoxinas: Efectos en la salud humana. Casos informados y primeros acercamientos al estudio epidemiológico,” In Cianobacterias como determinantes ambientales de la salud, pp. 67–78, 2011. [Online]. Available: http:// sedici.unlp.edu.ar/handle/10915/91471 [17] J. S. Yunes, “Cyanobacterial toxins2, In Cyanobacteria: From Basic Science to Applications,” pp. 443–458, 2018. [18] M. Crettaz-Minaglia, D. Sedan, y L. Giannuzzi, “Bioacumulación y biomagnificación de cianotoxinas en organismos acuáticos de agua dulce,” In Cianobacterias como determinantes ambientales de la salud, pp. 171–186, 2017. [Online]. Available: http://sedici.unlp. edu.ar/bitstream/handle/10915/72653/Documento_completo.pdf- PDFA.pdf?sequence=1&isAllowed=y [19] J. K. Malik, V. K. Bharti, A. Rahal, D. Kumar, and R. C. Gupta, “Cyanobacterial (blue-green algae) toxins,” In Handbook of Toxicology of Chemical Warfare Agents, pp. 467–478, 2020.[20] L. M. Grattan, S. Holobaugh, and J. G. Morris, “Harmful algal blooms and public health,” Harmful Algae, vol. 57, pp. 2–8, 2016. [21] D. M. M. Caramés, “Tecnologías de control de floraciones de cianobacterias y algas nocivas en cuerpos de agua, con énfasis en el uso de irradiación por ultrasonido,” Innotec, vol. 12, no 12, pp. 54–61, 2016. [Online]. Available: http://ojs.latu.org.uy/index.php/ INNOTEC/article/view/367 [22] I. Y. Massey, F. Yang, Z. Ding, S. Yang, J. Guo, C. Tezi, H. Al-Osman, R.B. Kamegni, and W. Zeng, “Exposure routes and health effects of microcystins on animals and humans: A mini-review,” Toxicon, vol. 151, july, pp. 156–162, 2018. [23] L. Chen, J. P. Giesy, and P. Xie, “The dose makes the poison,” Science of the Total Environment, vol. 621, pp. 649–653, 2018. [24] OMS. “Guías para la calidad del agua potable (Tercera),” Organización Mundial de la Salud, 2006. [Online]. Available: https://www.who. int/water_sanitation_health/dwq/gdwq3_es_fulll_lowsres.pdf [25] B. W. Brooks, J. M. Lazorchak, M. D. A. Howard, M. V. V. Johnson, S. L. Morton, D. A. K. Perkins, E. D. Reavie, G. I. Scott, S. A. Smith, and J. A. Steevens, “Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?,” Environmental Toxicology and Chemistry, vol. 35, no 1, pp. 6–13, 2016. [26] H. W. Paerl, W. S. Gardner, K. E. Havens, A. R. Joyner, M. J. McCarthy, S. E. Newell, B. Qin, and J. T. Scott, “Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients,” Harmful Algae, vol. 54, pp. 213–222, 2016. [27] S. Merel, M. Clément, and O. Thomas, “State of the art on cyanotoxins in water and their behaviour towards chlorine,” Toxicon, vol. 55, no 4, pp. 677–691, 2010.[28] S. Merel, M. C. Villarín, K. Chung, and S. Snyder, “Spatial and thematic distribution of research on cyanotoxins,” Toxicon, vol. 76, pp. 118–131, 2013. [29] X. He, Y. L. Liu, A. Conklin, J. Westrick, L. K. Weavers, D. D. Dionysiou, J. J. Lenhart, P. J. Mouser, D. Szlag, and H. W. Walker, “Toxic cyanobacteria and drinking water: Impacts, detection, and treatment,” Harmful Algae, vol. 54, pp. 174–193, 2016. [30] S. Merel, D. Walker, R. Chicana, S. Snyder, E. Baurès, and O. Thomas, “State of knowledge and concerns on cyanobacterial blooms and cyanotoxins,” Environment International, vol. 59, pp. 303–327, 2013. [31] CORNARE, “Plan de ordenación y manejo de la cuenca Abreo- Malpaso, municipio de Rionegro,” Corporación Autónoma Regional de las Cuencas de los ríos Negro y Nare, 2006. [Online]. Available: https:// www.cornare.gov.co/POMCAS/Documentos/AbreoMalpaso.pdf [32] APHA, “Standard methods for examination of water and wastewater,” American Public Health Association, 2012. [33] C. León, and G. A. Peñuela, “Detected cyanotoxins by UHPLC MS/MS technique in tropical reservoirs of northeastern Colombia,” Toxicon, vol. 167, march 2018, pp. 38–48, 2019. [34] A. D. Steinman, B. J. Cardinale, W. R. Munns Jr., M. E. Ogdahl, J. D. Allan, T. Angadi, and E. Washburn, “Ecosystem services in the Great Lakes,” Journal of Great Lakes Research, vol. 43, no 3, pp. 161-168, 2017. [35] A. C. Rietzler, C. R. Botta, M. M. Ribeiro, O. Rocha y A. L. Fonseca, “Accelerated eutrophication and toxicity in tropical reservoir water and sediments: an ecotoxicological approach,” Environmental Science and Pollution Research, vol. 25, no 14, pp. 13292-13311, 2018. [36] E. Navarro, E. Garcia-Berthou, y J. Armengol, “La calidad ecológica de los embalses”, Investigación y Ciencia, pp. 80–88, 2010.[37] C. Acuña-Alonso, X. Álvarez, O. Lorenzo, A. Cancela, E. Valero, and A. Sánchez, “Assessment of water quality in eutrophized water bodies through the application of indexes and toxicity,” Science of The Total Environment, vol. 728, pp. 138775, 2020. [38] J. Brasil, J. L. Attayde, F. R. Vasconcelos, D. D. Dantas y V. L. Huszar, “Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes,” Hydrobiologia, vol. 770, no 1, pp. 145-164, 2016. [39] I. Sunesen, S. M. Méndez, J. E. Mancera-Pineda, M. Y. D. Bottein, and H. Enevoldsen, “The Latin America and Caribbean HAB status report based on OBIS and HAEDAT maps and databases,” Harmful Algae, pp. 101920, 2021. [40] X. Liu, L. Chen, G. Zhang, J. Zhang, Y. Wu, and H. Ju, “Spatiotemporal Dynamics of Succession and Growth Limitation of Phytoplankton for Nutrients and Light in a Large Shallow Lake,” Water Research, pp. 116910, 2021. [41] V. Vasconcelos, “Eutrophicatton, toxic cyanobacteria and cyanotoxins: When ecosystems cry for help,” Limnetica, vol. 25, no 1–2), pp. 425–432, 2006. [42] T. Dalu y R.J. Wasserman, “Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables,” Science of the Total Environment, vol. 643, pp. 835-841, 2018. [43] F. R. Jacinavicius, A.B.F. Pacheco, F. Chow, G. C. V. da Costa, D. E. Kalume, J. Rigonato, E. C. Schmidt, and C. L. Sant’Anna, “Different ecophysiological and structural strategies of toxic and non-toxic Microcystis aeruginosa (cyanobacteria) strains assessed under culture conditions,” Algal Research, vol. 41, pp. 101548, 2019. [44] S. Jähnichen, B. M. Long, and T. Petzoldt, “Microcystin production by Microcystis aeruginosa: Direct regulation by multiple environmental factors,” Harmful Algae, vol. 12, pp. 95-104, 2011.[45] T. W. Davis, D. L. Berry, G. L. Boyer, and C. J. Gobler, “The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms,” Harmful Algae, vol. 8, no 5, pp. 715-725, 2009. [46] M. Wang, W. Shi, Q. Chen, J. Zhang, Q. Yi, and L. Hu, “Effects of nutrient temporal variations on toxic genotype and microcystin concentration in two eutrophic lakes,” Ecotoxicology and Environmental Safety, vol. 166, pp. 192-199, 2018. [47] J. Zhou, B. Qin, X. Han, and L. Zhu, “Turbulence increases the risk of microcystin exposure in a eutrophic lake (Lake Taihu) during cyanobacterial bloom periods,” Harmful Algae, vol. 55, pp. 213-220, 2016. [48] B. A. Neilan, L. A. Pearson, J. Muenchhoff, M. C. Moffitt, and E. Dittmann, “Environmental conditions that influence toxin biosynthesis in cyanobacteria,” Environmental Microbiology, vol. 15, no 5, pp. 1239–1253, 2012. [49] L. Hu, K. Shan, L. Huang, Y. Li, L. Zhao, Q. Zhou, and L. Song, “Environmental factors associated with cyanobacterial assemblages in a mesotrophic subtropical plateau lake: a focus on bloom toxicity,” Science of The Total Environment, pp. 146052, 2021. [50] X. Wu, B. Xiao, R. Li, C. Wang, J. Huang y Z. Wang, “Mechanisms and factors affecting sorption of microcystins onto natural sediments,” Environmental Science & Technology, vol. 45, no 7, pp. 2641-2647, 2011. [51] C. J. Gobler, J. M. Burkholder, T. W. Davis, M. J. Harke, T. Johengen, C. A. Stow, and D. B. Van de Waal, “The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms,” Harmful Algae, vol. 54, pp. 87-97, 2016. [52] E. Xie, Y. Su, S. Deng, M. Kontopyrgou, and D. Zhang, “Significant influence of phosphorus resources on the growth and alkaline phosphatase activities of Microcystis aeruginosa,” Environmental Pollution, vol. 268, pp. 115807, 2021.[53] M. A. Burford, C. C. Carey, D. P. Hamilton, J. Huisman, H. W. Paerl, S. A. Wood, and A. Wulff, “Perspective: Advancing the research agenda for improving understanding of cyanobacteria in a future of global change,” Harmful Algae, vol. 91, pp. 101601, 2020. [54] M. V. Brandalise, F. Nadal, M. I. Rodríguez, N. Larrosa, M. Ruíz, S. Halac, P. Olivera. y C. Licera, Índice de calidad de agua para uso recreativo en ambientes con cianobacterias, 2012. [Online]. Available: https:// www.ina.gov.ar/pdf/ifrrhh/02_007_Brandalise.pdf [55] V. Gaget, M. Lau, B. Sendall, S. Froscio, and A.R. Humpage, “Cyanotoxins: Which detection technique for an optimum risk assessment?,” Water Research, vol. 118, pp. 227–238, 2017. [56] M. Picardo, D. Filatova, O. Nuñez, and M. Farré, “Recent advances in the detection of natural toxins in freshwater environments,” TrAC - Trends in Analytical Chemistry, vol. 112, pp. 75–86, 2019. [57] H. W. Paerl, and M. A. Barnard, “Mitigating the global expansion of harmful cyanobacterial blooms: Moving targets in a human-and climatically-altered world,” Harmful Algae, vol. 96, pp. 101845, 2020. [58] J. L. Acero, E. Rodríguez, M. E. Majado, A. Sordo, and J. Meriluoto, “Oxidation of microcystin-LR with chlorine and permanganate during drinking water treatment,” Journal of Water Supply: Research and Technology - AQUA, vol. 57, no 6, pp. 371–380, 2008. [59] T. Hall, J. Hart, B. Croll, and R. Gregory, “Laboratory-scale investigations of algal toxin removal by water treatment,” Journal of the Chartered Institution of Water and Environmental Management, vol. 14, no 2, pp. 143–149, 2000. [60] B. C. Hitzfeld, S. J. Höger, and D.R. Dietrich, “Cyanobacterial toxins: Removal during drinking water treatment, and human risk assessment,” Environmental Health Perspectives, vol. 108, no 1, pp. 113–122, 2000.[61] V. K. Sharma, T. M. Triantis, M. G. Antoniou, X. He, M. Pelaez, C. Han, W. Song, K. E. O’She, A. A. de la Cruz, T. Kaloudis, A. Hiskia, and D. D. Dionysiou, “Destruction of microcystins by conventional and advanced oxidation processes: A review,” Separation and Purification Technology, vol. 91, pp. 3–17, 2012. [62] X. He, M. Pelaez, J. A. Westrick, K.E. O’Shea, A. Hiskia, T. Triantis, T. Kaloudis, M. I. Stefan, A. A. de la Cruz, and D. D. Dionysiou, “Efficient removal of microcystin-LR by UV-C/H2O2 in synthetic and natural water samples,” Water Research, vol. 46, no 5, pp. 1501–1510, 2012. [63] L. Li, N. Y. Gao, Y. Deng, J. J. Yao, K. J. Zhang, H. J. Li, D. D. Yin, H. S. Qu, and J. W. Guo, “Experimental and model comparisons of H2O2 assisted UV photodegradation of Microcystin-LR in simulated drinking water,” Journal of Zhejiang University: Science A, vol. 10, no 11, pp. 1660–1669, 2009. [64] R. P. Qiao, N. Li, X. H. Qi, Q. S. Wang, and Y. Y. Zhuang, “Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide,” Toxicon, vol. 45, no 6, pp. 745–752, 2005. [65] J. M. Loaiza-González, M. C. León-Salazar, A. Rubio-Clemente, D. C. Rodríguez, and G. A. Peñuela-Mesa, “Efficiency of the removal of microcystin-lr by uv-radiation and hydrogen peroxide,” Revista Facultad de Ingenieria, vol. 95, pp. 9–19, 2020.[1] T. Taylor, M. Krings, and E. Taylor, Fossil Fungi, USA, Academic Press, 2014. [2] T. Cavagnaro, F. Bender, H. Asghari, and M. Heijden, «The role of arbuscular mycorrhizas in reducing soil nutrient loss,» Trends Plant Sci, vol. 20, no 5, pp. 283-290, 2015. [3] D. Douds, D. Wilson, R. Seidel, and C. Ulsh, «A method to minimize the time needed for formation of mycorrhizas in sweet corn seedlings for outplanting using AM fungus inoculum produced on-farm,» Scientia Horticulturae, vol. 203, pp. 62-68, 2016. [4] S. Ferrazano, and P. Williamson, «Benefits of mycorrhizal inoculation in reintroduction of endangered plant species under drought conditions,» Journal of Arid Evironments, vol. 98, pp. 123-125, 2013. [5] J. Munroe, G. Soto, E. Virginio Filho, and M. Isaac, «Soil microbial and nutrient properties in the rhizosphere of coffee under agroforestry management,» Applied Soil Ecology, vol. 93, pp. 40-46, 2015. [6] S. Nadeem, M. Ahmad, Z. Zahir, A. Javaid, and M. Ashraf, «The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments,» Biotechnology Advances, vol. 32, no 2, pp. 429-448, 2014. [7] W. Osorio, Biología y fertilidad del suelo - manual para el estudio de propiedades físicas, químicas y biológicas de la fertilidad del suelo, Medellín, Universidad Nacional de Colombia, 2020.[8] Tecnológico de Antioquia - Institución Universitaria, Programa de uso eficiente y racional del agua (PUEYRA) del Tecnológico de Antioquia - Institución Universitaria, Medellín, 2019. [9] American Public Health Association (APHA), Standard Methods for the Examination of Water and Wastewater, Washington D. C., 21 th, 2012. [10] W. Cochran, «Estimation of Bacterial Densities by Means of the “Most Probable Number”,» Biometrics, vol. 6, no 2, pp. 105-116, 1950. [11] NTC 5842, Bioinsumos para uso agrícola. Inoculantes biológicos. Requisitos, Primera ed., 2018. [12] W. Porter, «The ‘most probable number’ method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil,» Australian Journal of Soil Research, vol. 17, no 3, pp. 515-519, 1979. [13] NTC 5167, Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas o acondicionadores de suelo, Bogotá, 2011. [14] International Seed Testing Association, Handbook og vigor test methods, Segunda ed., 1995. [15] P. Kormanik, W. Bryan, and R. Shultz, «Procedures and equipment for staining large numbers of plant root samples for endomycorrhizal assay,» Canadian Journal of Microbiology, vol. 26, no 4, pp. 536-538, 1980. [16] E. Sieverding, Manual de métodos para la investigación de la micorriza vesículo-arbuscular en el laboratorio, Cali, Colombia, Centro Internacional de Agricultura Tropical CIAT, 1993. [17] INVAM, International Culture Collection of (Vesicular) Arbuscular Mycorrhizal. The Fungi-Classification, 2020. [18] D. Trejo, I. Barois, and W. Sangabriel-Conde, «Disturbance and land use effect on functional diversity of the arbuscular mycorrhizal fungi,» Agroforestry Systems, vol. 90, no 2, pp. 265-279, 2016.[19] G. Bai, Y. Bao, G. Du, and Y. Qi, «Arbuscular mycorrhizal fungi associated with vegetation and soil parameters under rest grazing management in a desert steppe ecosystem,» Mycorrhiza, vol. 23, no 4, pp. 289-301, 2013. [20] H. Schnyder, F. Locher, and K. Auerswald, «Nutrient redistribution by grazing cattle drives patterns of topsoil N and P stocks in a low-input pasture ecosystem,» Nutr Cycl Agroecosyst, vol. 88, pp. 183-195, 2010. [21] R. Borie, R. Rubio, J. Rouanet, A. Morales, G. Borie, and C. Rojas, «Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol,» Soil and Tillage Research, vol. 88, no 1-2, pp. 253-261, 2006. [22] W. Yang, Y. Zheng, C. Gao, X. He, Q. Ding, Y. Kim, Y. Rui, S. Wang, and L. Guo, «The Arbuscular Mycorrhizal Fungal Community Response to Warming and Grazing Differs between Soil and Roots on the Qinghai-Tibetan Plateau,» PloS ONE, vol. 8, no 9, 2013. [23] N. Sivakumar, «Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields,» Ann Microbiol, vol. 63, no 1, pp. 151-160, 2013. [24] I. Louis, and G. Lim, «Spore density and root colonization of vesicular- arbuscular mycorrhizas in tropical soil,» Transactions of the British Mycological Society, vol. 88, no 2, pp. 207-212, 1987. [25] I. de la Provincia, M. Nadimi, D. Beaudet, G. Rodriguez, and M. Hijri, «Detection of a transient mitochondrial DNA heteroplasmy in the progeny of crossed genetically divergent isolates of arbuscular mycorrhizal fungi,» New Phytol, vol. 200, no 1, pp. 211-221, 2013. [26] K. Birhane, K. Aregawi, and K. Giday, «Changes in arbuscular mycorrhiza fungi spore density and root colonization of woody plants in response to exclosure age and slope position in the highlands of Tigray, Northern Ethiopia,» Journal of Arid Environments, vol. 142, pp. 1-10, 2017. [27] R. Blodgett, Appendix 2. Most Probable Number Determination from Serial Dilutions. FDA Bacteriological Analytical Manual, 2010.[28] W. Zangaro, L. Rostirola, P. de Souza, R. de Almeida Alves, L. Lescano, A. Rondina, M. Nogueira, and R. Carrenho, «Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil,» Mycorrhiza, vol. 23, no 3, pp. 221-233, 2013. [29] M. Cely, A. Oliveira, V. Freitas, M. Luca, A. Barazetti, I. Santos, B. Gionco, G. Garcia, C. Prete, and G. Andrade, «Inoculant of Arbuscular Mycorrhizal Fungi (Rhizophagus clarus) Increase Yield of Soybean and Cotton under Field Conditions,» Frontiers in Microbiology, vol. 7, 2016.[1] B. Janissen, and T. Huynh, “Chemical composition and value- adding applications of coffee industry by-products: A review,” Resources, Conservation and Recycling, vol. 128, pp. 110–117, 2017, doi: 10.1016/j.resconrec.2017.10.001. [2] F. G. Gemechu, “Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation,” Trends in Food Science and Technology, vol. 104, pp. 235–261, 2020, doi: https://doi.org/10.1016/j.tifs.2020.08.005. [3] N. S. M. Said, S. B. Kurniawan, S. R. S. Abdullah, H. A. Hasan, A. R. Othman, and N. ’Izzati Ismail, “Competence of Lepironia articulata in eradicating chemical oxygen demand and ammoniacal nitrogen in coffee processing mill effluent and its potential as green straw,” The Science of the Total Environment., vol. 799, p. 149315, 2021, doi: https://doi.org/10.1016/j.scitotenv.2021.149315. [4] A. J. A, V. M., T. selvi C., B. Ravindran, W. J. Chung, and S. W. Chang, “Treatment of coffee cherry pulping wastewater by using lectin protein isolated from Ricinus communis L. seed,” Journal of Water Process Engineering, vol. 39, p. 101742, 2021, doi: https://doi. org/10.1016/j.jwpe.2020.101742.[5] J. F. Pires, D. C. Viana, R. A. Braga JR, R. F. Schwan, and C. F. Silva, “Protocol to select efficient microorganisms to treat coffee wastewater,” Journal of Environmental Management, vol. 278, p. 111541, 2021, doi: https://doi.org/10.1016/j.jenvman.2020.111541. [6] D. P. de Carvalho Neto, G. Melo, A. M. Finco, L. Letti, B. J. da Silva, L. P. Vandenberghe, and C. R. Soccol, “Efficient coffee beans mucilage layer removal using lactic acid fermentation in a stirred- tank bioreactor: Kinetic, metabolic and sensorial studies,” Food Bioscience, vol. 26, pp. 80–87, 2018, doi: https://doi.org/10.1016/j. fbio.2018.10.005. [7] J. Ramírez, A; López, “Method for Obtaining Coffee Honey from the Pulp or Husks and The Mucilage of the Coffee Bean,” EP 2792245 B1, 2018. [8] G. V de Melo Pereira, A. da Silva Vale, D. P. de Carvalho Neto, E. S. M. Muynarsk, V. T. Soccol, and C. R. Soccol, “Lactic acid bacteria: what coffee industry should know?,” Current Opinion in Food Science, vol. 31, pp. 1–8, 2020, doi: https://doi.org/10.1016/j.cofs.2019.07.004. [9] J. Stadie, A. Gulitz, M. A. Ehrmann, and R. F. Vogel, “Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir,” Food Microbiology, vol. 35, n°. 2, pp. 92– 98, 2013, doi: 10.1016/j.fm.2013.03.009. [10] M. Verce, L. De Vuyst, and S. Weckx, “The metagenome-assembled genome of Candidatus Oenococcus aquikefiri from water kefir represents the species Oenococcus sicerae,” Food Microbiology, vol. 88, p. 103402, 2020, doi: https://doi.org/10.1016/j.fm.2019.103402. [11] L. Fels, F. Jakob, R. F. Vogel, and D. Wefers, “Structural characterization of the exopolysaccharides from water kefir,” Carbohydrate Polymers, vol. 189, pp. 296–303, 2018, doi: https://doi. org/10.1016/j.carbpol.2018.02.037.[12] C. A. Caro Vélez, and Á. M. León Pelaéz, “Fungal growth inhibi- tion of Aspergillus ochraceus with ‘Panela’ fermented with wa- ter kefir grains,” Vitae, vol. 21, n°. 3, pp. 191–200, 2014, [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_art- text&pid=S0121-40042014000300004&lang=pt. [13] S. R. Abbas, S. M. Sabir, S. D. Ahmad, A. A. Boligon, and M. L. Athayde, “Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum),” Food Chemestry, vol. 147, pp. 10–16, 2014, doi: https://doi.org/10.1016/j. foodchem.2013.09.113. [14] Z. Zhao, H. Yan, R. Zhen, M. Saeed, X. Fu, Z. Tao, and Z. Zhang, “Anthocyanins characterization and antioxidant activities of sugarcane (Saccharum officinarum L.) rind extracts,” Industrial Crops and Products, vol. 113, pp. 38–45, 2018, doi: https://doi. org/10.1016/j.indcrop.2018.01.015. [15] N. P. Rodrigues, B. Brochier, J. K. de Medeiros, L. D. F. Marczak, and G. D. Mercali, “Phenolic profile of sugarcane juice: Effects of harvest season and processing by ohmic heating and ultrasound,” Food Chemestry, vol. 347, p. 129058, 2021, doi: https://doi.org/10.1016/j. foodchem.2021.129058 [16] D. P. Herlemann, M. Labrenz, K. Jürgens, S. Bertilsson, J. J. Waniek, and A. F. Andersson, “Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea,” The ISME Journal, vol. 5, n°. 10, pp. 1571–1579, 2011, doi: 10.1038/ismej.2011.41. [17] P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. Oakley, D. H. Parks, C. J. Robinson, J. W. Sahl, B. Stres, G. G. Thallinger, D. J. van Horn, and C. F. Weber, “Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities,” Applied and Environmental. Microbiology, vol. 75, n°. 23, pp. 7537 LP – 7541, 2009, doi: 10.1128/AEM.01541-09.[18] V. Singleton, and J. Rossi, “Colorimetry of total phenolic with phosphomolybdic-phosphotungstic acid reagents,” American Journal of Enology Viticulture, vol. 16, pp. 144–158, 1965. [19] A. Gunenc, M. H. Yeung, C. Lavergne, J. Bertinato, and F. Hosseinian, “Enhancements of antioxidant activity and mineral solubility of germinated wrinkled lentils during fermentation in kefir,” Journal of Functional Foods, vol. 32, pp. 72–79, 2017, doi: https://doi. org/10.1016/j.jff.2017.02.016. [20] D. Xu, J. Bechtner, J. Behr, L. Eisenbach, A. J. Geißler, and R. F. Vogel, “Lifestyle of Lactobacillus hordei isolated from water kefir based on genomic, proteomic and physiological characterization,” International Journal Food Microbiology, vol. 290, pp. 141–149, 2019, doi: https://doi.org/10.1016/j.ijfoodmicro.2018.10.004. [21] C. García, M. Rendueles, and M. Díaz, “Liquid-phase food fermentations with microbial consortia involving lactic acid bacteria: A review,” Food Research International, vol. 119, pp. 207– 220, 2019, doi: https://doi.org/10.1016/j.foodres.2019.01.043. [22] A. J. Marsh, O. O’Sullivan, C. Hill, R. P. Ross, and P. D. Cotter, “Sequence-based analysis of the microbial composition of water kefir from multiple sources,” FEMS Microbiology Letters, vol. 348, n°. 1, pp. 79–85, 2013, doi: 10.1111/1574-6968.12248. [23] U. Nalbantoglu, A. Cakar, H. Dogan, N. Abaci, D. Ustek, K. Sayood, and H. Can, “Metagenomic analysis of the microbial community in kefir grains,” Food Microbiology, vol. 41, pp. 42–51, 2014, doi: 10.1016/j.fm.2014.01.014. [24] C. Tu, F. Azi, J. Huang, X. Xu, G. Xing, and M. Dong, “Quality and metagenomic evaluation of a novel functional beverage produced from soy whey using water kefir grains,” LWT, vol. 113, p. 108258, 2019, doi: https://doi.org/10.1016/j.lwt.2019.108258. [25] H. Wang, C. Wang, and M. Guo, “Autogenic successions of bacteria and fungi in kefir grains from different origins when sub-cultured in goat milk,” Food Research International, vol. 138, p. 109784, 2020, doi: https://doi.org/10.1016/j.foodres.2020.109784.[26] S. Chakraborty, S. Ganguli, A. Chowdhury, M. Ibba, and R. Banerjee, “Reversible inactivation of yeast mitochondrial phenylalanyl-tRNA synthetase under oxidative stress,” Biochimica Biophysica et Acta (BBA) - General Subjects., vol. 1862, n°. 8, pp. 1801–1809, 2018, doi: https://doi.org/10.1016/j.bbagen.2018.04.023. [27] A. de A. Câmara, P.-A. Maréchal, R. Tourdot-Maréchal, and F. Husson, “Oxidative stress resistance during dehydration of three non- Saccharomyces wine yeast strains,” Food Research International, vol. 123, pp. 364–372, 2019, doi: https://doi.org/10.1016/j. foodres.2019.04.059. [28] S. Pardo-Díaz, D. Rojas-Tapias, F. Roldan, P. Brandão, y E. Almansa- Manrique, “Biodegradación de fenol en aguas tratadas de la industria petrolera para re-uso en cultivos agrícolas,” Revista de Biología Tropical, vol. 65, n°. 2, pp. 685–699, Oct. 2017, [Online]. Available: https://www.redalyc.org/articulo.oa?id=44950834021. [29] D. Laureys, M. Aerts, P. Vandamme, and L. De Vuyst, “The Buffer Capacity and Calcium Concentration of Water Influence the Microbial Species Diversity, Grain Growth, and Metabolite Production During Water Kefir Fermentation.,” Frontiers in Microbiology, vol. 10, p. 2876, 2019, doi: 10.3389/fmicb.2019.02876. [30] Z. B. Guzel-Seydim, Ç. Gökırmaklı, and A. K. Greene, “A comparison of milk kefir and water kefir: Physical, chemical, microbiological and functional properties,” Trends in Food Science and Technology, vol. 113, pp. 42–53, 2021, doi: https://doi.org/10.1016/j.tifs.2021.04.041. [31] A. L. Ntsame Affane, G. P. Fox, G. O. Sigge, M. Manley, and T. J. Britz, “Simultaneous prediction of acidity parameters (pH and titratable acidity) in Kefir using near infrared reflectance spectroscopy,” International Dairy Journal, vol. 21, n°. 11, pp. 896–900, 2011, doi: https://doi.org/10.1016/j.idairyj.2011.04.016. [32] A. C. Villa Montoya, R. Mazareli, T. Delforno, V. B. Centrurion, V. de Oliveira, E. Silva, and M. Varesche, “Optimization of key factors affecting hydrogen production from coffee waste using factorial design and metagenomic analysis of the microbial community,” International Journal of Hydrogen Energy, vol. 45, n°. 7, pp. 4205– 4222, 2020, doi: https://doi.org/10.1016/j.ijhydene.2019.12.062.ORIGINALPrácticas y herramientas de sostenibilidad.pdfPrácticas y herramientas de sostenibilidad.pdfLibro completoapplication/pdf29189789https://dspace.tdea.edu.co/bitstream/tdea/1535/1/Pr%c3%a1cticas%20y%20herramientas%20de%20sostenibilidad.pdf8a45c801c912090d6ce364ddfc640efcMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/1535/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTEXTPrácticas y herramientas de sostenibilidad.pdf.txtPrácticas y herramientas de sostenibilidad.pdf.txtExtracted texttext/plain380384https://dspace.tdea.edu.co/bitstream/tdea/1535/3/Pr%c3%a1cticas%20y%20herramientas%20de%20sostenibilidad.pdf.txt3868394ed960968f576a475ccb3f8a06MD53open accessTHUMBNAILPrácticas y herramientas de sostenibilidad.pdf.jpgPrácticas y herramientas de sostenibilidad.pdf.jpgGenerated Thumbnailimage/jpeg11319https://dspace.tdea.edu.co/bitstream/tdea/1535/4/Pr%c3%a1cticas%20y%20herramientas%20de%20sostenibilidad.pdf.jpga175178d9b57a8c82683457b5b356389MD54open accesstdea/1535oai:dspace.tdea.edu.co:tdea/15352022-03-28 16:18:26.247open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |