APLICACIÓN DE MICROALGAS PARA LA DEPURACIÓN DE AGUAS RESIDUALES Y LA GENERACIÓN DE ENERGÍA SOSTENIBLE.

La utilización de microalgas para el tratamiento de aguas residuales y la generación de energía verde se presenta como una estrategia innovadora y sostenible en la gestión de recursos hídricos y energéticos. Las microalgas poseen una capacidad singular para llevar a cabo la biorremediación de aguas...

Full description

Autores:
Fonnegra Yepez, Daniela Isabel
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
spa
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/5734
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/5734
https://dspace.tdea.edu.co
Palabra clave:
agua residual
biocombustibles
biomasa
microalgas
Rights
openAccess
License
Tecnológico de Antioquia, Institución Universitaria, 2024
id RepoTdea2_22db1b7da952a1d87d8b506d88d0238d
oai_identifier_str oai:dspace.tdea.edu.co:tdea/5734
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv APLICACIÓN DE MICROALGAS PARA LA DEPURACIÓN DE AGUAS RESIDUALES Y LA GENERACIÓN DE ENERGÍA SOSTENIBLE.
dc.title.translated.none.fl_str_mv UTILIZATION OF MICROALGAE FOR WASTEWATER TREATMENT AND SUSTAINABLE ENERGY PRODUCTION
title APLICACIÓN DE MICROALGAS PARA LA DEPURACIÓN DE AGUAS RESIDUALES Y LA GENERACIÓN DE ENERGÍA SOSTENIBLE.
spellingShingle APLICACIÓN DE MICROALGAS PARA LA DEPURACIÓN DE AGUAS RESIDUALES Y LA GENERACIÓN DE ENERGÍA SOSTENIBLE.
agua residual
biocombustibles
biomasa
microalgas
title_short APLICACIÓN DE MICROALGAS PARA LA DEPURACIÓN DE AGUAS RESIDUALES Y LA GENERACIÓN DE ENERGÍA SOSTENIBLE.
title_full APLICACIÓN DE MICROALGAS PARA LA DEPURACIÓN DE AGUAS RESIDUALES Y LA GENERACIÓN DE ENERGÍA SOSTENIBLE.
title_fullStr APLICACIÓN DE MICROALGAS PARA LA DEPURACIÓN DE AGUAS RESIDUALES Y LA GENERACIÓN DE ENERGÍA SOSTENIBLE.
title_full_unstemmed APLICACIÓN DE MICROALGAS PARA LA DEPURACIÓN DE AGUAS RESIDUALES Y LA GENERACIÓN DE ENERGÍA SOSTENIBLE.
title_sort APLICACIÓN DE MICROALGAS PARA LA DEPURACIÓN DE AGUAS RESIDUALES Y LA GENERACIÓN DE ENERGÍA SOSTENIBLE.
dc.creator.fl_str_mv Fonnegra Yepez, Daniela Isabel
dc.contributor.advisor.none.fl_str_mv Trujillo-Vargas, Laura Marcela
García Ávila, Carolina
dc.contributor.author.none.fl_str_mv Fonnegra Yepez, Daniela Isabel
dc.contributor.researchgroup.spa.fl_str_mv GITIMA
dc.contributor.jury.none.fl_str_mv Franco Gaviria, Juan Felipe
Salcedo Hurtado, Kellys Nallith
dc.subject.proposal.none.fl_str_mv agua residual
biocombustibles
biomasa
microalgas
topic agua residual
biocombustibles
biomasa
microalgas
description La utilización de microalgas para el tratamiento de aguas residuales y la generación de energía verde se presenta como una estrategia innovadora y sostenible en la gestión de recursos hídricos y energéticos. Las microalgas poseen una capacidad singular para llevar a cabo la biorremediación de aguas residuales, absorbiendo nutrientes y contaminantes durante su crecimiento. Este proceso no solo mejora la calidad del agua, sino que también produce una biomasa rica en compuestos orgánicos valiosos. La biomasa de microalgas puede convertirse en varios tipos de biocombustibles, como biodiésel, biohidrógeno, biometano y bioetanol, mediante diversos procesos de conversión. Este enfoque no solo ayuda a reducir la contaminación del agua, sino que también proporciona una fuente renovable de energía, disminuyendo la dependencia de los combustibles fósiles y reduciendo las emisiones de gases de efecto invernadero. Este artículo de revisión explora el potencial de las microalgas en estos campos, utilizando la metodología de Búsqueda, Evaluación, Síntesis y Análisis. Se revisaron exhaustivamente 784 artículos, seleccionándose 110 como relevantes para la elaboración de este artículo. El objetivo principal fue investigar el potencial de las microalgas para la producción de energía verde a partir de la biomasa generada en el proceso de biorremediación de aguas residuales. En la revisión se examina la eficiencia de diversas especies de microalgas en la remediación de aguas contaminadas, así como la viabilidad y los rendimientos de los biocombustibles obtenidos de esta biomasa. Además, se discuten los desafíos operacionales y tecnológicos asociados con el cultivo de microalgas en sistemas de tratamiento de aguas residuales y las posibles soluciones para optimizar estos procesos.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-20T13:30:20Z
dc.date.available.none.fl_str_mv 2024-06-20T13:30:20Z
dc.date.issued.none.fl_str_mv 2024-06-05
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv APA
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/5734
dc.identifier.instname.spa.fl_str_mv Tecnológico de Antioquia Institución Universitaria
dc.identifier.reponame.spa.fl_str_mv Repositorio Digital TdeA
dc.identifier.repourl.spa.fl_str_mv https://dspace.tdea.edu.co
identifier_str_mv APA
Tecnológico de Antioquia Institución Universitaria
Repositorio Digital TdeA
url https://dspace.tdea.edu.co/handle/tdea/5734
https://dspace.tdea.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdelfattah, A., Ali, S. S., Ramadan, H., El-Aswar, E. I., Eltawab, R., Ho, S.-H., Elsamahy, T., Li, S., El-Sheekh, M. M., Schagerl, M., Kornaros, M., & Sun, J. (2023). Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environmental Science and Ecotechnology, 13, 100205. https://doi.org/10.1016/j.ese.2022.100205
Acién, F. G., Molina, E., Reis, A., Torzillo, G., Zittelli, G. C., Sepúlveda, C., & Masojídek, J. (2017). Photobioreactors for the production of microalgae. En Microalgae-Based Biofuels and Bioproducts (pp. 1-44). Elsevier. https://doi.org/10.1016/B978-0-08-101023-5.00001-7
Alam, Md. A., & Wang, Z. (Eds.). (2019). Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer Singapore. https://doi.org/10.1007/978-981-13-2264-8
Ali, S. S., El-Sheekh, M., Manni, A., Ruiz, H. A., Elsamahy, T., Sun, J., & Schagerl, M. (2022). Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiological Research, 265, 127187. https://doi.org/10.1016/j.micres.2022.127187
Ali, S. S., Mastropetros, S. G., Schagerl, M., Sakarika, M., Elsamahy, T., El-Sheekh, M., Sun, J., & Kornaros, M. (2022). Recent advances in wastewater microalgae-based biofuels production: A stateof-the-art review. Energy Reports, 8, 13253-13280. https://doi.org/10.1016/j.egyr.2022.09.143
Alobwede, E., Leake, J. R., & Pandhal, J. (2019). Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma, 334, 113-123. https://doi.org/10.1016/j.geoderma.2018.07.049
Anwar, M. N., Fayyaz, A., Sohail, N. F., Khokhar, M. F., Baqar, M., Yasar, A., Rasool, K., Nazir, A., Raja, M. U. F., Rehan, M., Aghbashlo, M., Tabatabaei, M., & Nizami, A. S. (2020). CO2 utilization: Turning greenhouse gas into fuels and valuable products. Journal of Environmental Management, 260, 110059. https://doi.org/10.1016/j.jenvman.2019.110059
Arora, N., & Philippidis, G. P. (2021). Insights into the physiology of Chlorella vulgaris cultivated in sweet sorghum bagasse hydrolysate for sustainable algal biomass and lipid production. Scientific Reports, 11(1), 6779. https://doi.org/10.1038/s41598-021-86372-2
Awasthi, M. K., Ganeshan, P., Gohil, N., Kumar, V., Singh, V., Rajendran, K., Harirchi, S., Solanki, M. K., Sindhu, R., Binod, P., Zhang, Z., & Taherzadeh, M. J. (2023). Advanced approaches for resource recovery from wastewater and activated sludge: A review. Bioresource Technology, 384, 129250. https://doi.org/10.1016/j.biortech.2023.129250
Bahadar, A., & Bilal Khan, M. (2013). Progress in energy from microalgae: A review. Renewable and Sustainable Energy Reviews, 27, 128-148. https://doi.org/10.1016/j.rser.2013.06.029
Behl, K., SeshaCharan, P., Joshi, M., Sharma, M., Mathur, A., Kareya, M. S., Jutur, P. P., Bhatnagar, A., & Nigam, S. (2020). Multifaceted applications of isolated microalgae Chlamydomonas sp. TRC1 in wastewater remediation, lipid production and bioelectricity generation. Bioresource Technology, 304, 122993. https://doi.org/10.1016/j.biortech.2020.122993
Benhima, R., El Arroussi, H., Kadmiri, I. M., El Mernissi, N., Wahby, I., Bennis, I., Smouni, A., & Bendaou, N. (2018). Nitrate Reductase Inhibition Induces Lipid Enhancement of Dunaliella Tertiolecta for Biodiesel Production. The Scientific World Journal, 2018, 1-8. https://doi.org/10.1155/2018/6834725
Bhatt, N. C., Panwar, A., Bisht, T. S., & Tamta, S. (2014). Coupling of Algal Biofuel Production with Wastewater. The Scientific World Journal, 2014, 1-10. https://doi.org/10.1155/2014/210504
Blifernez-Klassen, O., Chaudhari, S., Klassen, V., Wördenweber, R., Steffens, T., Cholewa, D., Niehaus, K., Kalinowski, J., & Kruse, O. (2018). Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation. PLOS ONE, 13(6), e0198976. https://doi.org/10.1371/journal.pone.0198976
Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557-577. https://doi.org/10.1016/j.rser.2009.10.009
Carvajal-Oses, M. D. M., Chacón-Guzmán, J., & Herrera-Ulloa, Á. (2018). Optimización en la producción de la microalga marina Nannochloropsis oculata en un fotobiorreactor tubular helicoidal. Revista Tecnología en Marcha, 31(2), 117. https://doi.org/10.18845/tm.v31i2.3629
Castro, Y. A., Ellis, J. T., Miller, C. D., & Sims, R. C. (2015). Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Applied Energy, 140, 14-19. https://doi.org/10.1016/j.apenergy.2014.11.045
Cheng, Y.-S., Zheng, Y., Labavitch, J. M., & VanderGheynst, J. S. (2013). Virus infection of Chlorella variabilis and enzymatic saccharification of algal biomass for bioethanol production. Bioresource Technology, 137, 326-331. https://doi.org/10.1016/j.biortech.2013.03.055
Chiu, S.-Y., Kao, C.-Y., Chen, T.-Y., Chang, Y.-B., Kuo, C.-M., & Lin, C.-S. (2015). Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology, 184, 179-189. https://doi.org/10.1016/j.biortech.2014.11.080
Choi, H.-J. (2016). Dairy wastewater treatment using microalgae for potential biodiesel application. Environmental Engineering Research, 21(4), 393-400. https://doi.org/10.4491/eer.2015.151
Constantino, A., Rodrigues, B., Leon, R., Barros, R., & Raposo, S. (2021). Alternative chemoenzymatic hydrolysis strategy applied to different microalgae species for bioethanol production. Algal Research, 56, 102329. https://doi.org/10.1016/j.algal.2021.102329
Deng, X.-Y., Gao, K., Addy, M., Li, D., Zhang, R.-C., Lu, Q., Ma, Y.-W., Cheng, Y.-L., Chen, P., Liu, Y.-H., & Ruan, R. (2018). Cultivation of Chlorella vulgaris on anaerobically digested swine manure with daily recycling of the post-harvest culture broth. Bioresource Technology, 247, 716-723. https://doi.org/10.1016/j.biortech.2017.09.171
Du, Y., Schuur, B., & Brilman, D. W. F. (2017). Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent. Industrial & Engineering Chemistry Research, 56(28), 8073-8080. https://doi.org/10.1021/acs.iecr.7b01032
Escapa, C., Coimbra, R. N., Paniagua, S., García, A. I., & Otero, M. (2015). Nutrients and pharmaceuticals removal from wastewater by culture and harvesting of Chlorella sorokiniana. Bioresource Technology, 185, 276-284. https://doi.org/10.1016/j.biortech.2015.03.004
Fal, S., Smouni, A., & Arroussi, H. E. (2023). Integrated microalgae-based biorefinery for wastewater treatment, industrial CO2 sequestration and microalgal biomass valorization: A circular bioeconomy approach. Environmental Advances, 12. Scopus. https://doi.org/10.1016/j.envadv.2023.100365
Fang, L., Sun, D., Xu, Z., He, J., Qi, S., Chen, X., Chew, W., & Liu, J. (2015). Transcriptomic analysis of a moderately growing subisolate Botryococcus braunii 779 (Chlorophyta) in response to nitrogen deprivation. Biotechnology for Biofuels, 8(1), 130. https://doi.org/10.1186/s13068-015-0307-y Fawzy, M. A., El-Otify, A. M., Adam, M. S., & Moustafa, S. S. A. (2021). The impact of abiotic factors on the growth and lipid accumulation of some green microalgae for sustainable biodiesel production. Environmental Science and Pollution Research, 28(31), 42547-42561. https://doi.org/10.1007/s11356-021-13781-1
Gao, B., Hong, J., Chen, J., Zhang, H., Hu, R., & Zhang, C. (2023). The growth, lipid accumulation and adaptation mechanism in response to variation of temperature and nitrogen supply in psychrotrophic filamentous microalga Xanthonema hormidioides (Xanthophyceae). Biotechnology for Biofuels and Bioproducts, 16(1). Scopus. https://doi.org/10.1186/s13068-022-02249-0
Gao, F., Li, C., Yang, Z.-H., Zeng, G.-M., Feng, L.-J., Liu, J., Liu, M., & Cai, H. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55-61. https://doi.org/10.1016/j.ecoleng.2016.03.046
George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., & Mishra, S. (2014). Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – A potential strain for bio-fuel production. Bioresource Technology, 171, 367-374. https://doi.org/10.1016/j.biortech.2014.08.086
He, Q., Yang, H., & Hu, C. (2015). Optimizing light regimes on growth and lipid accumulation in Ankistrodesmus fusiformis H1 for biodiesel production. Bioresource Technology, 198, 876-883. https://doi.org/10.1016/j.biortech.2015.09.085
Hena, S., Gutierrez, L., & Croué, J.-P. (2021). Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. Journal of Hazardous Materials, 403, 124041. https://doi.org/10.1016/j.jhazmat.2020.124041
Hwang, J.-H., Church, J., Lee, S.-J., Park, J., & Lee, W. H. (2016). Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation. Environmental Engineering Science, 33(11), 882-897. https://doi.org/10.1089/ees.2016.0132
Jimenez Escobedo, M., & Castillo Calderón, A. (2021). Microalgal biomass with high potential for the biofuels production. Scientia Agropecuaria, 12(2), 265-282. https://doi.org/10.17268/sci.agropecu.2021.030
Kato, Y., Ho, S.-H., Vavricka, C. J., Chang, J.-S., Hasunuma, T., & Kondo, A. (2017). Evolutionary engineering of salt-resistant Chlamydomonas sp. Strains reveals salinity stress-activated starch-to- lipid biosynthesis switching. Bioresource Technology, 245, 1484-1490. https://doi.org/10.1016/j.biortech.2017.06.035
Khan, S., Das, P., Abdul Quadir, M., Thaher, M. I., Mahata, C., Sayadi, S., & Al-Jabri, H. (2023). Microalgal Feedstock for Biofuel Production: Recent Advances, Challenges, and Future Perspective. Fermentation, 9(3), 281. https://doi.org/10.3390/fermentation9030281
Kiran, B., Pathak, K., Kumar, R., & Deshmukh, D. (2014). Cultivation of Chlorella sp. IM-01 in municipal wastewater for simultaneous nutrient removal and energy feedstock production. Ecological Engineering, 73, 326-330. https://doi.org/10.1016/j.ecoleng.2014.09.094
Koyande, A. K., Show, P.-L., Guo, R., Tang, B., Ogino, C., & Chang, J.-S. (2019). Bio-processing of algal bio-refinery: A review on current advances and future perspectives. Bioengineered, 10(1), 574-592. https://doi.org/10.1080/21655979.2019.1679697
Kumar, G., Huy, M., Bakonyi, P., Bélafi-Bakó, K., & Kim, S.-H. (2018). Evaluation of gradual adaptation of mixed microalgae consortia cultivation using textile wastewater via fed batch operation. Biotechnology Reports, 20, e00289. https://doi.org/10.1016/j.btre.2018.e00289
Kumar, V., Nanda, M., Kumar, S., & Chauhan, P. K. (2018). The effects of ultraviolet radiation on growth, biomass, lipid accumulation and biodiesel properties of microalgae. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(7), 787-793. https://doi.org/10.1080/15567036.2018.1463310
Lakshmikandan, M., Murugesan, A. G., Ameen, F., Maneeruttanarungroj, C., & Wang, S. (2023). Efficient bioflocculation and biodiesel production of microalgae Asterococcus limneticus on streptomyces two-stage co-cultivation strategy. Biomass and Bioenergy, 175. Scopus. https://doi.org/10.1016/j.biombioe.2023.106886
Li, G., Hu, R., Wang, N., Yang, T., Xu, F., Li, J., Wu, J., Huang, Z., Pan, M., & Lyu, T. (2022). Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment. Journal of Cleaner Production, 355, 131768. https://doi.org/10.1016/j.jclepro.2022.131768
Li, T., Gargouri, M., Feng, J., Park, J.-J., Gao, D., Miao, C., Dong, T., Gang, D. R., & Chen, S. (2015). Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresource Technology, 180, 250-257. https://doi.org/10.1016/j.biortech.2015.01.005
Liang, M.-H., Xue, L.-L., & Jiang, J.-G. (2019). Two-Stage Cultivation of Dunaliella tertiolecta with Glycerol and Triethylamine for Lipid Accumulation: A Viable Way To Alleviate the Inhibitory Effect of Triethylamine on Biomass. Applied and Environmental Microbiology, 85(4), e02614-18. https://doi.org/10.1128/AEM.02614-18
Liu, B., & Benning, C. (2013). Lipid metabolism in microalgae distinguishes itself. Current Opinion in Biotechnology, 24(2), 300-309. https://doi.org/10.1016/j.copbio.2012.08.008
Malekghasemi, S., Kariminia, H.-R., Plechkova, N. K., & Ward, V. C. A. (2021). Direct transesterification of wet microalgae to biodiesel using phosphonium carboxylate ionic liquid catalysts. Biomass and Bioenergy, 150, 106126. https://doi.org/10.1016/j.biombioe.2021.106126
Mao, X., Wu, T., Sun, D., Zhang, Z., & Chen, F. (2018). Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresource Technology, 249, 791-798. https://doi.org/10.1016/j.biortech.2017.10.090
Mar, C. C., Fan, Y., Li, F.-L., & Hu, G.-R. (2016). Bioremediation of wastewater from edible oil refinery factory using oleaginous microalga Desmodesmus sp. S1. International Journal of Phytoremediation, 18(12), 1195-1201. https://doi.org/10.1080/15226514.2016.1193466
Mata, T. M., Martins, A. A., & Caetano, Nidia. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020
Matich, E. K., Butryn, D. M., Ghafari, M., Del Solar, V., Camgoz, E., Pfeifer, B. A., Aga, D. S., Haznedaroglu, B. Z., & Atilla-Gokcumen, G. E. (2016). Mass spectrometry-based metabolomics of value-added biochemicals from Ettlia oleoabundans. Algal Research, 19, 146-154. https://doi.org/10.1016/j.algal.2016.08.009
Mehariya, S., Goswami, R. K., Verma, P., Lavecchia, R., & Zuorro, A. (2021). Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies, 14(8), 2282. https://doi.org/10.3390/en14082282
Mengist, W., Soromessa, T., & Legese, G. (2020). Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Science of The Total Environment, 702, 134581. https://doi.org/10.1016/j.scitotenv.2019.134581
Moheimani, N. R., McHenry, M. P., De Boer, K., & Bahri, P. A. (Eds.). (2015). Biomass and Biofuels from Microalgae: Advances in Engineering and Biology (Vol. 2). Springer International Publishing. https://doi.org/10.1007/978-3-319-16640-7
Moshood, T. D., Nawanir, G., & Mahmud, F. (2021). Microalgae biofuels production: A systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environmental Challenges, 5, 100207. https://doi.org/10.1016/j.envc.2021.100207
Mountourakis, F., Papazi, A., & Kotzabasis, K. (2021). The Microalga Chlorella vulgaris as a Natural Bioenergetic System for Effective CO2 Mitigation—New Perspectives against Global Warming. Symmetry, 13(6), 997. https://doi.org/10.3390/sym13060997
Naciones Unidas. (2015). La Agenda 2030 y Objetivo De Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/
Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D., Pereira, S. A., Druzian, J. I., De Souza, C. O., Vich, D. V., De Carvalho, G. C., & Nascimento, M. A. (2013). Screening Microalgae Strains for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria. BioEnergy Research, 6(1), 1-13. https://doi.org/10.1007/s12155-012- 9222-2
Nautiyal, P., Subramanian, K. A., & Dastidar, M. G. (2014). Production and characterization of biodiesel from algae. Fuel Processing Technology, 120, 79-88. https://doi.org/10.1016/j.fuproc.2013.12.003
Ndikubwimana, T., Zeng, X., Murwanashyaka, T., Manirafasha, E., He, N., Shao, W., & Lu, Y. (2016). Harvesting of freshwater microalgae with microbial bioflocculant: A pilot-scale study. Biotechnology for Biofuels, 9(1), 47. https://doi.org/10.1186/s13068-016-0458-5
Nzayisenga, J. C., Farge, X., Groll, S. L., & Sellstedt, A. (2020). Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels, 13(1), 4. https://doi.org/10.1186/s13068-019-1646-x
OMS. (2018). Progresos en el tratamiento y el uso de las aguas residuals de manera adecuada: Prueba piloto de la metodología de monitoreo y primeras constataciones sobre el indicador 6.3.1 de los ODS. Organización Mundial de la Salud. https://iris.who.int/handle/10665/275972
Pang, N., Fu, X., Fernandez, J. S. M., & Chen, S. (2019). Multilevel heuristic LED regime for stimulating lipid and bioproducts biosynthesis in Haematococcus pluvialis under mixotrophic conditions. Bioresource Technology, 288, 121525. https://doi.org/10.1016/j.biortech.2019.121525
Rafa, N., Ahmed, S. F., Badruddin, I. A., Mofijur, M., & Kamangar, S. (2021). Strategies to Produce Cost-Effective Third-Generation Biofuel From Microalgae. Frontiers in Energy Research, 9, 749968. https://doi.org/10.3389/fenrg.2021.749968
Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & De Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Reviews, 27, 622-653. https://doi.org/10.1016/j.rser.2013.05.063
Reddy, H. K., Muppaneni, T., Patil, P. D., Ponnusamy, S., Cooke, P., Schaub, T., & Deng, S. (2014). Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel, 115, 720-726. https://doi.org/10.1016/j.fuel.2013.07.090
Ren, X., Zhao, X., Turcotte, F., Deschênes, J.-S., Tremblay, R., & Jolicoeur, M. (2017). Current lipid extraction methods are significantly enhanced adding a water treatment step in Chlorella protothecoides. Microbial Cell Factories, 16(1), 26. https://doi.org/10.1186/s12934-017-0633-9
REN21. (2023). Informe de situación global de energías renovables (p. 49). REN21. https://www.ren21.net/reports/global-status-report/
Richmond, A. (Ed.). (2003). Handbook of Microalgal Culture: Biotechnology and Applied Phycology (1.a ed.). Wiley. https://doi.org/10.1002/9780470995280
Sabeela Beevi, U., & Sukumaran, R. K. (2015). Cultivation of the fresh water microalga Chlorococcum sp. RAP13 in sea water for producing oil suitable for biodiesel. Journal of Applied Phycology, 27(1), 141-147. https://doi.org/10.1007/s10811-014-0340-4
Sajjadi, B., Chen, W.-Y., Raman, Abdul. Aziz. A., & Ibrahim, S. (2018). Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renewable and Sustainable Energy Reviews, 97, 200-232. https://doi.org/10.1016/j.rser.2018.07.050
Saliu, F., Magoni, C., Torelli, A., Cozza, R., Lasagni, M., & Labra, M. (2021). Omega-3 rich oils from microalgae: A chitosan mediated in situ transesterification method. Food Chemistry, 337, 127745. https://doi.org/10.1016/j.foodchem.2020.127745
Shiels, K., Tsoupras, A., Lordan, R., Nasopoulou, C., Zabetakis, I., Murray, P., & Saha, S. K. (2021). Bioactive Lipids of Marine Microalga Chlorococcum sp. SABC 012504 with Anti-Inflammatory and Anti-Thrombotic Activities. Marine Drugs, 19(1), 28. https://doi.org/10.3390/md19010028
Shuba, E. S., & Kifle, D. (2018). Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review. Renewable and Sustainable Energy Reviews, 81, 743-755. https://doi.org/10.1016/j.rser.2017.08.042
Song, Y., Wang, L., Qiang, X., Gu, W., Ma, Z., & Wang, G. (2022). The promising way to treat wastewater by microalgae: Approaches, mechanisms, applications and challenges. Journal of Water Process Engineering, 49, 103012. https://doi.org/10.1016/j.jwpe.2022.103012
Srimongkol, P., Sangtanoo, P., Songserm, P., Watsuntorn, W., & Karnchanatat, A. (2022). Microalgae-based wastewater treatment for developing economic and environmental sustainability: Current status and future prospects. Frontiers in Bioengineering and Biotechnology, 10, 904046. https://doi.org/10.3389/fbioe.2022.904046
Suparmaniam, U., Lam, M. K., Uemura, Y., Lim, J. W., Lee, K. T., & Shuit, S. H. (2019). Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renewable and Sustainable Energy Reviews, 115, 109361. https://doi.org/10.1016/j.rser.2019.109361
Talebi, A. F., Tohidfar, M., Mousavi Derazmahalleh, S. M., Sulaiman, A., Baharuddin, A. S., & Tabatabaei, M. (2015). Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. For Biodiesel Production. BioMed Research International, 2015, 1-12. https://doi.org/10.1155/2015/597198
Torres, S., Acien, G., García-Cuadra, F., & Navia, R. (2017). Direct transesterification of microalgae biomass and biodiesel refining with vacuum distillation. Algal Research, 28, 30-38. https://doi.org/10.1016/j.algal.2017.10.001
UNESCO. (2017). Informe Mundial sobre el desarrollo de los recursos hídricos de las Naciones Unidas 2017: Las aguas residuales: El recurso desaprovechado, cifras y datos (p. 12). UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000247553_spa
Valdovinos-García, E. M., Petriz-Prieto, M. A., Olán-Acosta, M. D. L. Á., Barajas-Fernández, J., Guzmán-López, A., & Bravo-Sánchez, M. G. (2021). Production of Microalgal Biomass in Photobioreactors as Feedstock for Bioenergy and Other Uses: A Techno-Economic Study of Harvesting Stage. Applied Sciences, 11(10), 4386. https://doi.org/10.3390/app11104386
Wang, M., Liu, H., Qiao, K., Ye, X., Takano, T., Liu, S., & Bu, Y. (2021). Exogenous NaHCO3 enhances growth and lipid accumulation of the highly NaHCO3-tolerant Nannochloris sp. JB17. Journal of Applied Phycology, 33(1), 241-253. https://doi.org/10.1007/s10811-020-02293-z
Wang, X., Wei, H., Mao, X., & Liu, J. (2019). Proteomics Analysis of Lipid Droplets from the Oleaginous Alga Chromochloris zofingiensis Reveals Novel Proteins for Lipid Metabolism. Genomics, Proteomics & Bioinformatics, 17(3), 260-272. https://doi.org/10.1016/j.gpb.2019.01.003
Whitton, R., Le Mével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371-378. https://doi.org/10.1016/j.watres.2015.12.054
Yu, H., Kim, J., & Lee, C. (2019). Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Scientific Reports, 9(1), 6123. https://doi.org/10.1038/s41598-019-42521-2
Yun, C.-J., Hwang, K.-O., Han, S.-S., & Ri, H.-G. (2019). The effect of salinity stress on the biofuel production potential of freshwater microalgae Chlorella vulgaris YH703. Biomass and Bioenergy, 127, 105277. https://doi.org/10.1016/j.biombioe.2019.105277
Zamalloa, C., Boon, N., & Verstraete, W. (2013). Decentralized two-stage sewage treatment by chemical–biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresource Technology, 130, 152-160. https://doi.org/10.1016/j.biortech.2012.11.128
Zhang, S., Zhang, L., Xu, G., Li, F., & Li, X. (2022). A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies. Frontiers in Microbiology, 13, 970028. https://doi.org/10.3389/fmicb.2022.970028
Zhao, K., Li, Y., Yan, H., Hu, Q., & Han, D. (2022). Regulation of Light Spectra on Cell Division of the Unicellular Green Alga Haematococcus pluvialis: Insights from Physiological and Lipidomic Analysis. Cells, 11(12), 1956. https://doi.org/10.3390/cells11121956
Zhou, G.-J., Ying, G.-G., Liu, S., Zhou, L.-J., Chen, Z.-F., & Peng, F.-Q. (2014). Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environmental Science: Processes & Impacts, 16(8), 2018. https://doi.org/10.1039/C4EM00094C
Zou, Y., Zeng, Q., Li, H., Liu, H., & Lu, Q. (2021). Emerging technologies of algae‐based wastewater remediation for bio‐fertilizer production: A promising pathway to sustainable agriculture. Journal of Chemical Technology & Biotechnology, 96(3), 551-563. https://doi.org/10.1002/jctb.6602
dc.rights.none.fl_str_mv Tecnológico de Antioquia, Institución Universitaria, 2024
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Tecnológico de Antioquia, Institución Universitaria, 2024
https://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Tecnológico de Antioquia, Institución Universitaria
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.program.spa.fl_str_mv Ingenieria Ambiental
dc.publisher.place.spa.fl_str_mv Medellín
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/5734/10/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/5734/6/ENTREGABLE%20BIBLIOTECA.pdf
https://dspace.tdea.edu.co/bitstream/tdea/5734/11/ENTREGABLE%20BIBLIOTECA.pdf.txt
https://dspace.tdea.edu.co/bitstream/tdea/5734/12/ENTREGABLE%20BIBLIOTECA.pdf.jpg
bitstream.checksum.fl_str_mv 2f9959eaf5b71fae44bbf9ec84150c7a
f4202bcf4e35940982cf91afcdfb2df7
5921d69880f432104c7774fcd05f4f92
a0c5ae7720e41fa324dd9932e45af7a7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808408467441975296
spelling Trujillo-Vargas, Laura Marcela54215928-6b9f-44c7-8b91-e0342467f03eGarcía Ávila, Carolina28bc008c-65b7-427c-b27c-90a062372b36Fonnegra Yepez, Daniela Isabel56116489-77ac-42a4-ba9c-ddad8d7e2413GITIMAFranco Gaviria, Juan FelipeSalcedo Hurtado, Kellys Nallith2024-06-20T13:30:20Z2024-06-20T13:30:20Z2024-06-05APAhttps://dspace.tdea.edu.co/handle/tdea/5734Tecnológico de Antioquia Institución UniversitariaRepositorio Digital TdeAhttps://dspace.tdea.edu.coLa utilización de microalgas para el tratamiento de aguas residuales y la generación de energía verde se presenta como una estrategia innovadora y sostenible en la gestión de recursos hídricos y energéticos. Las microalgas poseen una capacidad singular para llevar a cabo la biorremediación de aguas residuales, absorbiendo nutrientes y contaminantes durante su crecimiento. Este proceso no solo mejora la calidad del agua, sino que también produce una biomasa rica en compuestos orgánicos valiosos. La biomasa de microalgas puede convertirse en varios tipos de biocombustibles, como biodiésel, biohidrógeno, biometano y bioetanol, mediante diversos procesos de conversión. Este enfoque no solo ayuda a reducir la contaminación del agua, sino que también proporciona una fuente renovable de energía, disminuyendo la dependencia de los combustibles fósiles y reduciendo las emisiones de gases de efecto invernadero. Este artículo de revisión explora el potencial de las microalgas en estos campos, utilizando la metodología de Búsqueda, Evaluación, Síntesis y Análisis. Se revisaron exhaustivamente 784 artículos, seleccionándose 110 como relevantes para la elaboración de este artículo. El objetivo principal fue investigar el potencial de las microalgas para la producción de energía verde a partir de la biomasa generada en el proceso de biorremediación de aguas residuales. En la revisión se examina la eficiencia de diversas especies de microalgas en la remediación de aguas contaminadas, así como la viabilidad y los rendimientos de los biocombustibles obtenidos de esta biomasa. Además, se discuten los desafíos operacionales y tecnológicos asociados con el cultivo de microalgas en sistemas de tratamiento de aguas residuales y las posibles soluciones para optimizar estos procesos.CODEI, Tecnológico de Antioquia, IUPregradoIngeniero(a) AmbientalConvocatoria interna de proyectos de Investigación.Sistemas aplicados a la Gestión Ambiental y sostenible15 páginasapplication/pdfspaTecnológico de Antioquia, Institución UniversitariaFacultad de IngenieríaIngenieria AmbientalMedellínTecnológico de Antioquia, Institución Universitaria, 2024https://creativecommons.org/licenses/by-nc/4.0/Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2APLICACIÓN DE MICROALGAS PARA LA DEPURACIÓN DE AGUAS RESIDUALES Y LA GENERACIÓN DE ENERGÍA SOSTENIBLE.UTILIZATION OF MICROALGAE FOR WASTEWATER TREATMENT AND SUSTAINABLE ENERGY PRODUCTIONTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAbdelfattah, A., Ali, S. S., Ramadan, H., El-Aswar, E. I., Eltawab, R., Ho, S.-H., Elsamahy, T., Li, S., El-Sheekh, M. M., Schagerl, M., Kornaros, M., & Sun, J. (2023). Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environmental Science and Ecotechnology, 13, 100205. https://doi.org/10.1016/j.ese.2022.100205Acién, F. G., Molina, E., Reis, A., Torzillo, G., Zittelli, G. C., Sepúlveda, C., & Masojídek, J. (2017). Photobioreactors for the production of microalgae. En Microalgae-Based Biofuels and Bioproducts (pp. 1-44). Elsevier. https://doi.org/10.1016/B978-0-08-101023-5.00001-7Alam, Md. A., & Wang, Z. (Eds.). (2019). Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment. Springer Singapore. https://doi.org/10.1007/978-981-13-2264-8Ali, S. S., El-Sheekh, M., Manni, A., Ruiz, H. A., Elsamahy, T., Sun, J., & Schagerl, M. (2022). Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiological Research, 265, 127187. https://doi.org/10.1016/j.micres.2022.127187Ali, S. S., Mastropetros, S. G., Schagerl, M., Sakarika, M., Elsamahy, T., El-Sheekh, M., Sun, J., & Kornaros, M. (2022). Recent advances in wastewater microalgae-based biofuels production: A stateof-the-art review. Energy Reports, 8, 13253-13280. https://doi.org/10.1016/j.egyr.2022.09.143Alobwede, E., Leake, J. R., & Pandhal, J. (2019). Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma, 334, 113-123. https://doi.org/10.1016/j.geoderma.2018.07.049Anwar, M. N., Fayyaz, A., Sohail, N. F., Khokhar, M. F., Baqar, M., Yasar, A., Rasool, K., Nazir, A., Raja, M. U. F., Rehan, M., Aghbashlo, M., Tabatabaei, M., & Nizami, A. S. (2020). CO2 utilization: Turning greenhouse gas into fuels and valuable products. Journal of Environmental Management, 260, 110059. https://doi.org/10.1016/j.jenvman.2019.110059Arora, N., & Philippidis, G. P. (2021). Insights into the physiology of Chlorella vulgaris cultivated in sweet sorghum bagasse hydrolysate for sustainable algal biomass and lipid production. Scientific Reports, 11(1), 6779. https://doi.org/10.1038/s41598-021-86372-2Awasthi, M. K., Ganeshan, P., Gohil, N., Kumar, V., Singh, V., Rajendran, K., Harirchi, S., Solanki, M. K., Sindhu, R., Binod, P., Zhang, Z., & Taherzadeh, M. J. (2023). Advanced approaches for resource recovery from wastewater and activated sludge: A review. Bioresource Technology, 384, 129250. https://doi.org/10.1016/j.biortech.2023.129250Bahadar, A., & Bilal Khan, M. (2013). Progress in energy from microalgae: A review. Renewable and Sustainable Energy Reviews, 27, 128-148. https://doi.org/10.1016/j.rser.2013.06.029Behl, K., SeshaCharan, P., Joshi, M., Sharma, M., Mathur, A., Kareya, M. S., Jutur, P. P., Bhatnagar, A., & Nigam, S. (2020). Multifaceted applications of isolated microalgae Chlamydomonas sp. TRC1 in wastewater remediation, lipid production and bioelectricity generation. Bioresource Technology, 304, 122993. https://doi.org/10.1016/j.biortech.2020.122993Benhima, R., El Arroussi, H., Kadmiri, I. M., El Mernissi, N., Wahby, I., Bennis, I., Smouni, A., & Bendaou, N. (2018). Nitrate Reductase Inhibition Induces Lipid Enhancement of Dunaliella Tertiolecta for Biodiesel Production. The Scientific World Journal, 2018, 1-8. https://doi.org/10.1155/2018/6834725Bhatt, N. C., Panwar, A., Bisht, T. S., & Tamta, S. (2014). Coupling of Algal Biofuel Production with Wastewater. The Scientific World Journal, 2014, 1-10. https://doi.org/10.1155/2014/210504Blifernez-Klassen, O., Chaudhari, S., Klassen, V., Wördenweber, R., Steffens, T., Cholewa, D., Niehaus, K., Kalinowski, J., & Kruse, O. (2018). Metabolic survey of Botryococcus braunii: Impact of the physiological state on product formation. PLOS ONE, 13(6), e0198976. https://doi.org/10.1371/journal.pone.0198976Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557-577. https://doi.org/10.1016/j.rser.2009.10.009Carvajal-Oses, M. D. M., Chacón-Guzmán, J., & Herrera-Ulloa, Á. (2018). Optimización en la producción de la microalga marina Nannochloropsis oculata en un fotobiorreactor tubular helicoidal. Revista Tecnología en Marcha, 31(2), 117. https://doi.org/10.18845/tm.v31i2.3629Castro, Y. A., Ellis, J. T., Miller, C. D., & Sims, R. C. (2015). Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Applied Energy, 140, 14-19. https://doi.org/10.1016/j.apenergy.2014.11.045Cheng, Y.-S., Zheng, Y., Labavitch, J. M., & VanderGheynst, J. S. (2013). Virus infection of Chlorella variabilis and enzymatic saccharification of algal biomass for bioethanol production. Bioresource Technology, 137, 326-331. https://doi.org/10.1016/j.biortech.2013.03.055Chiu, S.-Y., Kao, C.-Y., Chen, T.-Y., Chang, Y.-B., Kuo, C.-M., & Lin, C.-S. (2015). Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology, 184, 179-189. https://doi.org/10.1016/j.biortech.2014.11.080Choi, H.-J. (2016). Dairy wastewater treatment using microalgae for potential biodiesel application. Environmental Engineering Research, 21(4), 393-400. https://doi.org/10.4491/eer.2015.151Constantino, A., Rodrigues, B., Leon, R., Barros, R., & Raposo, S. (2021). Alternative chemoenzymatic hydrolysis strategy applied to different microalgae species for bioethanol production. Algal Research, 56, 102329. https://doi.org/10.1016/j.algal.2021.102329Deng, X.-Y., Gao, K., Addy, M., Li, D., Zhang, R.-C., Lu, Q., Ma, Y.-W., Cheng, Y.-L., Chen, P., Liu, Y.-H., & Ruan, R. (2018). Cultivation of Chlorella vulgaris on anaerobically digested swine manure with daily recycling of the post-harvest culture broth. Bioresource Technology, 247, 716-723. https://doi.org/10.1016/j.biortech.2017.09.171Du, Y., Schuur, B., & Brilman, D. W. F. (2017). Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent. Industrial & Engineering Chemistry Research, 56(28), 8073-8080. https://doi.org/10.1021/acs.iecr.7b01032Escapa, C., Coimbra, R. N., Paniagua, S., García, A. I., & Otero, M. (2015). Nutrients and pharmaceuticals removal from wastewater by culture and harvesting of Chlorella sorokiniana. Bioresource Technology, 185, 276-284. https://doi.org/10.1016/j.biortech.2015.03.004Fal, S., Smouni, A., & Arroussi, H. E. (2023). Integrated microalgae-based biorefinery for wastewater treatment, industrial CO2 sequestration and microalgal biomass valorization: A circular bioeconomy approach. Environmental Advances, 12. Scopus. https://doi.org/10.1016/j.envadv.2023.100365Fang, L., Sun, D., Xu, Z., He, J., Qi, S., Chen, X., Chew, W., & Liu, J. (2015). Transcriptomic analysis of a moderately growing subisolate Botryococcus braunii 779 (Chlorophyta) in response to nitrogen deprivation. Biotechnology for Biofuels, 8(1), 130. https://doi.org/10.1186/s13068-015-0307-y Fawzy, M. A., El-Otify, A. M., Adam, M. S., & Moustafa, S. S. A. (2021). The impact of abiotic factors on the growth and lipid accumulation of some green microalgae for sustainable biodiesel production. Environmental Science and Pollution Research, 28(31), 42547-42561. https://doi.org/10.1007/s11356-021-13781-1Gao, B., Hong, J., Chen, J., Zhang, H., Hu, R., & Zhang, C. (2023). The growth, lipid accumulation and adaptation mechanism in response to variation of temperature and nitrogen supply in psychrotrophic filamentous microalga Xanthonema hormidioides (Xanthophyceae). Biotechnology for Biofuels and Bioproducts, 16(1). Scopus. https://doi.org/10.1186/s13068-022-02249-0Gao, F., Li, C., Yang, Z.-H., Zeng, G.-M., Feng, L.-J., Liu, J., Liu, M., & Cai, H. (2016). Continuous microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass production and nutrients removal. Ecological Engineering, 92, 55-61. https://doi.org/10.1016/j.ecoleng.2016.03.046George, B., Pancha, I., Desai, C., Chokshi, K., Paliwal, C., Ghosh, T., & Mishra, S. (2014). Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus – A potential strain for bio-fuel production. Bioresource Technology, 171, 367-374. https://doi.org/10.1016/j.biortech.2014.08.086He, Q., Yang, H., & Hu, C. (2015). Optimizing light regimes on growth and lipid accumulation in Ankistrodesmus fusiformis H1 for biodiesel production. Bioresource Technology, 198, 876-883. https://doi.org/10.1016/j.biortech.2015.09.085Hena, S., Gutierrez, L., & Croué, J.-P. (2021). Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. Journal of Hazardous Materials, 403, 124041. https://doi.org/10.1016/j.jhazmat.2020.124041Hwang, J.-H., Church, J., Lee, S.-J., Park, J., & Lee, W. H. (2016). Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation. Environmental Engineering Science, 33(11), 882-897. https://doi.org/10.1089/ees.2016.0132Jimenez Escobedo, M., & Castillo Calderón, A. (2021). Microalgal biomass with high potential for the biofuels production. Scientia Agropecuaria, 12(2), 265-282. https://doi.org/10.17268/sci.agropecu.2021.030Kato, Y., Ho, S.-H., Vavricka, C. J., Chang, J.-S., Hasunuma, T., & Kondo, A. (2017). Evolutionary engineering of salt-resistant Chlamydomonas sp. Strains reveals salinity stress-activated starch-to- lipid biosynthesis switching. Bioresource Technology, 245, 1484-1490. https://doi.org/10.1016/j.biortech.2017.06.035Khan, S., Das, P., Abdul Quadir, M., Thaher, M. I., Mahata, C., Sayadi, S., & Al-Jabri, H. (2023). Microalgal Feedstock for Biofuel Production: Recent Advances, Challenges, and Future Perspective. Fermentation, 9(3), 281. https://doi.org/10.3390/fermentation9030281Kiran, B., Pathak, K., Kumar, R., & Deshmukh, D. (2014). Cultivation of Chlorella sp. IM-01 in municipal wastewater for simultaneous nutrient removal and energy feedstock production. Ecological Engineering, 73, 326-330. https://doi.org/10.1016/j.ecoleng.2014.09.094Koyande, A. K., Show, P.-L., Guo, R., Tang, B., Ogino, C., & Chang, J.-S. (2019). Bio-processing of algal bio-refinery: A review on current advances and future perspectives. Bioengineered, 10(1), 574-592. https://doi.org/10.1080/21655979.2019.1679697Kumar, G., Huy, M., Bakonyi, P., Bélafi-Bakó, K., & Kim, S.-H. (2018). Evaluation of gradual adaptation of mixed microalgae consortia cultivation using textile wastewater via fed batch operation. Biotechnology Reports, 20, e00289. https://doi.org/10.1016/j.btre.2018.e00289Kumar, V., Nanda, M., Kumar, S., & Chauhan, P. K. (2018). The effects of ultraviolet radiation on growth, biomass, lipid accumulation and biodiesel properties of microalgae. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(7), 787-793. https://doi.org/10.1080/15567036.2018.1463310Lakshmikandan, M., Murugesan, A. G., Ameen, F., Maneeruttanarungroj, C., & Wang, S. (2023). Efficient bioflocculation and biodiesel production of microalgae Asterococcus limneticus on streptomyces two-stage co-cultivation strategy. Biomass and Bioenergy, 175. Scopus. https://doi.org/10.1016/j.biombioe.2023.106886Li, G., Hu, R., Wang, N., Yang, T., Xu, F., Li, J., Wu, J., Huang, Z., Pan, M., & Lyu, T. (2022). Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment. Journal of Cleaner Production, 355, 131768. https://doi.org/10.1016/j.jclepro.2022.131768Li, T., Gargouri, M., Feng, J., Park, J.-J., Gao, D., Miao, C., Dong, T., Gang, D. R., & Chen, S. (2015). Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresource Technology, 180, 250-257. https://doi.org/10.1016/j.biortech.2015.01.005Liang, M.-H., Xue, L.-L., & Jiang, J.-G. (2019). Two-Stage Cultivation of Dunaliella tertiolecta with Glycerol and Triethylamine for Lipid Accumulation: A Viable Way To Alleviate the Inhibitory Effect of Triethylamine on Biomass. Applied and Environmental Microbiology, 85(4), e02614-18. https://doi.org/10.1128/AEM.02614-18Liu, B., & Benning, C. (2013). Lipid metabolism in microalgae distinguishes itself. Current Opinion in Biotechnology, 24(2), 300-309. https://doi.org/10.1016/j.copbio.2012.08.008Malekghasemi, S., Kariminia, H.-R., Plechkova, N. K., & Ward, V. C. A. (2021). Direct transesterification of wet microalgae to biodiesel using phosphonium carboxylate ionic liquid catalysts. Biomass and Bioenergy, 150, 106126. https://doi.org/10.1016/j.biombioe.2021.106126Mao, X., Wu, T., Sun, D., Zhang, Z., & Chen, F. (2018). Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresource Technology, 249, 791-798. https://doi.org/10.1016/j.biortech.2017.10.090Mar, C. C., Fan, Y., Li, F.-L., & Hu, G.-R. (2016). Bioremediation of wastewater from edible oil refinery factory using oleaginous microalga Desmodesmus sp. S1. International Journal of Phytoremediation, 18(12), 1195-1201. https://doi.org/10.1080/15226514.2016.1193466Mata, T. M., Martins, A. A., & Caetano, Nidia. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020Matich, E. K., Butryn, D. M., Ghafari, M., Del Solar, V., Camgoz, E., Pfeifer, B. A., Aga, D. S., Haznedaroglu, B. Z., & Atilla-Gokcumen, G. E. (2016). Mass spectrometry-based metabolomics of value-added biochemicals from Ettlia oleoabundans. Algal Research, 19, 146-154. https://doi.org/10.1016/j.algal.2016.08.009Mehariya, S., Goswami, R. K., Verma, P., Lavecchia, R., & Zuorro, A. (2021). Integrated Approach for Wastewater Treatment and Biofuel Production in Microalgae Biorefineries. Energies, 14(8), 2282. https://doi.org/10.3390/en14082282Mengist, W., Soromessa, T., & Legese, G. (2020). Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Science of The Total Environment, 702, 134581. https://doi.org/10.1016/j.scitotenv.2019.134581Moheimani, N. R., McHenry, M. P., De Boer, K., & Bahri, P. A. (Eds.). (2015). Biomass and Biofuels from Microalgae: Advances in Engineering and Biology (Vol. 2). Springer International Publishing. https://doi.org/10.1007/978-3-319-16640-7Moshood, T. D., Nawanir, G., & Mahmud, F. (2021). Microalgae biofuels production: A systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environmental Challenges, 5, 100207. https://doi.org/10.1016/j.envc.2021.100207Mountourakis, F., Papazi, A., & Kotzabasis, K. (2021). The Microalga Chlorella vulgaris as a Natural Bioenergetic System for Effective CO2 Mitigation—New Perspectives against Global Warming. Symmetry, 13(6), 997. https://doi.org/10.3390/sym13060997Naciones Unidas. (2015). La Agenda 2030 y Objetivo De Desarrollo Sostenible. https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D., Pereira, S. A., Druzian, J. I., De Souza, C. O., Vich, D. V., De Carvalho, G. C., & Nascimento, M. A. (2013). Screening Microalgae Strains for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria. BioEnergy Research, 6(1), 1-13. https://doi.org/10.1007/s12155-012- 9222-2Nautiyal, P., Subramanian, K. A., & Dastidar, M. G. (2014). Production and characterization of biodiesel from algae. Fuel Processing Technology, 120, 79-88. https://doi.org/10.1016/j.fuproc.2013.12.003Ndikubwimana, T., Zeng, X., Murwanashyaka, T., Manirafasha, E., He, N., Shao, W., & Lu, Y. (2016). Harvesting of freshwater microalgae with microbial bioflocculant: A pilot-scale study. Biotechnology for Biofuels, 9(1), 47. https://doi.org/10.1186/s13068-016-0458-5Nzayisenga, J. C., Farge, X., Groll, S. L., & Sellstedt, A. (2020). Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels, 13(1), 4. https://doi.org/10.1186/s13068-019-1646-xOMS. (2018). Progresos en el tratamiento y el uso de las aguas residuals de manera adecuada: Prueba piloto de la metodología de monitoreo y primeras constataciones sobre el indicador 6.3.1 de los ODS. Organización Mundial de la Salud. https://iris.who.int/handle/10665/275972Pang, N., Fu, X., Fernandez, J. S. M., & Chen, S. (2019). Multilevel heuristic LED regime for stimulating lipid and bioproducts biosynthesis in Haematococcus pluvialis under mixotrophic conditions. Bioresource Technology, 288, 121525. https://doi.org/10.1016/j.biortech.2019.121525Rafa, N., Ahmed, S. F., Badruddin, I. A., Mofijur, M., & Kamangar, S. (2021). Strategies to Produce Cost-Effective Third-Generation Biofuel From Microalgae. Frontiers in Energy Research, 9, 749968. https://doi.org/10.3389/fenrg.2021.749968Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & De Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Reviews, 27, 622-653. https://doi.org/10.1016/j.rser.2013.05.063Reddy, H. K., Muppaneni, T., Patil, P. D., Ponnusamy, S., Cooke, P., Schaub, T., & Deng, S. (2014). Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Fuel, 115, 720-726. https://doi.org/10.1016/j.fuel.2013.07.090Ren, X., Zhao, X., Turcotte, F., Deschênes, J.-S., Tremblay, R., & Jolicoeur, M. (2017). Current lipid extraction methods are significantly enhanced adding a water treatment step in Chlorella protothecoides. Microbial Cell Factories, 16(1), 26. https://doi.org/10.1186/s12934-017-0633-9REN21. (2023). Informe de situación global de energías renovables (p. 49). REN21. https://www.ren21.net/reports/global-status-report/Richmond, A. (Ed.). (2003). Handbook of Microalgal Culture: Biotechnology and Applied Phycology (1.a ed.). Wiley. https://doi.org/10.1002/9780470995280Sabeela Beevi, U., & Sukumaran, R. K. (2015). Cultivation of the fresh water microalga Chlorococcum sp. RAP13 in sea water for producing oil suitable for biodiesel. Journal of Applied Phycology, 27(1), 141-147. https://doi.org/10.1007/s10811-014-0340-4Sajjadi, B., Chen, W.-Y., Raman, Abdul. Aziz. A., & Ibrahim, S. (2018). Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renewable and Sustainable Energy Reviews, 97, 200-232. https://doi.org/10.1016/j.rser.2018.07.050Saliu, F., Magoni, C., Torelli, A., Cozza, R., Lasagni, M., & Labra, M. (2021). Omega-3 rich oils from microalgae: A chitosan mediated in situ transesterification method. Food Chemistry, 337, 127745. https://doi.org/10.1016/j.foodchem.2020.127745Shiels, K., Tsoupras, A., Lordan, R., Nasopoulou, C., Zabetakis, I., Murray, P., & Saha, S. K. (2021). Bioactive Lipids of Marine Microalga Chlorococcum sp. SABC 012504 with Anti-Inflammatory and Anti-Thrombotic Activities. Marine Drugs, 19(1), 28. https://doi.org/10.3390/md19010028Shuba, E. S., & Kifle, D. (2018). Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review. Renewable and Sustainable Energy Reviews, 81, 743-755. https://doi.org/10.1016/j.rser.2017.08.042Song, Y., Wang, L., Qiang, X., Gu, W., Ma, Z., & Wang, G. (2022). The promising way to treat wastewater by microalgae: Approaches, mechanisms, applications and challenges. Journal of Water Process Engineering, 49, 103012. https://doi.org/10.1016/j.jwpe.2022.103012Srimongkol, P., Sangtanoo, P., Songserm, P., Watsuntorn, W., & Karnchanatat, A. (2022). Microalgae-based wastewater treatment for developing economic and environmental sustainability: Current status and future prospects. Frontiers in Bioengineering and Biotechnology, 10, 904046. https://doi.org/10.3389/fbioe.2022.904046Suparmaniam, U., Lam, M. K., Uemura, Y., Lim, J. W., Lee, K. T., & Shuit, S. H. (2019). Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renewable and Sustainable Energy Reviews, 115, 109361. https://doi.org/10.1016/j.rser.2019.109361Talebi, A. F., Tohidfar, M., Mousavi Derazmahalleh, S. M., Sulaiman, A., Baharuddin, A. S., & Tabatabaei, M. (2015). Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. For Biodiesel Production. BioMed Research International, 2015, 1-12. https://doi.org/10.1155/2015/597198Torres, S., Acien, G., García-Cuadra, F., & Navia, R. (2017). Direct transesterification of microalgae biomass and biodiesel refining with vacuum distillation. Algal Research, 28, 30-38. https://doi.org/10.1016/j.algal.2017.10.001UNESCO. (2017). Informe Mundial sobre el desarrollo de los recursos hídricos de las Naciones Unidas 2017: Las aguas residuales: El recurso desaprovechado, cifras y datos (p. 12). UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000247553_spaValdovinos-García, E. M., Petriz-Prieto, M. A., Olán-Acosta, M. D. L. Á., Barajas-Fernández, J., Guzmán-López, A., & Bravo-Sánchez, M. G. (2021). Production of Microalgal Biomass in Photobioreactors as Feedstock for Bioenergy and Other Uses: A Techno-Economic Study of Harvesting Stage. Applied Sciences, 11(10), 4386. https://doi.org/10.3390/app11104386Wang, M., Liu, H., Qiao, K., Ye, X., Takano, T., Liu, S., & Bu, Y. (2021). Exogenous NaHCO3 enhances growth and lipid accumulation of the highly NaHCO3-tolerant Nannochloris sp. JB17. Journal of Applied Phycology, 33(1), 241-253. https://doi.org/10.1007/s10811-020-02293-zWang, X., Wei, H., Mao, X., & Liu, J. (2019). Proteomics Analysis of Lipid Droplets from the Oleaginous Alga Chromochloris zofingiensis Reveals Novel Proteins for Lipid Metabolism. Genomics, Proteomics & Bioinformatics, 17(3), 260-272. https://doi.org/10.1016/j.gpb.2019.01.003Whitton, R., Le Mével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371-378. https://doi.org/10.1016/j.watres.2015.12.054Yu, H., Kim, J., & Lee, C. (2019). Nutrient removal and microalgal biomass production from different anaerobic digestion effluents with Chlorella species. Scientific Reports, 9(1), 6123. https://doi.org/10.1038/s41598-019-42521-2Yun, C.-J., Hwang, K.-O., Han, S.-S., & Ri, H.-G. (2019). The effect of salinity stress on the biofuel production potential of freshwater microalgae Chlorella vulgaris YH703. Biomass and Bioenergy, 127, 105277. https://doi.org/10.1016/j.biombioe.2019.105277Zamalloa, C., Boon, N., & Verstraete, W. (2013). Decentralized two-stage sewage treatment by chemical–biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresource Technology, 130, 152-160. https://doi.org/10.1016/j.biortech.2012.11.128Zhang, S., Zhang, L., Xu, G., Li, F., & Li, X. (2022). A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies. Frontiers in Microbiology, 13, 970028. https://doi.org/10.3389/fmicb.2022.970028Zhao, K., Li, Y., Yan, H., Hu, Q., & Han, D. (2022). Regulation of Light Spectra on Cell Division of the Unicellular Green Alga Haematococcus pluvialis: Insights from Physiological and Lipidomic Analysis. Cells, 11(12), 1956. https://doi.org/10.3390/cells11121956Zhou, G.-J., Ying, G.-G., Liu, S., Zhou, L.-J., Chen, Z.-F., & Peng, F.-Q. (2014). Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae. Environmental Science: Processes & Impacts, 16(8), 2018. https://doi.org/10.1039/C4EM00094CZou, Y., Zeng, Q., Li, H., Liu, H., & Lu, Q. (2021). Emerging technologies of algae‐based wastewater remediation for bio‐fertilizer production: A promising pathway to sustainable agriculture. Journal of Chemical Technology & Biotechnology, 96(3), 551-563. https://doi.org/10.1002/jctb.6602agua residualbiocombustiblesbiomasamicroalgashttps://www.tdea.edu.co/index.php/informate/medios-tdea/noticias/enterate/3171-sexta-convocatoria-interna-de-proyectos-de-investigacion-2Acta N°1 del 26 de enero de 2023Evaluación del potencial de las microalgas para la producción de bioinsumos agrícolasLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/5734/10/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD510open accessORIGINALENTREGABLE BIBLIOTECA.pdfENTREGABLE BIBLIOTECA.pdfSíntesisapplication/pdf268962https://dspace.tdea.edu.co/bitstream/tdea/5734/6/ENTREGABLE%20BIBLIOTECA.pdff4202bcf4e35940982cf91afcdfb2df7MD56open accessTEXTENTREGABLE BIBLIOTECA.pdf.txtENTREGABLE BIBLIOTECA.pdf.txtExtracted texttext/plain29283https://dspace.tdea.edu.co/bitstream/tdea/5734/11/ENTREGABLE%20BIBLIOTECA.pdf.txt5921d69880f432104c7774fcd05f4f92MD511open accessTHUMBNAILENTREGABLE BIBLIOTECA.pdf.jpgENTREGABLE BIBLIOTECA.pdf.jpgGenerated Thumbnailimage/jpeg8102https://dspace.tdea.edu.co/bitstream/tdea/5734/12/ENTREGABLE%20BIBLIOTECA.pdf.jpga0c5ae7720e41fa324dd9932e45af7a7MD512open accesstdea/5734oai:dspace.tdea.edu.co:tdea/57342024-06-21 03:18:52.082An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc/4.0/open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=