Capacidad de absorción del CO2 por parte de las microalgas nativas de los lagos Jardín Botánico y Parque Norte de la ciudad de Medellín
La liberación de contaminantes atmosféricos es cada vez más elevada, agravando la problemática del calentamiento global, entre los causantes está el crecimiento poblacional y energético. Dentro de los gases de efecto invernadero, el CO2 es el de mayor concentración, por lo que se han venido investig...
- Autores:
-
Reyes Torres, Jose Alejandro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Tecnológico de Antioquia
- Repositorio:
- Repositorio Tdea
- Idioma:
- spa
- OAI Identifier:
- oai:dspace.tdea.edu.co:tdea/5938
- Acceso en línea:
- https://dspace.tdea.edu.co/handle/tdea/5938
https://dspace.tdea.edu.co/
- Palabra clave:
- Biofijación del CO2
Microalgas nativas
Efecto invernadero
Condiciones operacionales
Medellín
- Rights
- openAccess
- License
- Tecnológico de Antioquia Institución Universitaria, 2022
id |
RepoTdea2_1bd6d0b0ef2ab7b60ba696ea1050766c |
---|---|
oai_identifier_str |
oai:dspace.tdea.edu.co:tdea/5938 |
network_acronym_str |
RepoTdea2 |
network_name_str |
Repositorio Tdea |
repository_id_str |
|
dc.title.none.fl_str_mv |
Capacidad de absorción del CO2 por parte de las microalgas nativas de los lagos Jardín Botánico y Parque Norte de la ciudad de Medellín |
title |
Capacidad de absorción del CO2 por parte de las microalgas nativas de los lagos Jardín Botánico y Parque Norte de la ciudad de Medellín |
spellingShingle |
Capacidad de absorción del CO2 por parte de las microalgas nativas de los lagos Jardín Botánico y Parque Norte de la ciudad de Medellín Biofijación del CO2 Microalgas nativas Efecto invernadero Condiciones operacionales Medellín |
title_short |
Capacidad de absorción del CO2 por parte de las microalgas nativas de los lagos Jardín Botánico y Parque Norte de la ciudad de Medellín |
title_full |
Capacidad de absorción del CO2 por parte de las microalgas nativas de los lagos Jardín Botánico y Parque Norte de la ciudad de Medellín |
title_fullStr |
Capacidad de absorción del CO2 por parte de las microalgas nativas de los lagos Jardín Botánico y Parque Norte de la ciudad de Medellín |
title_full_unstemmed |
Capacidad de absorción del CO2 por parte de las microalgas nativas de los lagos Jardín Botánico y Parque Norte de la ciudad de Medellín |
title_sort |
Capacidad de absorción del CO2 por parte de las microalgas nativas de los lagos Jardín Botánico y Parque Norte de la ciudad de Medellín |
dc.creator.fl_str_mv |
Reyes Torres, Jose Alejandro |
dc.contributor.advisor.none.fl_str_mv |
García Ávila, Carolina Salcedo Hurtado, Kellys Nallith |
dc.contributor.author.none.fl_str_mv |
Reyes Torres, Jose Alejandro |
dc.subject.proposal.none.fl_str_mv |
Biofijación del CO2 Microalgas nativas Efecto invernadero Condiciones operacionales Medellín |
topic |
Biofijación del CO2 Microalgas nativas Efecto invernadero Condiciones operacionales Medellín |
description |
La liberación de contaminantes atmosféricos es cada vez más elevada, agravando la problemática del calentamiento global, entre los causantes está el crecimiento poblacional y energético. Dentro de los gases de efecto invernadero, el CO2 es el de mayor concentración, por lo que se han venido investigando métodos para su mitigación. Las microalgas son microorganismos que se especializan en absorber el CO2 a través de la fotosíntesis, lo que las convierte en un potencial biofijador del contaminante. El objetivo de este trabajo fue determinar la capacidad de las microalgas nativas de los lagos del Parque Norte y Jardín Botánico de la ciudad de Medellín para absorber el CO2. Se trabajó con un diseño factorial de 2*2 por tres repeticiones, quedando con 4 unidades experimentales más sus respectivas repeticiones, los factores fueron: origen de las muestras (Parque Norte – Jardín Botánico) tipo de nutrientes (Triple 15 – solución nutritiva) y número de repeticiones (3). Se evaluaron las variables pH, temperatura del medio, Potencial de Oxido Reducción (ORP), turbidez, intensidad lumínica, número de células por mililitro y capacidad de absorción del CO2. En las distintas muestras se pudieron observar la presencia de los géneros Chlorella sp, Scenedesmus sp, Pediastrum sp, Selenastrum sp, Crucigenia sp y Tribonema sp, no obstante, los cultivos en condiciones de variables de: nutrientes (nitrógeno u fósforo), intensidad lumínica y pH, la Chlorella sp es propensa a dominar la comunidad algal de los dos lagos. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-06-14 |
dc.date.accessioned.none.fl_str_mv |
2024-09-25T20:31:28Z |
dc.date.available.none.fl_str_mv |
2024-09-25T20:31:28Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
APA |
dc.identifier.uri.none.fl_str_mv |
https://dspace.tdea.edu.co/handle/tdea/5938 |
dc.identifier.instname.spa.fl_str_mv |
Tecnológico de Antioquia Institución Universitaria |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio TdeA |
dc.identifier.repourl.spa.fl_str_mv |
https://dspace.tdea.edu.co/ |
identifier_str_mv |
APA Tecnológico de Antioquia Institución Universitaria Repositorio TdeA |
url |
https://dspace.tdea.edu.co/handle/tdea/5938 https://dspace.tdea.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abalde Alonso, J. E., Cid Blanco, A., Fidalgo Paredes, J. P., Torres Vaamonde, J. E., & Herrero López, C. (1995). Microalgas: Cultivo y aplicaciones. In Microalgas: Cultivo y aplicaciones. https://doi.org/10.17979/spudc.9788497497695. Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(12), 2243–2257. https://doi.org/10.1016/j.biortech.2005.12.006. Almomani, F., Al Ketife, A., Judd, S., Shurair, M., Bhosale, R. R., Znad, H., & Tawalbeh, M. (2019). Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Science of the Total Environment, 662, 662–671. https://doi.org/10.1016/j.scitotenv.2019.01.14. APHA American Public Health Association, AWWA American Water Works Association, & WEF Water Environment Federation. (2017). Standard methods: For the examination of water and wastewater. Analytical Biochemistry, 186(1), 183. https://doi.org/10.1016/0003-2697(90)90598-4. Beltrán-Rocha, J. C., Guajardo-Barbosa, C., Barceló-Quinta, I. D., & López-Chuken, U. J. (2017). Biotreatment of secondary municipal effluents using microalgae: Effect of pH, nutrients (C, N AND P) and CO2 enrichment. Revista de Biologia Marina y Oceanografia, 52(3), 417–427. https://doi.org/10.4067/s0718-19572017000300001. Bermúdez, J., Lodeiros, C., & Morales, E. (2002). Producción de biomasa de microalga marina Chroomonassp., en función del pH, intensidad luminosa y salinidad. Boletín de Investigaciones Marinas y Costeras, Bol. Inv., 167–185. Bock, C., Luo, W., Kusber, W. H., Hegewald, E., Pažoutová, M., & Krienitz, L. (2013). Classification of Crucigenoid Algae: Phylogenetic Position of the Reinstated Genus Lemmermannia, Tetrastrum spp. Crucigenia tetrapedia, and C. lauterbornii (Trebouxiophyceae, Chlorophyta)1. Journal of Phycology, 49(2), 329–339. https://doi.org/10.1111/jpy.12039. Bohórquez Echeverry, P., & Pinilla, C. C. (2007). Evaluación de Lactuca sativa y Selenastrum capricornutum como indicadores de toxicidad en aguas. Universitas Scientiarum, 12(2), 83–98. http://revistas.javeriana.edu.co/index.php/scientarium/article/view/4868. Bosma, R., Wijffels, R. H., & Harmsen, P. F. H. (2011). Microalgae: the green gold of the future? large-scale sustainable cultivation of microalgae for the production of bulo commodities. Wageningen UR-Food & Biobased Research. Brennan, L., & Owende, P. (2010). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. https://doi.org/10.1016/j.rser.2009.10.009 Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81. https://doi.org/10.1016/j.biortech.2010.06.159. Cheng, P., Chen, D., Liu, W., Cobb, K., Zhou, N., Liu, Y., Liu, H., Wang, Q., Chen, P., Zhou, C., & Ruan, R. (2020). Auto-flocculation microalgae species Tribonema sp. and Synechocystis sp. with T-IPL pretreatment to improve swine wastewater nutrient removal. Science of the Total Environment, 725, 138263. https://doi.org/10.1016/j.scitotenv.2020.138263. Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99(9), 3389–3396. https://doi.org/10.1016/j.biortech.2007.08.013. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001. Crippa, M., Oreggioni, G., D, G., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. G.., & Vignati, E. (2019). Fossil CO2 and GHG emissions of all world countries - 2019 Report Publications Office of the EU. In JRC Science for Policy Report. https://doi.org/10.2760/687800. Crossno, S. K., Kalbus, L. H., & Kalbus, G. E. (1996). Determinations of carbon dioxide by titration: New experiments for general, physical, and quantitative analysis courses. Journal of Chemical Education, 73(2), 175–176. https://doi.org/10.1021/ed073p175 Elrayies, G. M. (2018). Microalgae: Prospects for greener future buildings. Renewable and Sustainable Energy Reviews, 81(August 2017), 1175–1191. https://doi.org/10.1016/j.rser.2017.08.032 Fidalgo, J.P., López, M.I., Cid, A., Herrero, C. & Abalde, J. (1990). Incidencia de la fuente de nitrógeno sobre la producción de biomasa y composición bioquímica de Phaeodactylum tricornutum en cultivos masivos. Actas III Congreso Nacional de Acuicultura. 651-656. Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., & Casey, P. S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science and Technology, 41(24), 8484–8490. https://doi.org/10.1021/es071445r. Gómez Luna, L., Ortega Díaz, Y., & Tormos Cedeño, L. (2021). Efecto del pH sobre el crecimiento y viabilidad celular de una cepa local de Chlorella vulgaris Beijerinck. 41(2), 252–276. Gomes Oliveira, R. A. (2019). Errores en los Hemogramas Automatizados: Los Interferentes y sus Correcciones. En hemograma cómo hacer e interpretar (2.a ed., Vol. 1, p. 318). Amolca. Hepburn, C., Adlen, E., Beddington, J., Carter, E. A., Fuss, S., Mac Dowell, N., Minx, J. C., Smith, P., & Williams, C. K. (2019). The technological and economic prospects for CO2 utilization and removal. Nature, 575(7781), 87–97. https://doi.org/10.1038/s41586-019-1681-6. Hernández-Pérez, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de Biologia Marina y Oceanografia, 49(2), 157–173. https://doi.org/10.4067/S0718- https:// doi.org/19572014000200001 Huo, S., Chen, J., Chen, X., Wang, F., Xu, L., Zhu, F., Guo, D., & Li, Z. (2018). Advanced treatment of the low concentration petrochemical wastewater by Tribonema sp. microalgae grown in the open photobioreactors coupled with the traditional Anaerobic/Oxic process. Bioresource Technology, 270, 476–481. https://doi.org/10.1016/j.biortech.2018.09.024. Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J. A. H. W., Van Aardenne, J. A., Monni, S., Doering, U., Roxana Petrescu, A. M., Solazzo, E., & Oreggioni, G. D. (2019). EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970-2012. Earth System Science Data, 11(3), 959–1002. https://doi.org/10.5194/essd-11-959-2019. Judd, S., van den Broeke, L. J. P., Shurair, M., Kuti, Y., & Znad, H. (2015). Algal remediation of CO2 and nutrient discharges: A review. Water Research, 87, 356–366. https://doi.org/10.1016/j.watres.2015.08.021 Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 1–21. https://doi.org/10.1186/s12934-018-0879-x. Lardon, L., Hélias, A., Sialve, B., Steyer, J. P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae. Environmental Science and Technology, 43(17), 6475–6481. https://doi.org/10.1021/es900705j. Lee, Y. K. (1997). Commercial production of microalgae in the Asia-Pacific rim. Journal of Applied Phycology, 9(5), 403–411. https://doi.org/10.1023/A:1007900423275. Maness, P. C., Yu, J., Eckert, C., & Ghirardi, M. L. (2009). Photobiological hydrogen production - Prospects and challenges. Microbe, 4(6), 275–280. https://doi.org/10.1128/microbe.4.275.1. Mark. (2008). Green Algae Strategy End Biowar І and Engineer Sustainable Food and Biofuels Mark Edwards greenindependence.org. https://d3dqsm2futmewz.cloudfront.net/docs/gios/Edwards_BiowarI.pdf. McDuffie, E. E., Smith, S. J., O’Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E. A., Zheng, B., Crippa, M., Brauer, M., & Martin, R. V. (2020). A global anthropogenic emission inventory of atmospheric pollutants from sector- And fuel-specific sources (1970-2017): An application of the Community Emissions Data System (CEDS). Earth System Science Data, 12(4), 3413–3442. https://doi.org/10.5194/essd-12-3413-2020. Medipally, S. R., Yusoff, F., Banerjee, S., & Shariff, M. (2015). Feedstock for Biofuel Production. 2015, 13. https://doi.org/https://doi.org/10.1155/2015/519513 Mora, R., & Moronta, R. (2005). ciencia completa-12 Página 1 de 9 Crecimiento y producción de pigmentos de la microalga nativa. Biomass, 1–9. Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first- and second-generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. https://doi.org/10.1016/j.rser.2009.10.003. Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68. https://doi.org/10.1016/j.pecs.2010.01.003. Ortega, J., & Moronta, R. (2004). Influencia del Acetato Sobre el Crecimiento y Contenido de Pigmentos de la Microalga Chlorella Sp. Ciencia, 12(1), 25–31. Oscanoa Huaynate, A., Ynga Huaman, G., Chang Avila, L., & Aguilar Samanamud, C. (2015). Impacto del CO2 sobre la densidad celular en seis cepas de microalgas marinas. Revista ION, 28(2), 23–32. https://doi.org/10.18273/revion.v28n2-2015002. Pérez-García, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11–36. https://doi.org/10.1016/j.watres.2010.08.037. Pienkos, P., & Darzins, A. (2009). The promise and challenges of microalgal-derived biofuels. Biofuels, Bioproducts and Biorefining, 6(3), 431–440. https://doi.org/10.1002/bbb.159. Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25. https://doi.org/10.1016/j.biortech.2010.06.035. Posten, C. (2009). Design principles of photo-bioreactors for cultivation of microalgae. Engineering in Life Sciences, 9(3), 165–177. https://doi.org/10.1002/elsc.200900003. Priyadarshani, I., & Rath, B. (2012). Commercial and industrial applications of micro algae – A review. 3(4), 89–100. Ran, J., Jaroniec, M., & Qiao, S. Z. (2018). Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities. Advanced Materials, 30(7), 1–31. https://doi.org/10.1002/adma.201704649. Ratledge, C., Kanagachandran, K., Anderson, A. J., Grantham, D. J., & Stephenson, J. C. (2001). Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Lipids, 36(11), 1241–1246. https://doi.org/10.1007/s11745-001-0838-x. REN21: Global Renewable Energy Now (2021). Global Status Report. National Technical University of Athens (NTUA). Paris: REN21. ISBN 978-3-948393-03- Rendón-Castrillón, L., Ramírez-Carmona, M., Ocampo-López, C., & Giraldo-Aristizabal, R. (2021). Evaluation of the operational conditions in the production and morphology of chlorella sp. Brazilian Journal of Biology, 81(1), 202–209. https://doi.org/10.1590/1519-6984.228874. Richmond, A. (2017). CRC handbook of microalgal mass culture. CRC handbook of microalgal mass culture (pp. 46) doi:10.1201/9780203712405. Rivera, J., Garza, M. T., Almaguer, V., & Loredo, J. (2010). Bioingeniería ambiental aplicada a una columna empacada con Chorella sp. inmovilizada para la remoción de metales pesados. Ciencia UANL, XIII(2), 174–177. Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92(April), 394–404. https://doi.org/10.1016/j.rser.2018.04.034. Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1), 100–112. https://doi.org/10.1002/bit.22033. Roldán, G., & Ramírez, J. (2008). Fundamentos de limnología neotropical. In Editorial Universidad de Antioquia (Vol. 2). https://doi.org/10.1167/iovs.15-1729 Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96. https://doi.org/10.1263/jbb.101.87. Suganya, T., Varman, M., Masjuki, H. H., & Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909–941. https://doi.org/10.1016/j.rser.2015.11.026. Suslow, T. V. (2004). Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring, Control, and Documentation. University of California, Agriculture and Natural Resources. https://doi.org/10.3733/ucanr.8149. Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102(3), 3071–3076. https://doi.org/10.1016/j.biortech.2010.10.047. Tebbani, S., Lpes, F., Filali, R., Dumur, D., & Pareau, D. (2020). Biofijación de CO2 por microalgas. Van Haren Publishing. Wang, H., Gao, L., Chen, L., Guo, F., & Liu, T. (2013). Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus. Bioresource Technology, 142, 39–44. https://doi.org/10.1016/j.biortech.2013.05.058. Wang, H., Ji, C., Bi, S., Zhou, P., Chen, L., & Liu, T. (2014). Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Bioresource Technology, 172, 169–173. https://doi.org/10.1016/j.biortech.2014.09.032. Weckström, K., Weckström, J., Yliniemi, L. M., & Korhola, A. (2010). The ecology of Pediastrum (Chlorophyceae) in subarctic lakes and their potential as paleobioindicators. Journal of Paleolimnology, 43(1), 61–7https://doi.org/10.1007/s10933-009-9314-y. Wolkers, H., Barbosa, M. J., Kleinegris, D. M. M., Bosma, R., Wijffels, R. H., & Harmsen, P. F. H. (2011). Microalgae: the green gold of the future? large-scale sustainable cultivation of microalgae for the production of bulo commodities. Wageningen UR-Food & Biobased Research. |
dc.rights.none.fl_str_mv |
Tecnológico de Antioquia Institución Universitaria, 2022 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Tecnológico de Antioquia Institución Universitaria, 2022 https://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
8 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Tecnológico de Antioquia, Institución Universitaria |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Ingenieria Ambiental |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Tecnológico de Antioquia |
bitstream.url.fl_str_mv |
https://dspace.tdea.edu.co/bitstream/tdea/5938/1/12.%20RESUMEN%20%20TDG_JOSE%20ALEJANDRO%20REYES.pdf https://dspace.tdea.edu.co/bitstream/tdea/5938/2/license.txt https://dspace.tdea.edu.co/bitstream/tdea/5938/3/12.%20RESUMEN%20%20TDG_JOSE%20ALEJANDRO%20REYES.pdf.txt https://dspace.tdea.edu.co/bitstream/tdea/5938/4/12.%20RESUMEN%20%20TDG_JOSE%20ALEJANDRO%20REYES.pdf.jpg |
bitstream.checksum.fl_str_mv |
37b737624f55b29460819973eb20a667 2f9959eaf5b71fae44bbf9ec84150c7a b97a284fdb2842764f4baa7397abbfeb 6b0d4c7ee9e26e1a85f114fccd2c6952 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Tecnologico de Antioquia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1812189265138810880 |
spelling |
García Ávila, Carolina28bc008c-65b7-427c-b27c-90a062372b36Salcedo Hurtado, Kellys Nallith15388abf-0698-4c6d-8ef1-3c456cde889cReyes Torres, Jose Alejandro90109fc1-1ab9-4cb7-8094-bbe1bb10e0702024-09-25T20:31:28Z2024-09-25T20:31:28Z2022-06-14APAhttps://dspace.tdea.edu.co/handle/tdea/5938Tecnológico de Antioquia Institución UniversitariaRepositorio TdeAhttps://dspace.tdea.edu.co/La liberación de contaminantes atmosféricos es cada vez más elevada, agravando la problemática del calentamiento global, entre los causantes está el crecimiento poblacional y energético. Dentro de los gases de efecto invernadero, el CO2 es el de mayor concentración, por lo que se han venido investigando métodos para su mitigación. Las microalgas son microorganismos que se especializan en absorber el CO2 a través de la fotosíntesis, lo que las convierte en un potencial biofijador del contaminante. El objetivo de este trabajo fue determinar la capacidad de las microalgas nativas de los lagos del Parque Norte y Jardín Botánico de la ciudad de Medellín para absorber el CO2. Se trabajó con un diseño factorial de 2*2 por tres repeticiones, quedando con 4 unidades experimentales más sus respectivas repeticiones, los factores fueron: origen de las muestras (Parque Norte – Jardín Botánico) tipo de nutrientes (Triple 15 – solución nutritiva) y número de repeticiones (3). Se evaluaron las variables pH, temperatura del medio, Potencial de Oxido Reducción (ORP), turbidez, intensidad lumínica, número de células por mililitro y capacidad de absorción del CO2. En las distintas muestras se pudieron observar la presencia de los géneros Chlorella sp, Scenedesmus sp, Pediastrum sp, Selenastrum sp, Crucigenia sp y Tribonema sp, no obstante, los cultivos en condiciones de variables de: nutrientes (nitrógeno u fósforo), intensidad lumínica y pH, la Chlorella sp es propensa a dominar la comunidad algal de los dos lagos.PregradoIngeniero(a) Ambiental8 páginasapplication/pdfspaTecnológico de Antioquia, Institución UniversitariaFacultad de IngenieríaIngenieria AmbientalMedellínTecnológico de Antioquia Institución Universitaria, 2022https://creativecommons.org/licenses/by-nc/4.0/Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Capacidad de absorción del CO2 por parte de las microalgas nativas de los lagos Jardín Botánico y Parque Norte de la ciudad de MedellínTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAbalde Alonso, J. E., Cid Blanco, A., Fidalgo Paredes, J. P., Torres Vaamonde, J. E., & Herrero López, C. (1995). Microalgas: Cultivo y aplicaciones. In Microalgas: Cultivo y aplicaciones. https://doi.org/10.17979/spudc.9788497497695.Ahluwalia, S. S., & Goyal, D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology, 98(12), 2243–2257. https://doi.org/10.1016/j.biortech.2005.12.006.Almomani, F., Al Ketife, A., Judd, S., Shurair, M., Bhosale, R. R., Znad, H., & Tawalbeh, M. (2019). Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Science of the Total Environment, 662, 662–671. https://doi.org/10.1016/j.scitotenv.2019.01.14.APHA American Public Health Association, AWWA American Water Works Association, & WEF Water Environment Federation. (2017). Standard methods: For the examination of water and wastewater. Analytical Biochemistry, 186(1), 183. https://doi.org/10.1016/0003-2697(90)90598-4.Beltrán-Rocha, J. C., Guajardo-Barbosa, C., Barceló-Quinta, I. D., & López-Chuken, U. J. (2017). Biotreatment of secondary municipal effluents using microalgae: Effect of pH, nutrients (C, N AND P) and CO2 enrichment. Revista de Biologia Marina y Oceanografia, 52(3), 417–427. https://doi.org/10.4067/s0718-19572017000300001.Bermúdez, J., Lodeiros, C., & Morales, E. (2002). Producción de biomasa de microalga marina Chroomonassp., en función del pH, intensidad luminosa y salinidad. Boletín de Investigaciones Marinas y Costeras, Bol. Inv., 167–185.Bock, C., Luo, W., Kusber, W. H., Hegewald, E., Pažoutová, M., & Krienitz, L. (2013). Classification of Crucigenoid Algae: Phylogenetic Position of the Reinstated Genus Lemmermannia, Tetrastrum spp. Crucigenia tetrapedia, and C. lauterbornii (Trebouxiophyceae, Chlorophyta)1. Journal of Phycology, 49(2), 329–339. https://doi.org/10.1111/jpy.12039.Bohórquez Echeverry, P., & Pinilla, C. C. (2007). Evaluación de Lactuca sativa y Selenastrum capricornutum como indicadores de toxicidad en aguas. Universitas Scientiarum, 12(2), 83–98. http://revistas.javeriana.edu.co/index.php/scientarium/article/view/4868.Bosma, R., Wijffels, R. H., & Harmsen, P. F. H. (2011). Microalgae: the green gold of the future? large-scale sustainable cultivation of microalgae for the production of bulo commodities. Wageningen UR-Food & Biobased Research.Brennan, L., & Owende, P. (2010). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. https://doi.org/10.1016/j.rser.2009.10.009Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71–81. https://doi.org/10.1016/j.biortech.2010.06.159.Cheng, P., Chen, D., Liu, W., Cobb, K., Zhou, N., Liu, Y., Liu, H., Wang, Q., Chen, P., Zhou, C., & Ruan, R. (2020). Auto-flocculation microalgae species Tribonema sp. and Synechocystis sp. with T-IPL pretreatment to improve swine wastewater nutrient removal. Science of the Total Environment, 725, 138263. https://doi.org/10.1016/j.scitotenv.2020.138263.Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99(9), 3389–3396. https://doi.org/10.1016/j.biortech.2007.08.013.Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001.Crippa, M., Oreggioni, G., D, G., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. G.., & Vignati, E. (2019). Fossil CO2 and GHG emissions of all world countries - 2019 Report Publications Office of the EU. In JRC Science for Policy Report. https://doi.org/10.2760/687800.Crossno, S. K., Kalbus, L. H., & Kalbus, G. E. (1996). Determinations of carbon dioxide by titration: New experiments for general, physical, and quantitative analysis courses. Journal of Chemical Education, 73(2), 175–176. https://doi.org/10.1021/ed073p175Elrayies, G. M. (2018). Microalgae: Prospects for greener future buildings. Renewable and Sustainable Energy Reviews, 81(August 2017), 1175–1191. https://doi.org/10.1016/j.rser.2017.08.032Fidalgo, J.P., López, M.I., Cid, A., Herrero, C. & Abalde, J. (1990). Incidencia de la fuente de nitrógeno sobre la producción de biomasa y composición bioquímica de Phaeodactylum tricornutum en cultivos masivos. Actas III Congreso Nacional de Acuicultura. 651-656.Franklin, N. M., Rogers, N. J., Apte, S. C., Batley, G. E., Gadd, G. E., & Casey, P. S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science and Technology, 41(24), 8484–8490. https://doi.org/10.1021/es071445r.Gómez Luna, L., Ortega Díaz, Y., & Tormos Cedeño, L. (2021). Efecto del pH sobre el crecimiento y viabilidad celular de una cepa local de Chlorella vulgaris Beijerinck. 41(2), 252–276.Gomes Oliveira, R. A. (2019). Errores en los Hemogramas Automatizados: Los Interferentes y sus Correcciones. En hemograma cómo hacer e interpretar (2.a ed., Vol. 1, p. 318). Amolca.Hepburn, C., Adlen, E., Beddington, J., Carter, E. A., Fuss, S., Mac Dowell, N., Minx, J. C., Smith, P., & Williams, C. K. (2019). The technological and economic prospects for CO2 utilization and removal. Nature, 575(7781), 87–97. https://doi.org/10.1038/s41586-019-1681-6.Hernández-Pérez, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de Biologia Marina y Oceanografia, 49(2), 157–173. https://doi.org/10.4067/S0718- https:// doi.org/19572014000200001Huo, S., Chen, J., Chen, X., Wang, F., Xu, L., Zhu, F., Guo, D., & Li, Z. (2018). Advanced treatment of the low concentration petrochemical wastewater by Tribonema sp. microalgae grown in the open photobioreactors coupled with the traditional Anaerobic/Oxic process. Bioresource Technology, 270, 476–481. https://doi.org/10.1016/j.biortech.2018.09.024.Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J. A. H. W., Van Aardenne, J. A., Monni, S., Doering, U., Roxana Petrescu, A. M., Solazzo, E., & Oreggioni, G. D. (2019). EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for the period 1970-2012. Earth System Science Data, 11(3), 959–1002. https://doi.org/10.5194/essd-11-959-2019.Judd, S., van den Broeke, L. J. P., Shurair, M., Kuti, Y., & Znad, H. (2015). Algal remediation of CO2 and nutrient discharges: A review. Water Research, 87, 356–366. https://doi.org/10.1016/j.watres.2015.08.021Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 1–21. https://doi.org/10.1186/s12934-018-0879-x.Lardon, L., Hélias, A., Sialve, B., Steyer, J. P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae. Environmental Science and Technology, 43(17), 6475–6481. https://doi.org/10.1021/es900705j.Lee, Y. K. (1997). Commercial production of microalgae in the Asia-Pacific rim. Journal of Applied Phycology, 9(5), 403–411. https://doi.org/10.1023/A:1007900423275.Maness, P. C., Yu, J., Eckert, C., & Ghirardi, M. L. (2009). Photobiological hydrogen production - Prospects and challenges. Microbe, 4(6), 275–280. https://doi.org/10.1128/microbe.4.275.1.Mark. (2008). Green Algae Strategy End Biowar І and Engineer Sustainable Food and Biofuels Mark Edwards greenindependence.org. https://d3dqsm2futmewz.cloudfront.net/docs/gios/Edwards_BiowarI.pdf.McDuffie, E. E., Smith, S. J., O’Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E. A., Zheng, B., Crippa, M., Brauer, M., & Martin, R. V. (2020). A global anthropogenic emission inventory of atmospheric pollutants from sector- And fuel-specific sources (1970-2017): An application of the Community Emissions Data System (CEDS). Earth System Science Data, 12(4), 3413–3442. https://doi.org/10.5194/essd-12-3413-2020.Medipally, S. R., Yusoff, F., Banerjee, S., & Shariff, M. (2015). Feedstock for Biofuel Production. 2015, 13. https://doi.org/https://doi.org/10.1155/2015/519513Mora, R., & Moronta, R. (2005). ciencia completa-12 Página 1 de 9 Crecimiento y producción de pigmentos de la microalga nativa. Biomass, 1–9.Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first- and second-generation biofuels: A comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597. https://doi.org/10.1016/j.rser.2009.10.003.Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68. https://doi.org/10.1016/j.pecs.2010.01.003.Ortega, J., & Moronta, R. (2004). Influencia del Acetato Sobre el Crecimiento y Contenido de Pigmentos de la Microalga Chlorella Sp. Ciencia, 12(1), 25–31.Oscanoa Huaynate, A., Ynga Huaman, G., Chang Avila, L., & Aguilar Samanamud, C. (2015). Impacto del CO2 sobre la densidad celular en seis cepas de microalgas marinas. Revista ION, 28(2), 23–32. https://doi.org/10.18273/revion.v28n2-2015002.Pérez-García, O., Escalante, F. M. E., de-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11–36. https://doi.org/10.1016/j.watres.2010.08.037.Pienkos, P., & Darzins, A. (2009). The promise and challenges of microalgal-derived biofuels. Biofuels, Bioproducts and Biorefining, 6(3), 431–440. https://doi.org/10.1002/bbb.159.Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25. https://doi.org/10.1016/j.biortech.2010.06.035.Posten, C. (2009). Design principles of photo-bioreactors for cultivation of microalgae. Engineering in Life Sciences, 9(3), 165–177. https://doi.org/10.1002/elsc.200900003.Priyadarshani, I., & Rath, B. (2012). Commercial and industrial applications of micro algae – A review. 3(4), 89–100.Ran, J., Jaroniec, M., & Qiao, S. Z. (2018). Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities. Advanced Materials, 30(7), 1–31. https://doi.org/10.1002/adma.201704649.Ratledge, C., Kanagachandran, K., Anderson, A. J., Grantham, D. J., & Stephenson, J. C. (2001). Production of docosahexaenoic acid by Crypthecodinium cohnii grown in a pH-auxostat culture with acetic acid as principal carbon source. Lipids, 36(11), 1241–1246. https://doi.org/10.1007/s11745-001-0838-x.REN21: Global Renewable Energy Now (2021). Global Status Report. National Technical University of Athens (NTUA). Paris: REN21. ISBN 978-3-948393-03-Rendón-Castrillón, L., Ramírez-Carmona, M., Ocampo-López, C., & Giraldo-Aristizabal, R. (2021). Evaluation of the operational conditions in the production and morphology of chlorella sp. Brazilian Journal of Biology, 81(1), 202–209. https://doi.org/10.1590/1519-6984.228874.Richmond, A. (2017). CRC handbook of microalgal mass culture. CRC handbook of microalgal mass culture (pp. 46) doi:10.1201/9780203712405.Rivera, J., Garza, M. T., Almaguer, V., & Loredo, J. (2010). Bioingeniería ambiental aplicada a una columna empacada con Chorella sp. inmovilizada para la remoción de metales pesados. Ciencia UANL, XIII(2), 174–177.Rizwan, M., Mujtaba, G., Memon, S. A., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable and Sustainable Energy Reviews, 92(April), 394–404. https://doi.org/10.1016/j.rser.2018.04.034.Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1), 100–112. https://doi.org/10.1002/bit.22033.Roldán, G., & Ramírez, J. (2008). Fundamentos de limnología neotropical. In Editorial Universidad de Antioquia (Vol. 2). https://doi.org/10.1167/iovs.15-1729Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96. https://doi.org/10.1263/jbb.101.87.Suganya, T., Varman, M., Masjuki, H. H., & Renganathan, S. (2016). Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55, 909–941. https://doi.org/10.1016/j.rser.2015.11.026.Suslow, T. V. (2004). Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring, Control, and Documentation. University of California, Agriculture and Natural Resources. https://doi.org/10.3733/ucanr.8149.Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102(3), 3071–3076. https://doi.org/10.1016/j.biortech.2010.10.047.Tebbani, S., Lpes, F., Filali, R., Dumur, D., & Pareau, D. (2020). Biofijación de CO2 por microalgas. Van Haren Publishing.Wang, H., Gao, L., Chen, L., Guo, F., & Liu, T. (2013). Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus. Bioresource Technology, 142, 39–44. https://doi.org/10.1016/j.biortech.2013.05.058.Wang, H., Ji, C., Bi, S., Zhou, P., Chen, L., & Liu, T. (2014). Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Bioresource Technology, 172, 169–173. https://doi.org/10.1016/j.biortech.2014.09.032.Weckström, K., Weckström, J., Yliniemi, L. M., & Korhola, A. (2010). The ecology of Pediastrum (Chlorophyceae) in subarctic lakes and their potential as paleobioindicators. Journal of Paleolimnology, 43(1), 61–7https://doi.org/10.1007/s10933-009-9314-y.Wolkers, H., Barbosa, M. J., Kleinegris, D. M. M., Bosma, R., Wijffels, R. H., & Harmsen, P. F. H. (2011). Microalgae: the green gold of the future? large-scale sustainable cultivation of microalgae for the production of bulo commodities. Wageningen UR-Food & Biobased Research.Biofijación del CO2Microalgas nativasEfecto invernaderoCondiciones operacionalesMedellínORIGINAL12. RESUMEN TDG_JOSE ALEJANDRO REYES.pdf12. RESUMEN TDG_JOSE ALEJANDRO REYES.pdfSíntesisapplication/pdf275304https://dspace.tdea.edu.co/bitstream/tdea/5938/1/12.%20RESUMEN%20%20TDG_JOSE%20ALEJANDRO%20REYES.pdf37b737624f55b29460819973eb20a667MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/5938/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTEXT12. RESUMEN TDG_JOSE ALEJANDRO REYES.pdf.txt12. RESUMEN TDG_JOSE ALEJANDRO REYES.pdf.txtExtracted texttext/plain17280https://dspace.tdea.edu.co/bitstream/tdea/5938/3/12.%20RESUMEN%20%20TDG_JOSE%20ALEJANDRO%20REYES.pdf.txtb97a284fdb2842764f4baa7397abbfebMD53open accessTHUMBNAIL12. RESUMEN TDG_JOSE ALEJANDRO REYES.pdf.jpg12. RESUMEN TDG_JOSE ALEJANDRO REYES.pdf.jpgGenerated Thumbnailimage/jpeg8477https://dspace.tdea.edu.co/bitstream/tdea/5938/4/12.%20RESUMEN%20%20TDG_JOSE%20ALEJANDRO%20REYES.pdf.jpg6b0d4c7ee9e26e1a85f114fccd2c6952MD54open accesstdea/5938oai:dspace.tdea.edu.co:tdea/59382024-09-26 03:19:20.154An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc/4.0/open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |