Spatial fine-resolution model of malaria risk for the Colombian Pacific region
To categorise and map, at high resolution, the risk of malaria incidence in the Pacificregion, the main malaria-endemic region of Colombia.methodsThe relationship between the environmental variables Normalized Difference VegetationIndex Normalized Difference Water Index, Topographic Wetness Index, p...
- Autores:
-
Piedrahíta Hernández, Stéfani Andrea
Altamiranda Saavedra, Mariano Augusto
Correa Ochoa, Margarita María
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Tecnológico de Antioquia
- Repositorio:
- Repositorio Tdea
- Idioma:
- eng
- OAI Identifier:
- oai:dspace.tdea.edu.co:tdea/2780
- Acceso en línea:
- https://dspace.tdea.edu.co/handle/tdea/2780
- Palabra clave:
- Malaria
Malária
Risk
Riesgo
Risco
Colombia
Colômbia
Anopheles
Incidencia
Incidence
Incidência
Environmental variables
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RepoTdea2_111b541cd4f4512101b64803306a7716 |
---|---|
oai_identifier_str |
oai:dspace.tdea.edu.co:tdea/2780 |
network_acronym_str |
RepoTdea2 |
network_name_str |
Repositorio Tdea |
repository_id_str |
|
dc.title.none.fl_str_mv |
Spatial fine-resolution model of malaria risk for the Colombian Pacific region |
title |
Spatial fine-resolution model of malaria risk for the Colombian Pacific region |
spellingShingle |
Spatial fine-resolution model of malaria risk for the Colombian Pacific region Malaria Malária Risk Riesgo Risco Colombia Colômbia Anopheles Incidencia Incidence Incidência Environmental variables |
title_short |
Spatial fine-resolution model of malaria risk for the Colombian Pacific region |
title_full |
Spatial fine-resolution model of malaria risk for the Colombian Pacific region |
title_fullStr |
Spatial fine-resolution model of malaria risk for the Colombian Pacific region |
title_full_unstemmed |
Spatial fine-resolution model of malaria risk for the Colombian Pacific region |
title_sort |
Spatial fine-resolution model of malaria risk for the Colombian Pacific region |
dc.creator.fl_str_mv |
Piedrahíta Hernández, Stéfani Andrea Altamiranda Saavedra, Mariano Augusto Correa Ochoa, Margarita María |
dc.contributor.author.none.fl_str_mv |
Piedrahíta Hernández, Stéfani Andrea Altamiranda Saavedra, Mariano Augusto Correa Ochoa, Margarita María |
dc.subject.agrovoc.none.fl_str_mv |
Malaria Malária Risk Riesgo Risco Colombia Colômbia |
topic |
Malaria Malária Risk Riesgo Risco Colombia Colômbia Anopheles Incidencia Incidence Incidência Environmental variables |
dc.subject.armarc.none.fl_str_mv |
Anopheles |
dc.subject.decs.none.fl_str_mv |
Incidencia Incidence Incidência |
dc.subject.proposal.none.fl_str_mv |
Environmental variables |
description |
To categorise and map, at high resolution, the risk of malaria incidence in the Pacificregion, the main malaria-endemic region of Colombia.methodsThe relationship between the environmental variables Normalized Difference VegetationIndex Normalized Difference Water Index, Topographic Wetness Index, precipitation andtemperature with the observed Annual Parasitic Index was evaluated using a generalised linear model.An incidence risk map at a resolution of 1 km2was constructed and projected to the entire endemicregion. Associations of malaria risk categories with both presence records and co-occurrence of thethree main malaria vectors were determined.resultsA significant correlation was found for the incidence of malaria with precipitation andNormalized Difference Vegetation Index (R2= 0.98,P<0.05), whereas there was no significantcorrelation with the remaining environmental and topographic variables. Moderate- to high-risk areaswere located mainly in central Choc o Department along the San Juan and Atrato rivers and in areaswest of the Cauca River and Pacific lowlands of the Andes Mountains. There was a statisticallysignificant relationship for the presence of the two main vectorsAnopheles darlingiandAnophelesnuneztovariwith the high malaria risk category. Furthermore, malaria risk was directly proportionalto the number of co-occurring vector species.conclusionsThe map obtained provides useful information on the risk of malaria in particularplaces of the Colombian Pacific region. The data can be used by public entities to optimise theallocation of economic resources for vector control interventions and surveillance.keywordsmalaria, incidence, risk,Anopheles, environmental variables, Colombia |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2023-04-12T22:51:11Z |
dc.date.available.none.fl_str_mv |
2023-04-12T22:51:11Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1360-2276 |
dc.identifier.uri.none.fl_str_mv |
https://dspace.tdea.edu.co/handle/tdea/2780 |
dc.identifier.eissn.spa.fl_str_mv |
1365-3156 |
identifier_str_mv |
1360-2276 1365-3156 |
url |
https://dspace.tdea.edu.co/handle/tdea/2780 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
1031 |
dc.relation.citationissue.spa.fl_str_mv |
8 |
dc.relation.citationstartpage.spa.fl_str_mv |
1024 |
dc.relation.citationvolume.spa.fl_str_mv |
25 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Tropical Medicine and International Health |
dc.relation.references.spa.fl_str_mv |
OMS. Organizaci on Mundial de la Salud. 2019. Consulted25 November 2019. (Available from: https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf?ua=1). NS. Instituto Nacional de Salud. 2019. Consulted 25November 2019. (Available from: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2019%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%204.pdf.) Guti errez LA, Naranjo N, Jaramillo LMet al. Natural infec-tivity ofAnophelesspecies from the Pacific and AtlanticRegions of Colombia.Acta Tr opica2008:107:99–105 Fajardo P, Alzate A.Anopheles nuneztovaricomo vector demalaria en el Bajo Calima, Buenaventura, Colombia.Colom-bia M edica1987:18:14–18. Naranjo-D ıaz N, Sallum MA, Correa MM. Populationdynamics ofAnopheles nuneztovariin Colombia.InfectGenet Evol2016:45:56–65 Naranjo-D ıaz N, Altamiranda M, Luckhart S, Conn JE,Correa MM. Malaria vectors in ecologically heterogeneouslocalities of the Colombian Pacific Region.PLoS One2014:9: e103769 Naranjo-D ıaz N, Rosero DA, R ua-Uribe G, Luckhart S,Correa MM. Abundance, behavior and entomological inocu-lation rates of anthropophilic anophelines from a primaryColombian malaria endemic area.Parasites Vectors2013:6:61 Vasquez-Jimenez JM, Ar evalo-Herrera M, Henao-Giraldo Jet al. Consistent prevalence of asymptomatic infections inmalaria endemic populations in Colombia over time.Malaria J2016:15: 70 Chaparro P, Soto E, Padilla J, Vargas D. Estimaci on del sub-registro de casos de paludismo en diez municipios de lacosta del Pac ıfico nari~nense durante 2009.Biom edica2012:32:29–37 Chaparro P, Padilla J, Vallejo AF, Herrera S. Characteriza-tion of a malaria outbreak in Colombia in 2010.Malaria J2013:12: 330 Macdonald G.The Epidemiology and Control of Malaria.London: Oxford University Press; 1957. Macdonald G.The Epidemiology and Control of Malaria.London: Oxford University Press; 1957. Blanford JI, Blanford S, Crane RGet al. Implications oftemperature variation for malaria parasite developmentacross Africa.Sci Rep2013:3: 1300 Giardina F, Gosoniu L, Konate Let al. Estimating the bur-den of malaria in Senegal: Bayesian Zero-Inflated BinomialGeostatistical Modeling of the MIS 2008 Data.PLoS One2012:7: e32625 Zacar ıas OP, Majlender P. Comparison of infant malariaincidence in districts of Maputo province, Mozambique.Malaria J2011:10: 93. Achcar JA, Mart ınez EZ, Souza ADPd, Tachibana VM,Flores EF. Use of Poisson spatiotemporal regression modelsfor the Brazilian Amazon Forest: malaria count data.RevSoc Brasil Med Trop2011:44: 749–754. de Oliveira EC, dos Santos ES, Zeilhofer P, Souza-Santos R,Atanaka-Santos M. Geographic information systems andlogistic regression for high-resolution malaria risk mappingin a rural settlement of the southern Brazilian Amazon.Malaria J2013:12: 420 Chirombo J, Lowe R, Kazembe L. Using Structured AdditiveRegression Models to estimate risk factors of malaria: Anal-ysis of 2010 Malawi malaria indicator survey data.PLoSOne2014:9: e101116 Grillet ME, Barrera R, Martinez JE, Berti J, Fortin MJ.Disentangling the effect of local and global spatial variationon a mosquito-borne infection in a Neotropical heteroge-neous environment.Tropical Med Hyg2010:82: 194–201. Altamiranda-Saavedra M, Porcasi X, Scavuzzo CM, CorreaMM. Downscaling incidence risk mapping for a Colombianmalaria endemic region.Tropical Med Int Health2018:23:1101–1109 Comes T, Hiete M, Wijngaards N, Schultmann F. Decisionmaps: A framework for multi-criteria decision support undersevere uncertainty.Decis Support Syst2011:52: 108–118. Alimi TO, Fuller DO, Herrera SVet al. A multi-criteriadecision analysis approach to assessing malaria risk innorthern South America.BMC Public Health2016:16:221. Adigun AB, Gajere EN, Oresanya O, Vounatsou P. Malariarisk in Nigeria: Bayesian geostatistical modelling of 2010malaria indicator survey data.Malaria J2015:14: 156 Reid H, Haque U, Clements ACAet al. Mapping malariarisk in Bangladesh using Bayesian geostatistical models.AmJ Tropical Med Hyg2010:83: 861–867 Rinc on-Romero ME, Londo~no JE. Mapping malaria riskusing environmental and anthropic variables.Rev BrasilEpidemiol2009:12: 338–354. Fuller DO, Troyo A, Alimi TO, Beier JC. Participatory riskmapping of malaria vector exposure in northern SouthAmerica using environmental and population data.ApplGeogr2014:48:1–7 IGAC. Instituto Geogr afico Agustin Codazzi. Atlas deColombia.5th ed. Publicaci on Institucional, Imprenta Nacio-nal de Colombia: Bogot a 2002; 342. Gonz alez L, Vega J, Ram ırez JL, Bedoya G, Carmona-Fon-seca J, Maestre A. Relationship between genotypes of theDuffy Blood groups and malarial infection in different eth-nic groups of Choco, Colombia.Colombia M edica (Cali)2012:43: 189–195 INS. Instituto Nacional de Salud. 2018. Consulted el 07November 2018. (Available from: http://www.ins.gov.co/boletin-epidemiologico/Boletn%20Epidemiolgico/2018%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%2052%20-pdf.2018.) ArcGIS. Environmental Systems Research Institute. Version10.2. California: Redlands 2014. Dambach P, Machault V, Lacaux JP, Vignolles C, Sie A,Sauerborn R. Utilization of combined remote sensing techniques to detect environmental variables influencingmalaria vector densities in rural West Africa.Int J HealthGeographics2012:11:8 Drisya SK, Roshni T. Spatiotemporal variability of soilmoisture and drought estimation using a distributed hydro-logical model.Integ Disast Sci Manag2018:1: 451–460. Gao B. NDWI-A normalized difference water index forremote sensing of vegetation liquid water from space.Remote Sens Environ1996:58: 257–266 Meles MB, Younger SE, Jackson CR, Du E, Drover D. Wet-ness index based on landscape position and topography(WILT): Modifying TWI to reflect landscape position.JEnviron Manag2020:255: 109863 tefani A, Roux E, Fotsing J-M, Carme B. Studying relation-ships between environment and malaria incidence in Camopi(French Guiana) through the objective selection of buffer-based landscape characterisations.Int J Health Geographics2011:10: 65 Olano VA, Brochero HL, S aenz R, Qui~nones ML, MolinaJA. Mapas preliminares de la distribuci on de especies deAnophelesvectores de malaria en Colombia.Biom edica2001:21: 402–408 Guti errez LA, Naranjo NJ, Cienfuegos AVet al. Populationstructure analyses and demographic history of the malariavectorAnopheles albimanusfrom the Caribbean and thePacific regions of Colombia.Malaria J2009:8: 259. Ferrao JL, Niquisse S, Mendes JM, Painho M. Mapping andmodelling malaria risk areas using climate, socio-demo-graphic and clinical variables in Chimoio, Mozambique.IntJ Environ Res Public Health2018:15: 795 Gemperli A, Sogoba N, Fondjo Eet al. Mapping malariatransmission in West and Central Africa.Tropical Med IntHealth2006:11: 1032–1046 Rai PK, Nathawat MS, Rai S. Using the information valuemethod in a geographic information system and remotesensing for malaria mapping: a case study from India.JAmbulat Care Manag2013:21:43–52. Dantur Juri MJ, Estallo E, Almiron Wet al. Satellite-derivedNDVI, LST, and climatic factors driving the distributionand abundance ofAnophelesmosquitoes in a former malari-ous area in northwest Argentina.J Vector Ecol2015:40:36–45 Jaime B, Gerson JPV, Jos e RGV, Joaqu ın VDH. Econom ıasdel Pac ıfico colombiano. Colecci on de Econom ıa Regional.Banco de la Rep ublica. 2008:182 de Oliveira EC, dos Santos ES, Zeilhofer P, Souza-Santos R,Atanaka-Santos M. Spatial patterns of malaria in a landreform colonization project, Juruena municipality, MatoGrosso, Brazil.Malaria J2011:10: 177 Bogh C, Clarke SE, Jawara M, Thomas CJ, Lindsay SW.Localized breeding of theAnopheles gambiaecomplex (Dip-tera: Culicidae) along the River Gambia, West Africa.BullEntomol Res2003:93: 279–287 Ahumada ML, Pareja PX, Buitrago LS, Qui~nones ML. Com-portamiento de picadura de Anopheles darlingi Root, 1926(Diptera: Culicidae) y su asociaci on con la transmisi on demalaria en Villavicencio (Colombia).Biom edica2013:33:241–250 Kazembe LN. Spatial modelling and risk factors of malariaincidence in northern Malawi.Acta Tr opica2007:102:126–137. Villar D, Schaeffer DJ. Disarmament is the new war, gold isthe new opium, and ecohealth is the historic victim.EnvironHealth Insights2019:13: 1178630219862241. Naranjo-D ıaz N, Altamiranda-Saavedra M, Correa MM.Anophelesspecies composition and entomological parame-ters in malaria endemic localities of North West Colombia.Acta Tr opica2019:190:13–21 Conde M, Pareja PX, Orjuela LIet al. Larval habitat char-acteristics of the main malaria vectors in the most endemicregions of Colombia: potential implications for larval con-trol.Malaria J2015:14: 476. ittor AY, Pan W, Gilman RHet al. Linking deforestationto malaria in the Amazon: characterization of the breedinghabitat of the principal malaria vector,Anopheles darlingi.Am J Tropical Med Hyg2009:81:5–12 Higuera A, Ram ırez JD. The Colombian peace deal and itsimpact on the evolution of tropical diseases agents.InfecGenet Evol2018:57: 145–150. astellanos A, Chaparro-Narv aez P, Morales-Plaza CDet al. Malaria in gold-mining areas in Colombia.MemoriesInstitute Oswaldo Cruz2016:111:59–66. Negret PJ, Allan J, Braczkowski A, Maron M, Watson JEM.Need for conservation planning in postconflict Colombia.Conserv Biol2017:31: 499–500 uller DO, Alimi T, Herrera S, Beier JC, Qui~nones ML.Spatial association between malaria vector species richnessand malaria in Colombia.Acta Tr opica2016:158: 197–200 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
8 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.region.none.fl_str_mv |
Pacífico colombiano |
dc.publisher.spa.fl_str_mv |
Blackwell Scientific Publications |
dc.publisher.place.spa.fl_str_mv |
Reino Unido |
dc.source.spa.fl_str_mv |
https://onlinelibrary.wiley.com/doi/epdf/10.1111/tmi.13443 |
institution |
Tecnológico de Antioquia |
bitstream.url.fl_str_mv |
https://dspace.tdea.edu.co/bitstream/tdea/2780/3/Spatial%20fine%e2%80%90resolution%20model%20of%20malaria%20risk%20for%20the%20Colombian%20Pacific%20region.pdf.txt https://dspace.tdea.edu.co/bitstream/tdea/2780/4/Spatial%20fine%e2%80%90resolution%20model%20of%20malaria%20risk%20for%20the%20Colombian%20Pacific%20region.pdf.jpg https://dspace.tdea.edu.co/bitstream/tdea/2780/1/Spatial%20fine%e2%80%90resolution%20model%20of%20malaria%20risk%20for%20the%20Colombian%20Pacific%20region.pdf https://dspace.tdea.edu.co/bitstream/tdea/2780/2/license.txt |
bitstream.checksum.fl_str_mv |
748af4916ce4858833e7888f12fc1ccb 00673dcee39d4d0eec6c00a6f663580f 5a88c42a1665ed77ac362bd98ae87f9a 2f9959eaf5b71fae44bbf9ec84150c7a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Tecnologico de Antioquia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1812189289806561280 |
spelling |
Piedrahíta Hernández, Stéfani Andrea6ee1b523-1d2f-4f11-8351-71841fbe404dAltamiranda Saavedra, Mariano Augusto24e8d03f-69f2-4f3b-9982-7a16d1d76798Correa Ochoa, Margarita María79a59312-c373-4e21-8331-f2a4867fd5b62023-04-12T22:51:11Z2023-04-12T22:51:11Z20201360-2276https://dspace.tdea.edu.co/handle/tdea/27801365-3156To categorise and map, at high resolution, the risk of malaria incidence in the Pacificregion, the main malaria-endemic region of Colombia.methodsThe relationship between the environmental variables Normalized Difference VegetationIndex Normalized Difference Water Index, Topographic Wetness Index, precipitation andtemperature with the observed Annual Parasitic Index was evaluated using a generalised linear model.An incidence risk map at a resolution of 1 km2was constructed and projected to the entire endemicregion. Associations of malaria risk categories with both presence records and co-occurrence of thethree main malaria vectors were determined.resultsA significant correlation was found for the incidence of malaria with precipitation andNormalized Difference Vegetation Index (R2= 0.98,P<0.05), whereas there was no significantcorrelation with the remaining environmental and topographic variables. Moderate- to high-risk areaswere located mainly in central Choc o Department along the San Juan and Atrato rivers and in areaswest of the Cauca River and Pacific lowlands of the Andes Mountains. There was a statisticallysignificant relationship for the presence of the two main vectorsAnopheles darlingiandAnophelesnuneztovariwith the high malaria risk category. Furthermore, malaria risk was directly proportionalto the number of co-occurring vector species.conclusionsThe map obtained provides useful information on the risk of malaria in particularplaces of the Colombian Pacific region. The data can be used by public entities to optimise theallocation of economic resources for vector control interventions and surveillance.keywordsmalaria, incidence, risk,Anopheles, environmental variables, Colombia8 páginasapplication/pdfengBlackwell Scientific PublicationsReino Unidohttps://onlinelibrary.wiley.com/doi/epdf/10.1111/tmi.13443Spatial fine-resolution model of malaria risk for the Colombian Pacific regionArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pacífico colombiano10318102425Tropical Medicine and International HealthOMS. Organizaci on Mundial de la Salud. 2019. Consulted25 November 2019. (Available from: https://apps.who.int/iris/bitstream/handle/10665/275867/9789241565653-eng.pdf?ua=1).NS. Instituto Nacional de Salud. 2019. Consulted 25November 2019. (Available from: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2019%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%204.pdf.)Guti errez LA, Naranjo N, Jaramillo LMet al. Natural infec-tivity ofAnophelesspecies from the Pacific and AtlanticRegions of Colombia.Acta Tr opica2008:107:99–105Fajardo P, Alzate A.Anopheles nuneztovaricomo vector demalaria en el Bajo Calima, Buenaventura, Colombia.Colom-bia M edica1987:18:14–18.Naranjo-D ıaz N, Sallum MA, Correa MM. Populationdynamics ofAnopheles nuneztovariin Colombia.InfectGenet Evol2016:45:56–65Naranjo-D ıaz N, Altamiranda M, Luckhart S, Conn JE,Correa MM. Malaria vectors in ecologically heterogeneouslocalities of the Colombian Pacific Region.PLoS One2014:9: e103769Naranjo-D ıaz N, Rosero DA, R ua-Uribe G, Luckhart S,Correa MM. Abundance, behavior and entomological inocu-lation rates of anthropophilic anophelines from a primaryColombian malaria endemic area.Parasites Vectors2013:6:61Vasquez-Jimenez JM, Ar evalo-Herrera M, Henao-Giraldo Jet al. Consistent prevalence of asymptomatic infections inmalaria endemic populations in Colombia over time.Malaria J2016:15: 70Chaparro P, Soto E, Padilla J, Vargas D. Estimaci on del sub-registro de casos de paludismo en diez municipios de lacosta del Pac ıfico nari~nense durante 2009.Biom edica2012:32:29–37Chaparro P, Padilla J, Vallejo AF, Herrera S. Characteriza-tion of a malaria outbreak in Colombia in 2010.Malaria J2013:12: 330Macdonald G.The Epidemiology and Control of Malaria.London: Oxford University Press; 1957.Macdonald G.The Epidemiology and Control of Malaria.London: Oxford University Press; 1957.Blanford JI, Blanford S, Crane RGet al. Implications oftemperature variation for malaria parasite developmentacross Africa.Sci Rep2013:3: 1300Giardina F, Gosoniu L, Konate Let al. Estimating the bur-den of malaria in Senegal: Bayesian Zero-Inflated BinomialGeostatistical Modeling of the MIS 2008 Data.PLoS One2012:7: e32625Zacar ıas OP, Majlender P. Comparison of infant malariaincidence in districts of Maputo province, Mozambique.Malaria J2011:10: 93.Achcar JA, Mart ınez EZ, Souza ADPd, Tachibana VM,Flores EF. Use of Poisson spatiotemporal regression modelsfor the Brazilian Amazon Forest: malaria count data.RevSoc Brasil Med Trop2011:44: 749–754.de Oliveira EC, dos Santos ES, Zeilhofer P, Souza-Santos R,Atanaka-Santos M. Geographic information systems andlogistic regression for high-resolution malaria risk mappingin a rural settlement of the southern Brazilian Amazon.Malaria J2013:12: 420Chirombo J, Lowe R, Kazembe L. Using Structured AdditiveRegression Models to estimate risk factors of malaria: Anal-ysis of 2010 Malawi malaria indicator survey data.PLoSOne2014:9: e101116Grillet ME, Barrera R, Martinez JE, Berti J, Fortin MJ.Disentangling the effect of local and global spatial variationon a mosquito-borne infection in a Neotropical heteroge-neous environment.Tropical Med Hyg2010:82: 194–201.Altamiranda-Saavedra M, Porcasi X, Scavuzzo CM, CorreaMM. Downscaling incidence risk mapping for a Colombianmalaria endemic region.Tropical Med Int Health2018:23:1101–1109Comes T, Hiete M, Wijngaards N, Schultmann F. Decisionmaps: A framework for multi-criteria decision support undersevere uncertainty.Decis Support Syst2011:52: 108–118.Alimi TO, Fuller DO, Herrera SVet al. A multi-criteriadecision analysis approach to assessing malaria risk innorthern South America.BMC Public Health2016:16:221.Adigun AB, Gajere EN, Oresanya O, Vounatsou P. Malariarisk in Nigeria: Bayesian geostatistical modelling of 2010malaria indicator survey data.Malaria J2015:14: 156Reid H, Haque U, Clements ACAet al. Mapping malariarisk in Bangladesh using Bayesian geostatistical models.AmJ Tropical Med Hyg2010:83: 861–867Rinc on-Romero ME, Londo~no JE. Mapping malaria riskusing environmental and anthropic variables.Rev BrasilEpidemiol2009:12: 338–354.Fuller DO, Troyo A, Alimi TO, Beier JC. Participatory riskmapping of malaria vector exposure in northern SouthAmerica using environmental and population data.ApplGeogr2014:48:1–7IGAC. Instituto Geogr afico Agustin Codazzi. Atlas deColombia.5th ed. Publicaci on Institucional, Imprenta Nacio-nal de Colombia: Bogot a 2002; 342.Gonz alez L, Vega J, Ram ırez JL, Bedoya G, Carmona-Fon-seca J, Maestre A. Relationship between genotypes of theDuffy Blood groups and malarial infection in different eth-nic groups of Choco, Colombia.Colombia M edica (Cali)2012:43: 189–195INS. Instituto Nacional de Salud. 2018. Consulted el 07November 2018. (Available from: http://www.ins.gov.co/boletin-epidemiologico/Boletn%20Epidemiolgico/2018%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%2052%20-pdf.2018.)ArcGIS. Environmental Systems Research Institute. Version10.2. California: Redlands 2014.Dambach P, Machault V, Lacaux JP, Vignolles C, Sie A,Sauerborn R. Utilization of combined remote sensing techniques to detect environmental variables influencingmalaria vector densities in rural West Africa.Int J HealthGeographics2012:11:8Drisya SK, Roshni T. Spatiotemporal variability of soilmoisture and drought estimation using a distributed hydro-logical model.Integ Disast Sci Manag2018:1: 451–460.Gao B. NDWI-A normalized difference water index forremote sensing of vegetation liquid water from space.Remote Sens Environ1996:58: 257–266Meles MB, Younger SE, Jackson CR, Du E, Drover D. Wet-ness index based on landscape position and topography(WILT): Modifying TWI to reflect landscape position.JEnviron Manag2020:255: 109863tefani A, Roux E, Fotsing J-M, Carme B. Studying relation-ships between environment and malaria incidence in Camopi(French Guiana) through the objective selection of buffer-based landscape characterisations.Int J Health Geographics2011:10: 65Olano VA, Brochero HL, S aenz R, Qui~nones ML, MolinaJA. Mapas preliminares de la distribuci on de especies deAnophelesvectores de malaria en Colombia.Biom edica2001:21: 402–408Guti errez LA, Naranjo NJ, Cienfuegos AVet al. Populationstructure analyses and demographic history of the malariavectorAnopheles albimanusfrom the Caribbean and thePacific regions of Colombia.Malaria J2009:8: 259.Ferrao JL, Niquisse S, Mendes JM, Painho M. Mapping andmodelling malaria risk areas using climate, socio-demo-graphic and clinical variables in Chimoio, Mozambique.IntJ Environ Res Public Health2018:15: 795Gemperli A, Sogoba N, Fondjo Eet al. Mapping malariatransmission in West and Central Africa.Tropical Med IntHealth2006:11: 1032–1046Rai PK, Nathawat MS, Rai S. Using the information valuemethod in a geographic information system and remotesensing for malaria mapping: a case study from India.JAmbulat Care Manag2013:21:43–52.Dantur Juri MJ, Estallo E, Almiron Wet al. Satellite-derivedNDVI, LST, and climatic factors driving the distributionand abundance ofAnophelesmosquitoes in a former malari-ous area in northwest Argentina.J Vector Ecol2015:40:36–45Jaime B, Gerson JPV, Jos e RGV, Joaqu ın VDH. Econom ıasdel Pac ıfico colombiano. Colecci on de Econom ıa Regional.Banco de la Rep ublica. 2008:182de Oliveira EC, dos Santos ES, Zeilhofer P, Souza-Santos R,Atanaka-Santos M. Spatial patterns of malaria in a landreform colonization project, Juruena municipality, MatoGrosso, Brazil.Malaria J2011:10: 177Bogh C, Clarke SE, Jawara M, Thomas CJ, Lindsay SW.Localized breeding of theAnopheles gambiaecomplex (Dip-tera: Culicidae) along the River Gambia, West Africa.BullEntomol Res2003:93: 279–287Ahumada ML, Pareja PX, Buitrago LS, Qui~nones ML. Com-portamiento de picadura de Anopheles darlingi Root, 1926(Diptera: Culicidae) y su asociaci on con la transmisi on demalaria en Villavicencio (Colombia).Biom edica2013:33:241–250Kazembe LN. Spatial modelling and risk factors of malariaincidence in northern Malawi.Acta Tr opica2007:102:126–137.Villar D, Schaeffer DJ. Disarmament is the new war, gold isthe new opium, and ecohealth is the historic victim.EnvironHealth Insights2019:13: 1178630219862241.Naranjo-D ıaz N, Altamiranda-Saavedra M, Correa MM.Anophelesspecies composition and entomological parame-ters in malaria endemic localities of North West Colombia.Acta Tr opica2019:190:13–21Conde M, Pareja PX, Orjuela LIet al. Larval habitat char-acteristics of the main malaria vectors in the most endemicregions of Colombia: potential implications for larval con-trol.Malaria J2015:14: 476.ittor AY, Pan W, Gilman RHet al. Linking deforestationto malaria in the Amazon: characterization of the breedinghabitat of the principal malaria vector,Anopheles darlingi.Am J Tropical Med Hyg2009:81:5–12Higuera A, Ram ırez JD. The Colombian peace deal and itsimpact on the evolution of tropical diseases agents.InfecGenet Evol2018:57: 145–150.astellanos A, Chaparro-Narv aez P, Morales-Plaza CDet al. Malaria in gold-mining areas in Colombia.MemoriesInstitute Oswaldo Cruz2016:111:59–66.Negret PJ, Allan J, Braczkowski A, Maron M, Watson JEM.Need for conservation planning in postconflict Colombia.Conserv Biol2017:31: 499–500uller DO, Alimi T, Herrera S, Beier JC, Qui~nones ML.Spatial association between malaria vector species richnessand malaria in Colombia.Acta Tr opica2016:158: 197–200MalariaMaláriaRiskRiesgoRiscoColombiaColômbiaAnophelesIncidenciaIncidenceIncidênciaEnvironmental variablesTEXTSpatial fine‐resolution model of malaria risk for the Colombian Pacific region.pdf.txtSpatial fine‐resolution model of malaria risk for the Colombian Pacific region.pdf.txtExtracted texttext/plain2416https://dspace.tdea.edu.co/bitstream/tdea/2780/3/Spatial%20fine%e2%80%90resolution%20model%20of%20malaria%20risk%20for%20the%20Colombian%20Pacific%20region.pdf.txt748af4916ce4858833e7888f12fc1ccbMD53open accessTHUMBNAILSpatial fine‐resolution model of malaria risk for the Colombian Pacific region.pdf.jpgSpatial fine‐resolution model of malaria risk for the Colombian Pacific region.pdf.jpgGenerated Thumbnailimage/jpeg13827https://dspace.tdea.edu.co/bitstream/tdea/2780/4/Spatial%20fine%e2%80%90resolution%20model%20of%20malaria%20risk%20for%20the%20Colombian%20Pacific%20region.pdf.jpg00673dcee39d4d0eec6c00a6f663580fMD54open accessORIGINALSpatial fine‐resolution model of malaria risk for the Colombian Pacific region.pdfSpatial fine‐resolution model of malaria risk for the Colombian Pacific region.pdfapplication/pdf7915008https://dspace.tdea.edu.co/bitstream/tdea/2780/1/Spatial%20fine%e2%80%90resolution%20model%20of%20malaria%20risk%20for%20the%20Colombian%20Pacific%20region.pdf5a88c42a1665ed77ac362bd98ae87f9aMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/2780/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accesstdea/2780oai:dspace.tdea.edu.co:tdea/27802023-04-13 03:02:37.68open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |