Seasonal drought limits tree species across the Neotropics

Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This implies...

Full description

Autores:
Esquivel Muelbert, Adriane
Baker, Timothy R.
Dexter, Kyle G.
Lewis, Simon L.
Ter Steege, Hans
López Gonzáles, Gabriela
Monteagudo Mendoza, Abel Lorenzo
Brienen, Roel Jacobus Wilhelmus
Feldpausch, Ted R.
Pitman, Nigel Charles Andrew
Alonso, Alfonso
van der Heijden, Geertje
Peña Claros, Marielos
Ahuite Reategui, Manuel Augusto
Alexiades, Miguel
Álvarez Dávila, Esteban
Araujo Murakami, Alejandro
Arroyo Padilla, Luzmila
Aulestia, Milton
Balslev, Henrik
Barroso, Jorcely Gonçalves
Boot, Rene
Cano, Ángela
Chama Moscoso, Víctor
Comiskey, James A.
Cornejo Valverde, Fernando
Dallmeier, Francisco
Daly, Douglas C.
Dávila Cardozo, Nallarett Marina
Duivenvoorden, Joost F.
Duque Montoya, Álvaro Javier
Erwin, Terry Lee
Di Fiore, Anthony
Fredericksen, Todd
Fuentes Claros, Alfredo Fernando
García Villacorta, Roosevelt
Gonzáles Ojeda, Therany
Guevara Andino, Juan Ernesto
Honorio Coronado, Eurídice Nora
Huamantupa Chuquimaco, Isau
Jiménez Rojas, Eliana María
Killeen, Timothy J.
Malhi, Yadvinder Singh
Mendoza, Casimiro
Mogollón, Hugo
Møller Jørgensen, Peter
Montero Montero, Juan Carlos
Mostacedo, Bonifacio
Nauray Huari, William
Neill, David
Núñez Vargas, Mario Percy
Palacios, Sonia
Palacios Cuenca, Walter Armando
Pallqui Camacho, Nadir Carolina
Peacock, Julie
Phillips Bernal, Juan Fernando
Pickavance, Georgia C.
Quesada, Carlos Alberto
Ramírez Angulo, Hirma
Restrepo Correa, Zorayda
Reynel Rodríguez, Carlos Augusto
Ríos Paredes, Marcos Antonio
Peñuela Mora, María Cristina
Sierra, Rodrigo
Silveira, Marcos
Stevenson Díaz, Pablo Roberto
Stropp, Juliana
Terborgh, John Whittle
Tirado, Milton
Toledo, Marisol
Torres Lezama, Armando
Umaña, María Natalia
Urrego Giraldo, Ligia Estela
Vásquez Martínez, Rodolfo
Valenzuela Gamarra, Luis
Vela, César I. A.
Vilanova Torre, Emilio Javier
Vos, Vincent Antoine
Von Hildebrand, Patricio
Vriesendorp, Corine Françoise
Yung-Ho, Ophelia Wang
Young, Kenneth R.
Zartman, Charles Eugene
Phillips, Oliver Lawrence
Tipo de recurso:
Article of investigation
Fecha de publicación:
2017
Institución:
Tecnológico de Antioquia
Repositorio:
Repositorio Tdea
Idioma:
eng
OAI Identifier:
oai:dspace.tdea.edu.co:tdea/3984
Acceso en línea:
https://dspace.tdea.edu.co/handle/tdea/3984
Palabra clave:
Zona tropical
Zone tropicale
Tropical zones
Estrés de sequia
Stress dû à la sécheresse
Drought stress
Stress devido à seca
Árboles
Arbre
Trees
Árvore
Bosques tropicales
Forêt tropicale
Tropical forests
Floresta tropical
Amenaza natural
Aléas naturels
Natural hazards
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id RepoTdea2_092a8ad7aeb882766551755ff018e6c5
oai_identifier_str oai:dspace.tdea.edu.co:tdea/3984
network_acronym_str RepoTdea2
network_name_str Repositorio Tdea
repository_id_str
dc.title.none.fl_str_mv Seasonal drought limits tree species across the Neotropics
title Seasonal drought limits tree species across the Neotropics
spellingShingle Seasonal drought limits tree species across the Neotropics
Zona tropical
Zone tropicale
Tropical zones
Estrés de sequia
Stress dû à la sécheresse
Drought stress
Stress devido à seca
Árboles
Arbre
Trees
Árvore
Bosques tropicales
Forêt tropicale
Tropical forests
Floresta tropical
Amenaza natural
Aléas naturels
Natural hazards
title_short Seasonal drought limits tree species across the Neotropics
title_full Seasonal drought limits tree species across the Neotropics
title_fullStr Seasonal drought limits tree species across the Neotropics
title_full_unstemmed Seasonal drought limits tree species across the Neotropics
title_sort Seasonal drought limits tree species across the Neotropics
dc.creator.fl_str_mv Esquivel Muelbert, Adriane
Baker, Timothy R.
Dexter, Kyle G.
Lewis, Simon L.
Ter Steege, Hans
López Gonzáles, Gabriela
Monteagudo Mendoza, Abel Lorenzo
Brienen, Roel Jacobus Wilhelmus
Feldpausch, Ted R.
Pitman, Nigel Charles Andrew
Alonso, Alfonso
van der Heijden, Geertje
Peña Claros, Marielos
Ahuite Reategui, Manuel Augusto
Alexiades, Miguel
Álvarez Dávila, Esteban
Araujo Murakami, Alejandro
Arroyo Padilla, Luzmila
Aulestia, Milton
Balslev, Henrik
Barroso, Jorcely Gonçalves
Boot, Rene
Cano, Ángela
Chama Moscoso, Víctor
Comiskey, James A.
Cornejo Valverde, Fernando
Dallmeier, Francisco
Daly, Douglas C.
Dávila Cardozo, Nallarett Marina
Duivenvoorden, Joost F.
Duque Montoya, Álvaro Javier
Erwin, Terry Lee
Di Fiore, Anthony
Fredericksen, Todd
Fuentes Claros, Alfredo Fernando
García Villacorta, Roosevelt
Gonzáles Ojeda, Therany
Guevara Andino, Juan Ernesto
Honorio Coronado, Eurídice Nora
Huamantupa Chuquimaco, Isau
Jiménez Rojas, Eliana María
Killeen, Timothy J.
Malhi, Yadvinder Singh
Mendoza, Casimiro
Mogollón, Hugo
Møller Jørgensen, Peter
Montero Montero, Juan Carlos
Mostacedo, Bonifacio
Nauray Huari, William
Neill, David
Núñez Vargas, Mario Percy
Palacios, Sonia
Palacios Cuenca, Walter Armando
Pallqui Camacho, Nadir Carolina
Peacock, Julie
Phillips Bernal, Juan Fernando
Pickavance, Georgia C.
Quesada, Carlos Alberto
Ramírez Angulo, Hirma
Restrepo Correa, Zorayda
Reynel Rodríguez, Carlos Augusto
Ríos Paredes, Marcos Antonio
Peñuela Mora, María Cristina
Sierra, Rodrigo
Silveira, Marcos
Stevenson Díaz, Pablo Roberto
Stropp, Juliana
Terborgh, John Whittle
Tirado, Milton
Toledo, Marisol
Torres Lezama, Armando
Umaña, María Natalia
Urrego Giraldo, Ligia Estela
Vásquez Martínez, Rodolfo
Valenzuela Gamarra, Luis
Vela, César I. A.
Vilanova Torre, Emilio Javier
Vos, Vincent Antoine
Von Hildebrand, Patricio
Vriesendorp, Corine Françoise
Yung-Ho, Ophelia Wang
Young, Kenneth R.
Zartman, Charles Eugene
Phillips, Oliver Lawrence
dc.contributor.author.none.fl_str_mv Esquivel Muelbert, Adriane
Baker, Timothy R.
Dexter, Kyle G.
Lewis, Simon L.
Ter Steege, Hans
López Gonzáles, Gabriela
Monteagudo Mendoza, Abel Lorenzo
Brienen, Roel Jacobus Wilhelmus
Feldpausch, Ted R.
Pitman, Nigel Charles Andrew
Alonso, Alfonso
van der Heijden, Geertje
Peña Claros, Marielos
Ahuite Reategui, Manuel Augusto
Alexiades, Miguel
Álvarez Dávila, Esteban
Araujo Murakami, Alejandro
Arroyo Padilla, Luzmila
Aulestia, Milton
Balslev, Henrik
Barroso, Jorcely Gonçalves
Boot, Rene
Cano, Ángela
Chama Moscoso, Víctor
Comiskey, James A.
Cornejo Valverde, Fernando
Dallmeier, Francisco
Daly, Douglas C.
Dávila Cardozo, Nallarett Marina
Duivenvoorden, Joost F.
Duque Montoya, Álvaro Javier
Erwin, Terry Lee
Di Fiore, Anthony
Fredericksen, Todd
Fuentes Claros, Alfredo Fernando
García Villacorta, Roosevelt
Gonzáles Ojeda, Therany
Guevara Andino, Juan Ernesto
Honorio Coronado, Eurídice Nora
Huamantupa Chuquimaco, Isau
Jiménez Rojas, Eliana María
Killeen, Timothy J.
Malhi, Yadvinder Singh
Mendoza, Casimiro
Mogollón, Hugo
Møller Jørgensen, Peter
Montero Montero, Juan Carlos
Mostacedo, Bonifacio
Nauray Huari, William
Neill, David
Núñez Vargas, Mario Percy
Palacios, Sonia
Palacios Cuenca, Walter Armando
Pallqui Camacho, Nadir Carolina
Peacock, Julie
Phillips Bernal, Juan Fernando
Pickavance, Georgia C.
Quesada, Carlos Alberto
Ramírez Angulo, Hirma
Restrepo Correa, Zorayda
Reynel Rodríguez, Carlos Augusto
Ríos Paredes, Marcos Antonio
Peñuela Mora, María Cristina
Sierra, Rodrigo
Silveira, Marcos
Stevenson Díaz, Pablo Roberto
Stropp, Juliana
Terborgh, John Whittle
Tirado, Milton
Toledo, Marisol
Torres Lezama, Armando
Umaña, María Natalia
Urrego Giraldo, Ligia Estela
Vásquez Martínez, Rodolfo
Valenzuela Gamarra, Luis
Vela, César I. A.
Vilanova Torre, Emilio Javier
Vos, Vincent Antoine
Von Hildebrand, Patricio
Vriesendorp, Corine Françoise
Yung-Ho, Ophelia Wang
Young, Kenneth R.
Zartman, Charles Eugene
Phillips, Oliver Lawrence
dc.subject.agrovoc.none.fl_str_mv Zona tropical
Zone tropicale
Tropical zones
Estrés de sequia
Stress dû à la sécheresse
Drought stress
Stress devido à seca
Árboles
Arbre
Trees
Árvore
Bosques tropicales
Forêt tropicale
Tropical forests
topic Zona tropical
Zone tropicale
Tropical zones
Estrés de sequia
Stress dû à la sécheresse
Drought stress
Stress devido à seca
Árboles
Arbre
Trees
Árvore
Bosques tropicales
Forêt tropicale
Tropical forests
Floresta tropical
Amenaza natural
Aléas naturels
Natural hazards
dc.subject.armarc.none.fl_str_mv Floresta tropical
dc.subject.unesco.none.fl_str_mv Amenaza natural
Aléas naturels
Natural hazards
description Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions predicts a nested pattern of taxa distribution from wet to dry areas. However, this ‘dry-tolerance’ hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the ‘dry tolerance’ hypothesis has broad applicability in the world’s most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2023-10-23T21:36:19Z
dc.date.available.none.fl_str_mv 2023-10-23T21:36:19Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0906-7590
dc.identifier.uri.none.fl_str_mv https://dspace.tdea.edu.co/handle/tdea/3984
dc.identifier.eissn.spa.fl_str_mv 1600-0587
identifier_str_mv 0906-7590
1600-0587
url https://dspace.tdea.edu.co/handle/tdea/3984
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 629
dc.relation.citationissue.spa.fl_str_mv 5
dc.relation.citationstartpage.spa.fl_str_mv 618
dc.relation.citationvolume.spa.fl_str_mv 40
dc.relation.ispartofjournal.spa.fl_str_mv Ecography
dc.relation.references.spa.fl_str_mv Aguilar, E. et al. 2005. Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. – J. Geophys. Res. 110: D23107.
Allen, A. P. et al. 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. – Science 297: 1545–1548.
Baltzer, J. L. and Davies, S. J. 2012. Rainfall seasonality and pest pressure as determinants of tropical tree species' distributions. – Ecol. Evol. 2: 2682–2694.
Baltzer, J. L. et al. 2008. The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. – Funct. Ecol. 22: 221–231.
Brenes-Arguedas, T. et al. 2009. Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. – Ecology 90: 1751–1761.
Brenes-Arguedas, T. et al. 2011. Do differences in understory light contribute to species distributions along a tropical rainfall gradient? – Oecologia 166: 443–456.
Brenes-Arguedas, T. et al. 2013. Plant traits in relation to the performance and distribution of woody species in wet and dry tropical forest types in Panama. – Funct. Ecol. 27: 392–402.
Brienen, R. J. W. et al. 2011. Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species. – Trees 25: 103–113.
Butt, N. et al. 2008. Floristic and functional affiliations of woody plants with climate in western Amazonia. – J. Biogeogr. 35: 939–950.
Butt, N. et al. 2014. Shifting dynamics of climate-functional groups in old-growth Amazonian forests. – Plant Ecol. Divers. 7: 267–279.
Chave, J. et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. – Global Change Biol. 20: 3177–3190.
Chen, I. C. et al. 2009. Elevation increases in moth assemblages over 42 years on a tropical mountain. – Proc. Natl Acad. Sci. USA 106: 1479–1483.
Clinebell, R. R. et al. 1995. Prediction of neotropical tree and liana species richness from soil and climatic data. – Biodivers. Conserv. 4: 56–90.
Condit, R. et al. 2013. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. – Proc. Natl Acad. Sci. USA 110: 5064–5068.
Currie, D. J. et al. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. – Ecol. Lett. 7: 1121–1134.
da Costa, A. C. L. et al. 2010. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. – New Phytol. 187: 579–591.
Dallas, T. 2014. metacom: an R package for the analysis of metacommunity structure. – Ecography 37: 402–405.
Dexter, K. G. et al. 2012. Historical effects on beta diversity and community assembly in Amazonian trees. – Proc. Natl Acad. Sci. USA 109: 7787–7792.
Dobzhansky, T. 1950. Evolution in the tropics. – Am. Sci. 38: 209–221.
Engelbrecht, B. M. J. et al. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. – Nature 447: 80–82.
Erkens, R. H. J. et al. 2007. A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America. – Mol. Phylogenet. Evol. 44: 399–411.
Fauset, S. et al. 2012. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. – Ecol. Lett. 15: 1120–1129.
Feeley, K. J. et al. 2011. Directional changes in the species composition of a tropical forest. – Ecology 92: 871–882.
Fine, P. V. A. 2001. An evaluation of the geographic area hypothesis using the latitudinal gradient in North American tree diversity. – Evol. Ecol. Res. 3: 413–428.
Fortin, M. J. and Payette, S. 2002. How to test the significance of the relation between spatially autocorrelated data at the landscape scale: a case study using fire and forest maps. – Ecoscience 9: 213–218.
Gaviria, J. and Engelbrecht, B. M. J. 2015. Effects of drought, pest pressure and light availability on seedling establishment and growth: their role for distribution of tree species across a tropical rainfall gradient. – PLoS One 10: e0143955.
Gentry, A. H. 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America, pleistocene climatic fluctuations, or an accident of the Andean orogeny? – Ann. Missouri Bot. Gard. 69: 557–593.
Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. – Ann. Missouri Bot. Gard. 75: 1–34.
Gentry, A. H. 1990. Floristic similarities and differences between southern Central America and upper and central Amazonia. – In: A. H. Gentry (ed.), Four neotropical rainforests. Yale Univ. Press, pp. 141–157.
Gloor, M. et al. 2013. Intensification of the Amazon hydrological cycle over the last two decades. – Geophys. Res. Lett. 40: 1729–1733.
Harley, P. et al. 2004. Variation in potential for isoprene emissions among Neotropical forest sites. – Global Change Biol. 10: 630–650.
Higgins, M. A. et al. 2011. Geological control of floristic composition in Amazonian forests. – J. Biogeogr. 38: 2136–2149.
Hijmans, R. J. et al. 2005. Very high resolution interpolated climate surfaces for global land areas. – Int. J. Climatol. 25: 1965–1978.
Hoorn, C. et al. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. – Science 330: 927–931.
IPCC 2013. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. – Cambridge Univ. Press.
Jablonski, D. et al. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. – Science 314: 102–106.
Jansson, R. 2003. Global patterns in endemism explained by past climatic change. – Proc. R. Soc. B 270: 583–590.
Janzen, D. H. 1967. Why mountain passes are higher in the tropics. – Am. Nat. 101: 233–249.
Jiménez-Muñoz, J. C. et al. 2013. Spatial and temporal patterns of the recent warming of the Amazon forest. – J. Geophys. Res. 118: 5204–5215.
Klopfer, P. H. 1959. Environmental determinants of faunal diversity. – Am. Nat. 93: 337–342.
Koenker, R. and Bassett, G. 1978. Regression quantiles. – Econometrica 46: 33–50.
Laurance, W. F. et al. 2004. Pervasive alteration of tree communities in undisturbed Amazonian forests. – Nature 428: 171–175.
Leibold, M. A. and Mikkelson, G. M. 2002. Coherence, species turnover, and boundary clumping: elements of meta-community structure. – Oikos 97: 237–250.
Lenters, J. D. and Cook, K. H. 1995. Simulation and diagnosis of the regional summertime precipitation climatology of South America. – J. Clim. 8: 2988–3005.
Li, W. H. et al. 2008. Observed change of the standardized precipitation index, its potential cause and implications to future climate change in the Amazon region. – Phil. Trans. R. Soc. B 363: 1767–1772.
Lopez-Gonzalez, G. et al. 2009. ForestPlots.net database. – < www.forestplots.net >.
Lopez-Gonzalez, G. et al. 2011. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. – J. Veg. Sci. 22: 610–613.
MacArthur, R. H. 1972. Geographical ecology: patterns in the distribution of species. – Princeton Univ. Press.
Malhi, Y. and Wright, J. 2004. Spatial patterns and recent trends in the climate of tropical rainforest regions. – Phil. Trans. R. Soc. B 359: 311–329.
Malhi, Y. et al. 2002. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). – J. Veg. Sci. 13: 439–450.
Malhi, Y. et al. 2009. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. – Proc. Natl Acad. Sci. USA 106: 20610–20615.
Manly, B. F. J. 1997. Randomization, bootstrap and Monte Carlo methods in biology. – Chapman and Hall.
Marengo, J. A. et al. 2011. The drought of 2010 in the context of historical droughts in the Amazon region. – Geophys. Res. Lett. 38: L12703.
Markesteijn, L. et al. 2011. Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance. – New Phytol. 191: 480–495.
Martinez, R. V. and Phillips, O. L. 2000. Allpahuayo: floristics, structure, and dynamics of a high-diversity forest in amazonian Peru. – Ann. Missouri Bot. Gard. 87: 499–527.
Morin, X. and Lechowicz, M. J. 2013. Niche breadth and range area in North American trees. – Ecography 36: 300–312.
Morueta-Holme, N. et al. 2013. Habitat area and climate stability determine geographical variation in plant species range sizes. – Ecol. Lett. 16: 1446–1454.
Nelson, B. W. et al. 1990. Endemism centres, refugia and botanical collection density in Brazilian Amazonia. – Nature 345: 714–716.
Nepstad, D. C. et al. 2007. Mortality of large trees and lianas following experimental drought in an amazon forest. – Ecology 88: 2259–2269.
New, M. et al. 2002. A high-resolution data set of surface climate over global land areas. – Clim. Res. 21: 1–25.
Normand, S. et al. 2009. Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients. – Global Ecol. Biogeogr. 18: 437–449.
Phillips, O. and Miller, J. S. 2002. Global patterns of plant diversity: Alwyn H. Gentry's forest transect data set. – Missouri Botanical Press.
Phillips, O. L. et al. 2003. Efficient plot-based floristic assessment of tropical forests. – J. Trop. Ecol. 19: 629–645.
Pither, J. 2003. Climate tolerance and interspecific variation in geographic range size. – Proc. R. Soc. B 270: 475–481.
Pitman, N. C. A. et al. 2002. A comparison of tree species diversity in two upper Amazonian forests. – Ecology 83: 3210–3224.
Poorter, L. and Markesteijn, L. 2008. Seedling traits determine drought tolerance of tropical tree species. – Biotropica 40: 321–331.
Presley, S. J. et al. 2010. A comprehensive framework for the evaluation of metacommunity structure. – Oikos 119: 908–917.
Quesada, C. A. et al. 2010. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. – Biogeosciences 7: 1515–1541.
Quesada, C. A. et al. 2012. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. – Biogeosciences 9: 2203–2246.
Richardson, J. E. et al. 2001. Rapid diversification of a species-rich genus of neotropical rain forest trees. – Science 293: 2242–2245.
Ricklefs, R. E. 2004. A comprehensive framework for global patterns in biodiversity. – Ecol. Lett. 7: 1–15.
Rohde, K. 1992. Latitudinal gradients in species-diversity – the search for the primary cause. – Oikos 65: 514–527.
Rosenzweig, M. L. 1992. Species diversity gradients: we know more and less than we thought. – J. Mammal. 73: 715–730.
Sastre, P. and Lobo, J. M. 2009. Taxonomist survey biases and the unveiling of biodiversity patterns. – Biol. Conserv. 142: 462–467.
Slatyer, R. A. et al. 2013. Niche breadth predicts geographical range size: a general ecological pattern. – Ecol. Lett. 16: 1104–1114.
Spasojevic, M. J. et al. 2014. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients. – J. Ecol. 102: 447–455.
Spear, E. R. et al. 2015. Do pathogens limit the distributions of tropical trees across a rainfall gradient? – J. Ecol. 103: 165–174.
ter Steege, H. et al. 2003. A spatial model of tree α-diversity and tree density for the Amazon. – Biodivers. Conserv. 12: 2255–2277.
ter Steege, H. et al. 2013. Hyperdominance in the amazonian tree flora. – Science 342: 1243092.
Terborgh, J. 1973. On the notion of favorableness in plant ecology. – Am. Nat. 107: 481–501.
van der Sleen, P. et al. 2015. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. – Nat. Geosci. 8: 24–28.
von Humboldt, A. 1808. Ansichten der Natur. – Cotta.
Wallace, A. R. 1878. Tropical nature, and other essays. – Macmillan.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Neotrópico
dc.publisher.spa.fl_str_mv Wiley Open Access
dc.publisher.place.spa.fl_str_mv Reino Unido
dc.source.spa.fl_str_mv https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.01904
institution Tecnológico de Antioquia
bitstream.url.fl_str_mv https://dspace.tdea.edu.co/bitstream/tdea/3984/4/Seasonal%20drought%20limits%20tree%20species%20across%20the%20Neotropics.pdf.jpg
https://dspace.tdea.edu.co/bitstream/tdea/3984/3/Seasonal%20drought%20limits%20tree%20species%20across%20the%20Neotropics.pdf.txt
https://dspace.tdea.edu.co/bitstream/tdea/3984/2/license.txt
https://dspace.tdea.edu.co/bitstream/tdea/3984/1/Seasonal%20drought%20limits%20tree%20species%20across%20the%20Neotropics.pdf
bitstream.checksum.fl_str_mv 7f4661f19cb470d2c07befc3751a686c
3b9b463d69c5b8b1d241fc6ad0cec47f
2f9959eaf5b71fae44bbf9ec84150c7a
8e388ed94604941573ad2654355d4a7d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Tecnologico de Antioquia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1812189227200282624
spelling Esquivel Muelbert, Adrianee9d3eb8a-8508-40a8-8f0e-f79c6595de0cBaker, Timothy R.7f4d01d5-99f0-4259-808e-ccfcd0b428c5Dexter, Kyle G.32b7e6d0-f7a6-4cda-b835-d890008e7ff5Lewis, Simon L.60a68ea6-43d1-4896-9013-4692a89ed041Ter Steege, Hans69911633-6362-4f40-8328-941789d5085eLópez Gonzáles, Gabrielab98e08af-4293-4514-be65-f1c86ed5b8c3Monteagudo Mendoza, Abel Lorenzo4e114f8a-02fe-4a4b-b1cc-8a422bdda5d3Brienen, Roel Jacobus Wilhelmus490e3b4d-2ebd-4673-b104-4b62c172b25bFeldpausch, Ted R.0a0d59d6-251f-4ce4-92bd-233cd6ed2ac0Pitman, Nigel Charles Andrew62a74cce-b33c-48b2-868d-0392cfec766bAlonso, Alfonso8d730390-e134-41f6-9890-234940bf06bfvan der Heijden, Geertje5c8e3088-0a4c-4172-976f-b5601298fd5ePeña Claros, Marielos0bc9be34-be6f-46d4-95a5-3555c2a53e41Ahuite Reategui, Manuel Augustob3e577a4-289e-48a7-abc8-cc474cf70a08Alexiades, Migueld364a20a-98f4-43d3-b248-eccd0a9d1eb7600Álvarez Dávila, Esteban26b7a281-24dc-46cc-b138-b2d161ba5857Araujo Murakami, Alejandrodc973041-0478-404e-a654-96b43b6dd6eeArroyo Padilla, Luzmilaa0edfb5d-fcdd-420d-b023-75efc94968de600Aulestia, Milton0cef1d8f-f8fa-4223-b91d-b227e551fab0Balslev, Henrik3dd1f082-9fb9-45a7-9b49-3e89c8dd08daBarroso, Jorcely Gonçalvesdd7df898-54c8-42a4-a3d4-8017f82d477cBoot, Rene938e9280-74c8-4563-ac8b-eb3e9ebf1dcaCano, Ángela3f2ecf17-6957-465a-9833-bfdf9c17f552Chama Moscoso, Víctor6b6b0d2e-e5d2-4f25-a0fd-0deb52afc7b2Comiskey, James A.b9719407-eb74-4337-b75d-c4d010be74b4Cornejo Valverde, Fernandoe8c2f060-19a7-4ba8-a07a-821c4e61022f600Dallmeier, Francisco93a69f1f-125c-4bd7-a51a-73e6e490e6f4600Daly, Douglas C.7e85e2bd-527b-4926-8457-9904e5076019Dávila Cardozo, Nallarett Marina69cb9904-ceb5-4a2c-8642-2eaf0a9c1ff8Duivenvoorden, Joost F.c666b63b-808d-4951-8a57-4e8a7af53aeb600Duque Montoya, Álvaro Javier680dbc0a-713f-4176-b85e-9b4b4f64c0f6Erwin, Terry Leea4ec848a-d1a2-4ca8-bedb-3fea9688b4e3Di Fiore, Anthonyca778d2f-5464-4989-81f4-98ddc26e97bf600Fredericksen, Toddaaa9731d-f52c-4a7f-8aa6-c2b9eb509534600Fuentes Claros, Alfredo Fernando6684cd87-a4e4-4f83-80bc-dc9740cedaf9García Villacorta, Roosevelt44003a34-223e-4975-951e-c9775a5a68cfGonzáles Ojeda, Theranyb7abb68c-a4ed-4e5a-923d-fa2e5139cb09600Guevara Andino, Juan Ernestoabe9c078-00c3-46b4-a181-104175d8db07Honorio Coronado, Eurídice Nora7f0141d1-7f2b-445c-bf38-a492c7d32af9600Huamantupa Chuquimaco, Isau2f907d1b-56f6-4acd-abbd-dfa8f017134a600Jiménez Rojas, Eliana María5219e214-6b8c-415f-8b8c-09542fdb788bKilleen, Timothy J.25d2976c-d9ab-4e4f-ac23-5dc084c37fc9600Malhi, Yadvinder Singh5dd6ae38-507d-4e06-aab3-908d53913d4cMendoza, Casimiroba0c3969-6bf4-4ead-91fd-ce78f856d027Mogollón, Hugof6c361c5-e363-49f4-8b42-15917dda2ae6Møller Jørgensen, Petere9eb5e25-3bc8-4931-90bd-99581e3e90cfMontero Montero, Juan Carlosb659106a-f7cc-40a9-a65e-65fa704d8d38600Mostacedo, Bonifaciofdbb1e8c-4ae7-4669-8515-0db67496617aNauray Huari, William96493322-4d6e-4608-b84a-b0ef95cfad8eNeill, David161d6a96-de48-4b11-b356-e0acf55f327eNúñez Vargas, Mario Percy225771ac-bf29-4a38-a7d0-e36959c667a1Palacios, Soniaa678e251-07d0-42e1-b2f7-aa5976b87352Palacios Cuenca, Walter Armandoc2c91310-c4cd-4a4a-857c-5ca37c0364e2Pallqui Camacho, Nadir Carolina8a367d14-d5fb-43ce-8bbb-96c8b1dd7ad1Peacock, Julie31f28b37-7040-4197-9100-369d21b6bbccPhillips Bernal, Juan Fernandodb57aeaa-7bac-414b-9b10-5afc07ce8b91Pickavance, Georgia C.fa42d43a-823e-4932-a9aa-f6a86fdc3d3a600Quesada, Carlos Alberto1deb0ba4-45e1-4ad8-914e-b58fe849c0f6600Ramírez Angulo, Hirma6d6e024e-8701-4dca-8346-bd25f8cd54f2Restrepo Correa, Zorayda9fccaaa2-0139-4049-ac9b-3bc7b2849abfReynel Rodríguez, Carlos Augusto8cd2b7e9-dd1c-47d7-a64f-413cdc7c7bbeRíos Paredes, Marcos Antonio7682da0a-6b1a-45f3-a052-69dda1bd67e8Peñuela Mora, María Cristina65da7abd-ac0c-43e5-ad01-862d2ec82f42Sierra, Rodrigo71368945-e82c-4eab-b728-8cb9c4b2d6fbSilveira, Marcos18c2db36-7ba8-4f68-9a59-c74d83f569ebStevenson Díaz, Pablo Roberto4a5f7a1a-2cb7-4a82-90b6-bb4fb9c4693bStropp, Juliana47c534cf-ce5d-4793-9c92-025b71ddfb89Terborgh, John Whittle5711c8f7-d2a9-4cf6-b80c-3d130652e66c600Tirado, Milton93afbf28-8f8d-46e7-9f73-ccf6f2cfc3f3600Toledo, Marisol5ef0fee1-4ab0-408c-a0b5-2405f0929f76Torres Lezama, Armando4640a594-7c1a-43ea-9d6e-e779c57b47f8Umaña, María Natalia78a73206-8915-447b-be93-cbae5f9d8857Urrego Giraldo, Ligia Estela76a9f8b1-989d-481d-acbb-9ac816389914Vásquez Martínez, Rodolfodfdc9970-b9c5-4ad1-86ae-8d26b9217682Valenzuela Gamarra, Luis7fe1df7b-7c82-459f-8629-78018d8b4137600Vela, César I. A.11cd3d31-3b7c-48bf-b35f-4dbf1db15a9eVilanova Torre, Emilio Javiere6e4ca1c-919d-4fe8-aa80-5f8310d102c2600Vos, Vincent Antoinec2e34cd8-fd9e-4036-af79-ecfdf4fcb377Von Hildebrand, Patricioddf47083-9c79-4f87-a886-1a46fda64d85Vriesendorp, Corine Françoisef910365f-3c7b-47ab-a50c-8e5d5fc4788fYung-Ho, Ophelia Wang7bfa8fd6-9195-41ee-8435-390433f50b51Young, Kenneth R.d4489264-6c5f-474e-86c6-b23696f87ada600Zartman, Charles Eugenecbfc3f18-46f1-4712-b029-e140dfab9eb5Phillips, Oliver Lawrencea789b53b-8729-48fa-a969-26f3a1981fe8Neotrópico2023-10-23T21:36:19Z2023-10-23T21:36:19Z20170906-7590https://dspace.tdea.edu.co/handle/tdea/39841600-0587Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions predicts a nested pattern of taxa distribution from wet to dry areas. However, this ‘dry-tolerance’ hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the ‘dry tolerance’ hypothesis has broad applicability in the world’s most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region.12 páginasapplication/pdfengWiley Open AccessReino Unidohttps://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.01904Seasonal drought limits tree species across the NeotropicsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85629561840EcographyAguilar, E. et al. 2005. Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. – J. Geophys. Res. 110: D23107.Allen, A. P. et al. 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. – Science 297: 1545–1548.Baltzer, J. L. and Davies, S. J. 2012. Rainfall seasonality and pest pressure as determinants of tropical tree species' distributions. – Ecol. Evol. 2: 2682–2694.Baltzer, J. L. et al. 2008. The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. – Funct. Ecol. 22: 221–231.Brenes-Arguedas, T. et al. 2009. Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. – Ecology 90: 1751–1761.Brenes-Arguedas, T. et al. 2011. Do differences in understory light contribute to species distributions along a tropical rainfall gradient? – Oecologia 166: 443–456.Brenes-Arguedas, T. et al. 2013. Plant traits in relation to the performance and distribution of woody species in wet and dry tropical forest types in Panama. – Funct. Ecol. 27: 392–402.Brienen, R. J. W. et al. 2011. Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species. – Trees 25: 103–113.Butt, N. et al. 2008. Floristic and functional affiliations of woody plants with climate in western Amazonia. – J. Biogeogr. 35: 939–950.Butt, N. et al. 2014. Shifting dynamics of climate-functional groups in old-growth Amazonian forests. – Plant Ecol. Divers. 7: 267–279.Chave, J. et al. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. – Global Change Biol. 20: 3177–3190.Chen, I. C. et al. 2009. Elevation increases in moth assemblages over 42 years on a tropical mountain. – Proc. Natl Acad. Sci. USA 106: 1479–1483.Clinebell, R. R. et al. 1995. Prediction of neotropical tree and liana species richness from soil and climatic data. – Biodivers. Conserv. 4: 56–90.Condit, R. et al. 2013. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. – Proc. Natl Acad. Sci. USA 110: 5064–5068.Currie, D. J. et al. 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. – Ecol. Lett. 7: 1121–1134.da Costa, A. C. L. et al. 2010. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. – New Phytol. 187: 579–591.Dallas, T. 2014. metacom: an R package for the analysis of metacommunity structure. – Ecography 37: 402–405.Dexter, K. G. et al. 2012. Historical effects on beta diversity and community assembly in Amazonian trees. – Proc. Natl Acad. Sci. USA 109: 7787–7792.Dobzhansky, T. 1950. Evolution in the tropics. – Am. Sci. 38: 209–221.Engelbrecht, B. M. J. et al. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. – Nature 447: 80–82.Erkens, R. H. J. et al. 2007. A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America. – Mol. Phylogenet. Evol. 44: 399–411.Fauset, S. et al. 2012. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. – Ecol. Lett. 15: 1120–1129.Feeley, K. J. et al. 2011. Directional changes in the species composition of a tropical forest. – Ecology 92: 871–882.Fine, P. V. A. 2001. An evaluation of the geographic area hypothesis using the latitudinal gradient in North American tree diversity. – Evol. Ecol. Res. 3: 413–428.Fortin, M. J. and Payette, S. 2002. How to test the significance of the relation between spatially autocorrelated data at the landscape scale: a case study using fire and forest maps. – Ecoscience 9: 213–218.Gaviria, J. and Engelbrecht, B. M. J. 2015. Effects of drought, pest pressure and light availability on seedling establishment and growth: their role for distribution of tree species across a tropical rainfall gradient. – PLoS One 10: e0143955.Gentry, A. H. 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America, pleistocene climatic fluctuations, or an accident of the Andean orogeny? – Ann. Missouri Bot. Gard. 69: 557–593.Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. – Ann. Missouri Bot. Gard. 75: 1–34.Gentry, A. H. 1990. Floristic similarities and differences between southern Central America and upper and central Amazonia. – In: A. H. Gentry (ed.), Four neotropical rainforests. Yale Univ. Press, pp. 141–157.Gloor, M. et al. 2013. Intensification of the Amazon hydrological cycle over the last two decades. – Geophys. Res. Lett. 40: 1729–1733.Harley, P. et al. 2004. Variation in potential for isoprene emissions among Neotropical forest sites. – Global Change Biol. 10: 630–650.Higgins, M. A. et al. 2011. Geological control of floristic composition in Amazonian forests. – J. Biogeogr. 38: 2136–2149.Hijmans, R. J. et al. 2005. Very high resolution interpolated climate surfaces for global land areas. – Int. J. Climatol. 25: 1965–1978.Hoorn, C. et al. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. – Science 330: 927–931.IPCC 2013. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. – Cambridge Univ. Press.Jablonski, D. et al. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. – Science 314: 102–106.Jansson, R. 2003. Global patterns in endemism explained by past climatic change. – Proc. R. Soc. B 270: 583–590.Janzen, D. H. 1967. Why mountain passes are higher in the tropics. – Am. Nat. 101: 233–249.Jiménez-Muñoz, J. C. et al. 2013. Spatial and temporal patterns of the recent warming of the Amazon forest. – J. Geophys. Res. 118: 5204–5215.Klopfer, P. H. 1959. Environmental determinants of faunal diversity. – Am. Nat. 93: 337–342.Koenker, R. and Bassett, G. 1978. Regression quantiles. – Econometrica 46: 33–50.Laurance, W. F. et al. 2004. Pervasive alteration of tree communities in undisturbed Amazonian forests. – Nature 428: 171–175.Leibold, M. A. and Mikkelson, G. M. 2002. Coherence, species turnover, and boundary clumping: elements of meta-community structure. – Oikos 97: 237–250.Lenters, J. D. and Cook, K. H. 1995. Simulation and diagnosis of the regional summertime precipitation climatology of South America. – J. Clim. 8: 2988–3005.Li, W. H. et al. 2008. Observed change of the standardized precipitation index, its potential cause and implications to future climate change in the Amazon region. – Phil. Trans. R. Soc. B 363: 1767–1772.Lopez-Gonzalez, G. et al. 2009. ForestPlots.net database. – < www.forestplots.net >.Lopez-Gonzalez, G. et al. 2011. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. – J. Veg. Sci. 22: 610–613.MacArthur, R. H. 1972. Geographical ecology: patterns in the distribution of species. – Princeton Univ. Press.Malhi, Y. and Wright, J. 2004. Spatial patterns and recent trends in the climate of tropical rainforest regions. – Phil. Trans. R. Soc. B 359: 311–329.Malhi, Y. et al. 2002. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). – J. Veg. Sci. 13: 439–450.Malhi, Y. et al. 2009. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. – Proc. Natl Acad. Sci. USA 106: 20610–20615.Manly, B. F. J. 1997. Randomization, bootstrap and Monte Carlo methods in biology. – Chapman and Hall.Marengo, J. A. et al. 2011. The drought of 2010 in the context of historical droughts in the Amazon region. – Geophys. Res. Lett. 38: L12703.Markesteijn, L. et al. 2011. Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance. – New Phytol. 191: 480–495.Martinez, R. V. and Phillips, O. L. 2000. Allpahuayo: floristics, structure, and dynamics of a high-diversity forest in amazonian Peru. – Ann. Missouri Bot. Gard. 87: 499–527.Morin, X. and Lechowicz, M. J. 2013. Niche breadth and range area in North American trees. – Ecography 36: 300–312.Morueta-Holme, N. et al. 2013. Habitat area and climate stability determine geographical variation in plant species range sizes. – Ecol. Lett. 16: 1446–1454.Nelson, B. W. et al. 1990. Endemism centres, refugia and botanical collection density in Brazilian Amazonia. – Nature 345: 714–716.Nepstad, D. C. et al. 2007. Mortality of large trees and lianas following experimental drought in an amazon forest. – Ecology 88: 2259–2269.New, M. et al. 2002. A high-resolution data set of surface climate over global land areas. – Clim. Res. 21: 1–25.Normand, S. et al. 2009. Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients. – Global Ecol. Biogeogr. 18: 437–449.Phillips, O. and Miller, J. S. 2002. Global patterns of plant diversity: Alwyn H. Gentry's forest transect data set. – Missouri Botanical Press.Phillips, O. L. et al. 2003. Efficient plot-based floristic assessment of tropical forests. – J. Trop. Ecol. 19: 629–645.Pither, J. 2003. Climate tolerance and interspecific variation in geographic range size. – Proc. R. Soc. B 270: 475–481.Pitman, N. C. A. et al. 2002. A comparison of tree species diversity in two upper Amazonian forests. – Ecology 83: 3210–3224.Poorter, L. and Markesteijn, L. 2008. Seedling traits determine drought tolerance of tropical tree species. – Biotropica 40: 321–331.Presley, S. J. et al. 2010. A comprehensive framework for the evaluation of metacommunity structure. – Oikos 119: 908–917.Quesada, C. A. et al. 2010. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. – Biogeosciences 7: 1515–1541.Quesada, C. A. et al. 2012. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. – Biogeosciences 9: 2203–2246.Richardson, J. E. et al. 2001. Rapid diversification of a species-rich genus of neotropical rain forest trees. – Science 293: 2242–2245.Ricklefs, R. E. 2004. A comprehensive framework for global patterns in biodiversity. – Ecol. Lett. 7: 1–15.Rohde, K. 1992. Latitudinal gradients in species-diversity – the search for the primary cause. – Oikos 65: 514–527.Rosenzweig, M. L. 1992. Species diversity gradients: we know more and less than we thought. – J. Mammal. 73: 715–730.Sastre, P. and Lobo, J. M. 2009. Taxonomist survey biases and the unveiling of biodiversity patterns. – Biol. Conserv. 142: 462–467.Slatyer, R. A. et al. 2013. Niche breadth predicts geographical range size: a general ecological pattern. – Ecol. Lett. 16: 1104–1114.Spasojevic, M. J. et al. 2014. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients. – J. Ecol. 102: 447–455.Spear, E. R. et al. 2015. Do pathogens limit the distributions of tropical trees across a rainfall gradient? – J. Ecol. 103: 165–174.ter Steege, H. et al. 2003. A spatial model of tree α-diversity and tree density for the Amazon. – Biodivers. Conserv. 12: 2255–2277.ter Steege, H. et al. 2013. Hyperdominance in the amazonian tree flora. – Science 342: 1243092.Terborgh, J. 1973. On the notion of favorableness in plant ecology. – Am. Nat. 107: 481–501.van der Sleen, P. et al. 2015. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. – Nat. Geosci. 8: 24–28.von Humboldt, A. 1808. Ansichten der Natur. – Cotta.Wallace, A. R. 1878. Tropical nature, and other essays. – Macmillan.Zona tropicalZone tropicaleTropical zonesEstrés de sequiaStress dû à la sécheresseDrought stressStress devido à secaÁrbolesArbreTreesÁrvoreBosques tropicalesForêt tropicaleTropical forestsFloresta tropicalAmenaza naturalAléas naturelsNatural hazardsTHUMBNAILSeasonal drought limits tree species across the Neotropics.pdf.jpgSeasonal drought limits tree species across the Neotropics.pdf.jpgGenerated Thumbnailimage/jpeg17875https://dspace.tdea.edu.co/bitstream/tdea/3984/4/Seasonal%20drought%20limits%20tree%20species%20across%20the%20Neotropics.pdf.jpg7f4661f19cb470d2c07befc3751a686cMD54open accessTEXTSeasonal drought limits tree species across the Neotropics.pdf.txtSeasonal drought limits tree species across the Neotropics.pdf.txtExtracted texttext/plain67764https://dspace.tdea.edu.co/bitstream/tdea/3984/3/Seasonal%20drought%20limits%20tree%20species%20across%20the%20Neotropics.pdf.txt3b9b463d69c5b8b1d241fc6ad0cec47fMD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace.tdea.edu.co/bitstream/tdea/3984/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessORIGINALSeasonal drought limits tree species across the Neotropics.pdfSeasonal drought limits tree species across the Neotropics.pdfapplication/pdf4688627https://dspace.tdea.edu.co/bitstream/tdea/3984/1/Seasonal%20drought%20limits%20tree%20species%20across%20the%20Neotropics.pdf8e388ed94604941573ad2654355d4a7dMD51open accesstdea/3984oai:dspace.tdea.edu.co:tdea/39842023-10-24 03:02:02.145An error occurred on the license name.|||https://creativecommons.org/licenses/by/4.0/open accessRepositorio Institucional Tecnologico de Antioquiabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=0000-0002-1404-0121aaa9731d-f52c-4a7f-8aa6-c2b9eb5095346000000-0001-9405-0698b659106a-f7cc-40a9-a65e-65fa704d8d386000000-0003-0866-1260d4489264-6c5f-474e-86c6-b23696f87ada600