Implementation of algorithms to compute the Convex Hull
Computational geometry is a discipline focused on solving problems in the geometric domain. In this context, the algorithm for computing the convex polygon called Convex Hull (CH) is important, because it is the basis for many other algorithms. The objective of the research was to implement algorith...
- Autores:
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Católica de Pereira
- Repositorio:
- Repositorio Institucional - RIBUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucp.edu.co:10785/13703
- Acceso en línea:
- https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668
http://hdl.handle.net/10785/13703
- Palabra clave:
- Rights
- openAccess
- License
- Derechos de autor 2023 Entre Ciencia e Ingeniería
id |
RepoRIBUC2_fba395286599632d3ebb7b08528f0eff |
---|---|
oai_identifier_str |
oai:repositorio.ucp.edu.co:10785/13703 |
network_acronym_str |
RepoRIBUC2 |
network_name_str |
Repositorio Institucional - RIBUC |
repository_id_str |
|
spelling |
2023-08-29T03:49:42Z2023-08-29T03:49:42Z2022-12-31https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/266810.31908/19098367.2668http://hdl.handle.net/10785/13703Computational geometry is a discipline focused on solving problems in the geometric domain. In this context, the algorithm for computing the convex polygon called Convex Hull (CH) is important, because it is the basis for many other algorithms. The objective of the research was to implement algorithms that compute the CH incorporating modifications to reduce the execution time. The research started with a bibliographic review of computational geometry and the algorithms highlighted in the calculation of CH. Subsequently, the QuickHull, Gift Wrapping, and Graham Scan algorithms were implemented in JAVA in their original versions; some versions with modifications were also implemented. Upon completion of implementation, tests were run to verify the execution times. Finally, the QuickHull algorithm was found to be the fastest among the implementations performed in this research. It is also noted a reduction in execution times in the modified implementations in relation to the original ones of the Gift Wrapping and Graham Scan algorithms.La geometría computacional es una disciplina enfocada en la resolución de problemas en el ámbito geométrico. En este contexto, el algoritmo para calcular el polígono convexo llamado Convex Hull (CH) es importante, debido a que es la base de muchos otros algoritmos. El objetivo de la investigación fue implementar algoritmos que calculan el CH incorporando modificaciones para reducir el tiempo de ejecución. El trabajo inició con la revisión bibliográfica acerca de geometría computacional y los algoritmos destacados en el cálculo del CH. Posteriormente, se realizó la implementación en JAVA de los algoritmos QuickHull, Gift Wrapping y Graham Scan en sus versiones originales; también se implementaron algunas versiones con modificaciones. Al finalizar la implementación, se ejecutaron pruebas para verificar los tiempos de ejecución. Finalmente, se comprobó que el algoritmo QuickHull es el más rápido entre las implementaciones realizadas en esta investigación. También se nota reducción en los tiempos de ejecución en las implementaciones modificadas con relación a las originales de los algoritmos Gift Wrapping y Graham Scan.application/pdfapplication/xmlspaUniversidad Católica de Pereirahttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668/2597https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668/2632Derechos de autor 2023 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_EShttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Entre ciencia e ingeniería; Vol 16 No 32 (2022); 27-34Entre Ciencia e Ingeniería; Vol. 16 Núm. 32 (2022); 27-34Entre ciencia e ingeniería; v. 16 n. 32 (2022); 27-342539-41691909-8367Implementation of algorithms to compute the Convex HullImplementación de algoritmos para calcular el Convex HullArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionCandela Uribe., Christian AndrésSepúlveda Rodríguez, Luis EduardoChavarro Porras, Julio CésarMeneses Escobar, Carlos AugustoSanabria Ordoñez, John AlexanderArcila Guzmán, OlmedoPublication10785/13703oai:repositorio.ucp.edu.co:10785/137032025-01-27 18:58:26.892https://creativecommons.org/licenses/by-nc/4.0/deed.es_ESDerechos de autor 2023 Entre Ciencia e Ingenieríametadata.onlyhttps://repositorio.ucp.edu.coRepositorio Institucional de la Universidad Católica de Pereira - RIBUCbdigital@metabiblioteca.com |
dc.title.eng.fl_str_mv |
Implementation of algorithms to compute the Convex Hull |
dc.title.spa.fl_str_mv |
Implementación de algoritmos para calcular el Convex Hull |
title |
Implementation of algorithms to compute the Convex Hull |
spellingShingle |
Implementation of algorithms to compute the Convex Hull |
title_short |
Implementation of algorithms to compute the Convex Hull |
title_full |
Implementation of algorithms to compute the Convex Hull |
title_fullStr |
Implementation of algorithms to compute the Convex Hull |
title_full_unstemmed |
Implementation of algorithms to compute the Convex Hull |
title_sort |
Implementation of algorithms to compute the Convex Hull |
description |
Computational geometry is a discipline focused on solving problems in the geometric domain. In this context, the algorithm for computing the convex polygon called Convex Hull (CH) is important, because it is the basis for many other algorithms. The objective of the research was to implement algorithms that compute the CH incorporating modifications to reduce the execution time. The research started with a bibliographic review of computational geometry and the algorithms highlighted in the calculation of CH. Subsequently, the QuickHull, Gift Wrapping, and Graham Scan algorithms were implemented in JAVA in their original versions; some versions with modifications were also implemented. Upon completion of implementation, tests were run to verify the execution times. Finally, the QuickHull algorithm was found to be the fastest among the implementations performed in this research. It is also noted a reduction in execution times in the modified implementations in relation to the original ones of the Gift Wrapping and Graham Scan algorithms. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12-31 |
dc.date.accessioned.none.fl_str_mv |
2023-08-29T03:49:42Z |
dc.date.available.none.fl_str_mv |
2023-08-29T03:49:42Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668 10.31908/19098367.2668 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10785/13703 |
url |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668 http://hdl.handle.net/10785/13703 |
identifier_str_mv |
10.31908/19098367.2668 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668/2597 https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/2668/2632 |
dc.rights.spa.fl_str_mv |
Derechos de autor 2023 Entre Ciencia e Ingeniería https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Derechos de autor 2023 Entre Ciencia e Ingeniería https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/xml |
dc.publisher.spa.fl_str_mv |
Universidad Católica de Pereira |
dc.source.eng.fl_str_mv |
Entre ciencia e ingeniería; Vol 16 No 32 (2022); 27-34 |
dc.source.spa.fl_str_mv |
Entre Ciencia e Ingeniería; Vol. 16 Núm. 32 (2022); 27-34 |
dc.source.por.fl_str_mv |
Entre ciencia e ingeniería; v. 16 n. 32 (2022); 27-34 |
dc.source.none.fl_str_mv |
2539-4169 1909-8367 |
institution |
Universidad Católica de Pereira |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica de Pereira - RIBUC |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1828143458197438464 |