Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients

Spectral methods have been successfully applied to numerical simulation in a variety of fields, such as heat transfer, fluid dynamics, quantum mechanics and so on. They are powerful tools for the numerical solutions of differential equations, ordinary and partial. This paper presents a spec...

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Católica de Pereira
Repositorio:
Repositorio Institucional - RIBUC
Idioma:
spa
OAI Identifier:
oai:repositorio.ucp.edu.co:10785/13528
Acceso en línea:
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688
http://hdl.handle.net/10785/13528
Palabra clave:
Rights
openAccess
License
Derechos de autor 2019 Entre Ciencia e Ingeniería
id RepoRIBUC2_ebc2e8f0fd17150be8f96a16ac50d135
oai_identifier_str oai:repositorio.ucp.edu.co:10785/13528
network_acronym_str RepoRIBUC2
network_name_str Repositorio Institucional - RIBUC
repository_id_str
spelling 2023-08-29T03:49:15Z2023-08-29T03:49:15Z2019-07-27https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688http://hdl.handle.net/10785/13528Spectral methods have been successfully applied to numerical simulation in a variety of fields, such as heat transfer, fluid dynamics, quantum mechanics and so on. They are powerful tools for the numerical solutions of differential equations, ordinary and partial. This paper presents a spectral method based on polynomial interpolation nodes distributed according to Chebyshev grids, to solve a second order ordinary differential equation with constant coefficients. It demonstrates the accuracy of this method as compared to finite difference method and this advantage is theoretically explainedLos métodos espectrales han sido aplicados con éxito a las simulaciones numéricas en muchos campos, tales como conducción del calor, dinámica de fluidos, mecánica cuántica, entre otros. Son herramientas de gran alcance para hallar soluciones numéricas de ecuaciones diferenciales ordinarias y en derivadas parciales. Este artículo presenta un método espectral basado en la interpolación polinomial en nodos distribuidos según mallas de Chebyshev, para resolver una ecuación diferencial ordinaria de segundo orden con coeficientes constantes. Se evidencia la precisión de dicho método en comparación con el método de diferencias finitas y se fundamenta desde el punto de vista teórico esta superioridad.application/pdfspaUniversidad Católica de Pereirahttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688/692Derechos de autor 2019 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_EShttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Entre ciencia e ingeniería; Vol 6 No 12 (2012); 58-63Entre Ciencia e Ingeniería; Vol. 6 Núm. 12 (2012); 58-63Entre ciencia e ingeniería; v. 6 n. 12 (2012); 58-632539-41691909-8367Applying a Spectral Method to Solve Second Order Differential Equations With Constant CoefficientsAplicación de un Método Espectral en la Solución de Ecuaciones Diferenciales de Segundo Orden con Coeficientes ConstantesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPaniagua, Juan GuillermoPérez, John AlexanderNaspirán Herrera, Luis EduardoPublication10785/13528oai:repositorio.ucp.edu.co:10785/135282025-01-27 19:00:07.157https://creativecommons.org/licenses/by-nc/4.0/deed.es_ESDerechos de autor 2019 Entre Ciencia e Ingenieríametadata.onlyhttps://repositorio.ucp.edu.coRepositorio Institucional de la Universidad Católica de Pereira - RIBUCbdigital@metabiblioteca.com
dc.title.eng.fl_str_mv Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
dc.title.spa.fl_str_mv Aplicación de un Método Espectral en la Solución de Ecuaciones Diferenciales de Segundo Orden con Coeficientes Constantes
title Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
spellingShingle Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
title_short Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
title_full Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
title_fullStr Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
title_full_unstemmed Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
title_sort Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
description Spectral methods have been successfully applied to numerical simulation in a variety of fields, such as heat transfer, fluid dynamics, quantum mechanics and so on. They are powerful tools for the numerical solutions of differential equations, ordinary and partial. This paper presents a spectral method based on polynomial interpolation nodes distributed according to Chebyshev grids, to solve a second order ordinary differential equation with constant coefficients. It demonstrates the accuracy of this method as compared to finite difference method and this advantage is theoretically explained
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-07-27
dc.date.accessioned.none.fl_str_mv 2023-08-29T03:49:15Z
dc.date.available.none.fl_str_mv 2023-08-29T03:49:15Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10785/13528
url https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688
http://hdl.handle.net/10785/13528
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688/692
dc.rights.spa.fl_str_mv Derechos de autor 2019 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2019 Entre Ciencia e Ingeniería
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Católica de Pereira
dc.source.eng.fl_str_mv Entre ciencia e ingeniería; Vol 6 No 12 (2012); 58-63
dc.source.spa.fl_str_mv Entre Ciencia e Ingeniería; Vol. 6 Núm. 12 (2012); 58-63
dc.source.por.fl_str_mv Entre ciencia e ingeniería; v. 6 n. 12 (2012); 58-63
dc.source.none.fl_str_mv 2539-4169
1909-8367
institution Universidad Católica de Pereira
repository.name.fl_str_mv Repositorio Institucional de la Universidad Católica de Pereira - RIBUC
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1828143414727671808