Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients
Spectral methods have been successfully applied to numerical simulation in a variety of fields, such as heat transfer, fluid dynamics, quantum mechanics and so on. They are powerful tools for the numerical solutions of differential equations, ordinary and partial. This paper presents a spec...
- Autores:
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Católica de Pereira
- Repositorio:
- Repositorio Institucional - RIBUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucp.edu.co:10785/13528
- Acceso en línea:
- https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688
http://hdl.handle.net/10785/13528
- Palabra clave:
- Rights
- openAccess
- License
- Derechos de autor 2019 Entre Ciencia e Ingeniería
id |
RepoRIBUC2_ebc2e8f0fd17150be8f96a16ac50d135 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.edu.co:10785/13528 |
network_acronym_str |
RepoRIBUC2 |
network_name_str |
Repositorio Institucional - RIBUC |
repository_id_str |
|
spelling |
2023-08-29T03:49:15Z2023-08-29T03:49:15Z2019-07-27https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688http://hdl.handle.net/10785/13528Spectral methods have been successfully applied to numerical simulation in a variety of fields, such as heat transfer, fluid dynamics, quantum mechanics and so on. They are powerful tools for the numerical solutions of differential equations, ordinary and partial. This paper presents a spectral method based on polynomial interpolation nodes distributed according to Chebyshev grids, to solve a second order ordinary differential equation with constant coefficients. It demonstrates the accuracy of this method as compared to finite difference method and this advantage is theoretically explainedLos métodos espectrales han sido aplicados con éxito a las simulaciones numéricas en muchos campos, tales como conducción del calor, dinámica de fluidos, mecánica cuántica, entre otros. Son herramientas de gran alcance para hallar soluciones numéricas de ecuaciones diferenciales ordinarias y en derivadas parciales. Este artículo presenta un método espectral basado en la interpolación polinomial en nodos distribuidos según mallas de Chebyshev, para resolver una ecuación diferencial ordinaria de segundo orden con coeficientes constantes. Se evidencia la precisión de dicho método en comparación con el método de diferencias finitas y se fundamenta desde el punto de vista teórico esta superioridad.application/pdfspaUniversidad Católica de Pereirahttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688/692Derechos de autor 2019 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_EShttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Entre ciencia e ingeniería; Vol 6 No 12 (2012); 58-63Entre Ciencia e Ingeniería; Vol. 6 Núm. 12 (2012); 58-63Entre ciencia e ingeniería; v. 6 n. 12 (2012); 58-632539-41691909-8367Applying a Spectral Method to Solve Second Order Differential Equations With Constant CoefficientsAplicación de un Método Espectral en la Solución de Ecuaciones Diferenciales de Segundo Orden con Coeficientes ConstantesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPaniagua, Juan GuillermoPérez, John AlexanderNaspirán Herrera, Luis EduardoPublication10785/13528oai:repositorio.ucp.edu.co:10785/135282025-01-27 19:00:07.157https://creativecommons.org/licenses/by-nc/4.0/deed.es_ESDerechos de autor 2019 Entre Ciencia e Ingenieríametadata.onlyhttps://repositorio.ucp.edu.coRepositorio Institucional de la Universidad Católica de Pereira - RIBUCbdigital@metabiblioteca.com |
dc.title.eng.fl_str_mv |
Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients |
dc.title.spa.fl_str_mv |
Aplicación de un Método Espectral en la Solución de Ecuaciones Diferenciales de Segundo Orden con Coeficientes Constantes |
title |
Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients |
spellingShingle |
Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients |
title_short |
Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients |
title_full |
Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients |
title_fullStr |
Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients |
title_full_unstemmed |
Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients |
title_sort |
Applying a Spectral Method to Solve Second Order Differential Equations With Constant Coefficients |
description |
Spectral methods have been successfully applied to numerical simulation in a variety of fields, such as heat transfer, fluid dynamics, quantum mechanics and so on. They are powerful tools for the numerical solutions of differential equations, ordinary and partial. This paper presents a spectral method based on polynomial interpolation nodes distributed according to Chebyshev grids, to solve a second order ordinary differential equation with constant coefficients. It demonstrates the accuracy of this method as compared to finite difference method and this advantage is theoretically explained |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-07-27 |
dc.date.accessioned.none.fl_str_mv |
2023-08-29T03:49:15Z |
dc.date.available.none.fl_str_mv |
2023-08-29T03:49:15Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10785/13528 |
url |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688 http://hdl.handle.net/10785/13528 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/688/692 |
dc.rights.spa.fl_str_mv |
Derechos de autor 2019 Entre Ciencia e Ingeniería https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Derechos de autor 2019 Entre Ciencia e Ingeniería https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Católica de Pereira |
dc.source.eng.fl_str_mv |
Entre ciencia e ingeniería; Vol 6 No 12 (2012); 58-63 |
dc.source.spa.fl_str_mv |
Entre Ciencia e Ingeniería; Vol. 6 Núm. 12 (2012); 58-63 |
dc.source.por.fl_str_mv |
Entre ciencia e ingeniería; v. 6 n. 12 (2012); 58-63 |
dc.source.none.fl_str_mv |
2539-4169 1909-8367 |
institution |
Universidad Católica de Pereira |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica de Pereira - RIBUC |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1828143414727671808 |