A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral Images
Food requirements in the world have increased, evidencing the necessity to improve standard techniques of agricultural production. To do so, one option is through technological elements like hyperspectral remote sensing of vegetation and crops. Remote sensing and hyperspectral imagery are not invasi...
- Autores:
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Católica de Pereira
- Repositorio:
- Repositorio Institucional - RIBUC
- Idioma:
- eng
spa
- OAI Identifier:
- oai:repositorio.ucp.edu.co:10785/9998
- Acceso en línea:
- https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/1161
http://hdl.handle.net/10785/9998
- Palabra clave:
- Rights
- openAccess
- License
- Derechos de autor 2020 Entre Ciencia e Ingeniería
id |
RepoRIBUC2_ac987815878ec88c77ab3a43e58070d4 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.edu.co:10785/9998 |
network_acronym_str |
RepoRIBUC2 |
network_name_str |
Repositorio Institucional - RIBUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral Images |
dc.title.spa.fl_str_mv |
Una herramienta para el análisis de índices espectrales para la detección remota de vegetación y cultivos utilizando imágenes hiperespectrales |
title |
A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral Images |
spellingShingle |
A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral Images |
title_short |
A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral Images |
title_full |
A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral Images |
title_fullStr |
A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral Images |
title_full_unstemmed |
A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral Images |
title_sort |
A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral Images |
description |
Food requirements in the world have increased, evidencing the necessity to improve standard techniques of agricultural production. To do so, one option is through technological elements like hyperspectral remote sensing of vegetation and crops. Remote sensing and hyperspectral imagery are not invasive methods. They allow covering large land space in a reduced amount of time. These features have done the hyper-spectral remote sensing a powerful tool used in precision agriculture. This paper presents a software application to process hyperspectral images and generating pseudo-color images computed using spectral indices. This work uses the hyperspectral images were taken by Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) sensor, which was designed by the NASA. The software application aims to show different elements associated with the hyperspectral remote sensing of vegetation and crops. Functional tests are presented to verify the software requirements. Finally, quantitative results are reported comparing the results of the software proposes in this work with the ERDAS Imagine software tool. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-12-30 |
dc.date.accessioned.none.fl_str_mv |
2022-06-01T19:09:02Z |
dc.date.available.none.fl_str_mv |
2022-06-01T19:09:02Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/1161 10.31908/19098367.1161 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10785/9998 |
url |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/1161 http://hdl.handle.net/10785/9998 |
identifier_str_mv |
10.31908/19098367.1161 |
dc.language.none.fl_str_mv |
eng spa |
language |
eng spa |
dc.relation.none.fl_str_mv |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/1161/1185 https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/1161/2551 |
dc.rights.spa.fl_str_mv |
Derechos de autor 2020 Entre Ciencia e Ingeniería https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Derechos de autor 2020 Entre Ciencia e Ingeniería https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/xml |
dc.publisher.spa.fl_str_mv |
Universidad Católica de Pereira |
dc.source.eng.fl_str_mv |
Entre ciencia e ingeniería; Vol. 13 Núm. 26 (2019); 51-58 |
dc.source.spa.fl_str_mv |
Entre Ciencia e Ingeniería; Vol. 13 Núm. 26 (2019); 51-58 |
dc.source.por.fl_str_mv |
Entre ciencia e ingeniería; Vol. 13 Núm. 26 (2019); 51-58 |
dc.source.none.fl_str_mv |
2539-4169 1909-8367 |
institution |
Universidad Católica de Pereira |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica de Pereira - RIBUC |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1834112682151641088 |
spelling |
2022-06-01T19:09:02Z2022-06-01T19:09:02Z2019-12-30https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/116110.31908/19098367.1161http://hdl.handle.net/10785/9998Food requirements in the world have increased, evidencing the necessity to improve standard techniques of agricultural production. To do so, one option is through technological elements like hyperspectral remote sensing of vegetation and crops. Remote sensing and hyperspectral imagery are not invasive methods. They allow covering large land space in a reduced amount of time. These features have done the hyper-spectral remote sensing a powerful tool used in precision agriculture. This paper presents a software application to process hyperspectral images and generating pseudo-color images computed using spectral indices. This work uses the hyperspectral images were taken by Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) sensor, which was designed by the NASA. The software application aims to show different elements associated with the hyperspectral remote sensing of vegetation and crops. Functional tests are presented to verify the software requirements. Finally, quantitative results are reported comparing the results of the software proposes in this work with the ERDAS Imagine software tool.Los requerimientos alimentarios en el mundo han aumentado, evidenciando la necesidad de mejorar las técnicas estándar de producción agrícola. Para abordar este problema, una alternativa de solución es la inclusión de elementos tecnológicos como el sensado remoto de vegetación y los cultivos a partir de imágenes hiperespectrales. El sensado remoto y las imágenes hiperespectrales son métodos no invasivos, que permiten monitorear grandes espacios de terreno en cantidades de tiempo reducidas. Estas características han hecho que el sensado remoto a partir de imágenes hiperespectrales sea una herramienta poderosa para desarrollo de procesos de agricultura de precisión. En este artículo se presenta una aplicación de software que permite generar y procesar índices espectrales de vegetación y sus respectivas imágenes de pseudo color, utilizando imágenes hiperespectrales. Las imágenes hiperespectrales utilizadas fueron tomadas de la base de datos del sensor Airborne Visible-Infrared Imaging Spectrometer (AVIRIS), diseñado por la NASA. El objetivo de la aplicación de software es mostrar diferentes elementos asociados con el monitoreo remoto de vegetación y cultivos a partir de imágenes hiperespectrales. Finalmente, se presentan pruebas funcionales para verificar el cumplimiento de los requisitos del software.application/pdfapplication/xmlengspaUniversidad Católica de Pereirahttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/1161/1185https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/1161/2551Derechos de autor 2020 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_EShttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Entre ciencia e ingeniería; Vol. 13 Núm. 26 (2019); 51-58Entre Ciencia e Ingeniería; Vol. 13 Núm. 26 (2019); 51-58Entre ciencia e ingeniería; Vol. 13 Núm. 26 (2019); 51-582539-41691909-8367A Tool for Analysis of Spectral Indices for Remote Sensing of Vegetation and Crops Using Hyperspectral ImagesUna herramienta para el análisis de índices espectrales para la detección remota de vegetación y cultivos utilizando imágenes hiperespectralesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionRuiz Hidalgo, DavidBacca Cortés, BladimirCaicedo Bravo, EduardoPublication10785/9998oai:repositorio.ucp.edu.co:10785/99982025-01-27 18:59:42.647https://creativecommons.org/licenses/by-nc/4.0/deed.es_ESDerechos de autor 2020 Entre Ciencia e Ingenieríametadata.onlyhttps://repositorio.ucp.edu.coRepositorio Institucional de la Universidad Católica de Pereira - RIBUCbdigital@metabiblioteca.com |