Reconfiguration of distribution systems to minimize losses using heuristic optimization: BPSO and DEEPSO methods
This article proposes the analysis and application of heuristic algorithms for the reconfi guration of distribution systems in order to reduce power losses in these systems. The algorithms used are based on the BPSO (Binary Particle Swarm Optimization) and DEEPSO (Diff erential Particle Swarm Optimiza...
- Autores:
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Católica de Pereira
- Repositorio:
- Repositorio Institucional - RIBUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ucp.edu.co:10785/13416
- Acceso en línea:
- https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/409
http://hdl.handle.net/10785/13416
- Palabra clave:
- Rights
- openAccess
- License
- Derechos de autor 2019 Entre Ciencia e Ingeniería
id |
RepoRIBUC2_7405622e7ec4fe78f3032251286abc29 |
---|---|
oai_identifier_str |
oai:repositorio.ucp.edu.co:10785/13416 |
network_acronym_str |
RepoRIBUC2 |
network_name_str |
Repositorio Institucional - RIBUC |
repository_id_str |
|
spelling |
2019-06-172023-08-29T03:48:56Z2023-08-29T03:48:56Zhttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/40910.31908/19098367.3556http://hdl.handle.net/10785/13416This article proposes the analysis and application of heuristic algorithms for the reconfi guration of distribution systems in order to reduce power losses in these systems. The algorithms used are based on the BPSO (Binary Particle Swarm Optimization) and DEEPSO (Diff erential Particle Swarm Optimization) methods, these are intended to fi nd solutions close to the local optimum, with reduced processing times compared to analytical methods. Additionally, an example of application of each method to two radial distribution systems (distribution networks of 33 and 69 nodes) is shown to compare the results obtained in terms of the effi ciency and eff ectiveness of each algorithm.Este artículo presenta el análisis y aplicación de algoritmos heurísticos para la reconfi guración de sistemas de distribución con el objetivo de reducir las pérdidas de potencia en dichos sistemas. Los algoritmos utilizados se basan en los métodos BPSO (Binary Particle Swarm Optimization) y DEEPSO (Diff erential Evolutionary Particle Swarm Optimization), que tienen como propósito encontrar soluciones cercanas a los óptimos locales, con tiempos de procesamiento reducidos en comparación con métodos analíticos. Adicionalmente, se muestra un ejemplo de aplicación de cada método a dos sistemas de distribución radiales (redes de distribución de 33 y 69 nodos) para comparar los resultados obtenidos en cuanto a la efi ciencia y efi cacia de cada algoritmoEste artigo apresenta a análise e aplicação de algoritmos heurísticos para a reconfi guração de sistemas de distribuição com o objetivo de reduzir as perdas de potência em tais sistemas. Os algoritmos utilizados são baseados nos métodos BPSO (Binary Particle Swarm Optimization) e DEEPSO (Diff erential Evolutionary Particle Swarm Optimization), cujo objetivo é encontrar soluções próximas ao ótimo local, com tempos de processamento reduzidos em comparação com métodos analíticos. Além disso, mostra-se um exemplo de aplicação de cada método a dois sistemas de distribuição radiais (redes de distribuição de 33 e 69 nós) para comparar os resultados obtidos em relação à efi ciência e efi cácia de cada algoritmo.application/pdfapplication/xmlspaUniversidad Católica de Pereirahttps://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/409/415https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/409/1142Derechos de autor 2019 Entre Ciencia e Ingenieríahttps://creativecommons.org/licenses/by-nc/4.0/deed.es_ESinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Entre ciencia e ingeniería; Vol 11 No 22 (2017); 110-117Entre Ciencia e Ingeniería; Vol. 11 Núm. 22 (2017); 110-117Entre ciencia e ingeniería; v. 11 n. 22 (2017); 110-1172539-41691909-8367Reconfiguration of distribution systems to minimize losses using heuristic optimization: BPSO and DEEPSO methodsReconfiguración de sistemas de distribución para minimizar pérdidas utilizando optimización heurística: Métodos BPSO y DEEPSOReconfiguração de sistemas de distribuição para minimizar perdas com otimização heurística: métodos BPSO e DEEPSOArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAcosta Piedrahita, Jorge LuisAlarcón Roa, Angel EstefanoRivera Rodriguez, SergioPublication10785/13416oai:repositorio.ucp.edu.co:10785/134162025-01-27 18:30:57.38metadata.onlyhttps://repositorio.ucp.edu.coRepositorio Institucional de la Universidad Católica de Pereira - RIBUCbdigital@metabiblioteca.com |
dc.title.eng.fl_str_mv |
Reconfiguration of distribution systems to minimize losses using heuristic optimization: BPSO and DEEPSO methods |
dc.title.spa.fl_str_mv |
Reconfiguración de sistemas de distribución para minimizar pérdidas utilizando optimización heurística: Métodos BPSO y DEEPSO |
dc.title.por.fl_str_mv |
Reconfiguração de sistemas de distribuição para minimizar perdas com otimização heurística: métodos BPSO e DEEPSO |
title |
Reconfiguration of distribution systems to minimize losses using heuristic optimization: BPSO and DEEPSO methods |
spellingShingle |
Reconfiguration of distribution systems to minimize losses using heuristic optimization: BPSO and DEEPSO methods |
title_short |
Reconfiguration of distribution systems to minimize losses using heuristic optimization: BPSO and DEEPSO methods |
title_full |
Reconfiguration of distribution systems to minimize losses using heuristic optimization: BPSO and DEEPSO methods |
title_fullStr |
Reconfiguration of distribution systems to minimize losses using heuristic optimization: BPSO and DEEPSO methods |
title_full_unstemmed |
Reconfiguration of distribution systems to minimize losses using heuristic optimization: BPSO and DEEPSO methods |
title_sort |
Reconfiguration of distribution systems to minimize losses using heuristic optimization: BPSO and DEEPSO methods |
description |
This article proposes the analysis and application of heuristic algorithms for the reconfi guration of distribution systems in order to reduce power losses in these systems. The algorithms used are based on the BPSO (Binary Particle Swarm Optimization) and DEEPSO (Diff erential Particle Swarm Optimization) methods, these are intended to fi nd solutions close to the local optimum, with reduced processing times compared to analytical methods. Additionally, an example of application of each method to two radial distribution systems (distribution networks of 33 and 69 nodes) is shown to compare the results obtained in terms of the effi ciency and eff ectiveness of each algorithm. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2023-08-29T03:48:56Z |
dc.date.available.none.fl_str_mv |
2023-08-29T03:48:56Z |
dc.date.none.fl_str_mv |
2019-06-17 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/409 10.31908/19098367.3556 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10785/13416 |
url |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/409 http://hdl.handle.net/10785/13416 |
identifier_str_mv |
10.31908/19098367.3556 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/409/415 https://revistas.ucp.edu.co/index.php/entrecienciaeingenieria/article/view/409/1142 |
dc.rights.spa.fl_str_mv |
Derechos de autor 2019 Entre Ciencia e Ingeniería https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Derechos de autor 2019 Entre Ciencia e Ingeniería https://creativecommons.org/licenses/by-nc/4.0/deed.es_ES http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/xml |
dc.publisher.spa.fl_str_mv |
Universidad Católica de Pereira |
dc.source.eng.fl_str_mv |
Entre ciencia e ingeniería; Vol 11 No 22 (2017); 110-117 |
dc.source.spa.fl_str_mv |
Entre Ciencia e Ingeniería; Vol. 11 Núm. 22 (2017); 110-117 |
dc.source.por.fl_str_mv |
Entre ciencia e ingeniería; v. 11 n. 22 (2017); 110-117 |
dc.source.none.fl_str_mv |
2539-4169 1909-8367 |
institution |
Universidad Católica de Pereira |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Católica de Pereira - RIBUC |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1831929606051987456 |