Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease
La mayoría de las personas con la enfermedad de Parkinson (EP) desarrollan varios déficits del habla, incluyendo sonoridad reducida, alteración de la articulación y prosodia anormal. Este artículo presenta una metodología que permite la clasificación automática de pacientes con EP y sujetos de contr...
- Autores:
-
López-Pabón, Felipe O.
Arias-Vergara, Tomas
Orozco-Arroyave, Juan R.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Instituto Tecnológico Metropolitano
- Repositorio:
- Repositorio ITM
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.itm.edu.co:20.500.12622/4612
- Acceso en línea:
- https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1401
http://hdl.handle.net/20.500.12622/4612
- Palabra clave:
- Articulación del habla
clasificación
Hilbert-Huang
enfermedad de Parkinson
Speech articulation
Classification
Hilbert-Huang
Parkinson’s Disease
- Rights
- License
- Copyright (c) 2020 TecnoLógicas
id |
RepoITM2_494bc2372d3240bd3db4d2170fbce38d |
---|---|
oai_identifier_str |
oai:repositorio.itm.edu.co:20.500.12622/4612 |
network_acronym_str |
RepoITM2 |
network_name_str |
Repositorio ITM |
repository_id_str |
|
spelling |
López-Pabón, Felipe O.Arias-Vergara, TomasOrozco-Arroyave, Juan R.2021-04-21T16:55:18Z2021-04-21T16:55:18Z2020-01-30https://revistas.itm.edu.co/index.php/tecnologicas/article/view/140110.22430/22565337.1401http://hdl.handle.net/20.500.12622/4612La mayoría de las personas con la enfermedad de Parkinson (EP) desarrollan varios déficits del habla, incluyendo sonoridad reducida, alteración de la articulación y prosodia anormal. Este artículo presenta una metodología que permite la clasificación automática de pacientes con EP y sujetos de control sanos (CS). Se considera que la transformada de Hilbert-Huang (THH) y los Coeficientes Cepstrales en las frecuencias de Mel modelan las fonaciones moduladas (cambiando el tono de bajo a alto y de alto a bajo) de las vocales /a/, /i/, y /u/. La THH se utiliza para extraer los dos primeros formantes de las señales de audio, con el objetivo de modelar la estabilidad de la lengua mientras los hablantes producen vocales moduladas. Pruebas estadísticas de Kruskal-Wallis se utilizan para eliminar características redundantes y no relevantes, con el fin de mejorar la precisión de la clasificación. La clasificación automática de sujetos con EP vs. CS se realiza mediante una máquina de soporte vectorial de base radial. De acuerdo con los resultados, el enfoque propuesto permite la discriminación automática de sujetos con EP vs. CS con precisiones de hasta el 75 % para los hombres y 73 % para las mujeres.Most patients with Parkinson’s Disease (PD) develop speech deficits, including reduced sonority, altered articulation, and abnormal prosody. This article presents a methodology to automatically classify patients with PD and Healthy Control (HC) subjects. In this study, the Hilbert-Huang Transform (HHT) and Mel-Frequency Cepstral Coefficients (MFCCs) were considered to model modulated phonations (changing the tone from low to high and vice versa) of the vowels /a/, /i/, and /u/. The HHT was used to extract the first two formants from audio signals with the aim of modeling the stability of the tongue while the speakers were producing modulated vowels. Kruskal-Wallis statistical tests were used to eliminate redundant and non-relevant features in order to improve classification accuracy. PD patients and HC subjects were automatically classified using a Radial Basis Support Vector Machine (RBF-SVM). The results show that the proposed approach allows an automatic discrimination between PD and HC subjects with accuracies of up to 75 % for women and 73 % for men.application/pdfengInstituto Tecnológico Metropolitano - ITMhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/140110.22430/22565337.1401TecnoLógicasCopyright (c) 2020 TecnoLógicashttp://creativecommons.org/licenses/by-nc-sa/4.0http://purl.org/coar/access_right/c_abf22256-53370123-7799TecnoLógicas; Vol. 23 No. 47 (2020); 93-108TecnoLógicas; Vol. 23 Núm. 47 (2020); 93-108Articulación del hablaclasificaciónHilbert-Huangenfermedad de ParkinsonSpeech articulationClassificationHilbert-HuangParkinson’s DiseaseCepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s DiseaseAnálisis cepstral y la transformada de Hilbert-Huang para la detección automática de la enfermedad de ParkinsonArtículosinfo:eu-repo/semantics/articleArticleshttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Publication20.500.12622/4612oai:dspace-itm.metabuscador.org:20.500.12622/46122025-06-20 16:15:57.592metadata.onlyhttps://dspace-itm.metabuscador.orgRepositorio Instituto Tecnológico Metropolitano de Medellínbdigital@metabiblioteca.com |
dc.title.spa.fl_str_mv |
Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease |
dc.title.alternative.eng.fl_str_mv |
Análisis cepstral y la transformada de Hilbert-Huang para la detección automática de la enfermedad de Parkinson |
title |
Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease |
spellingShingle |
Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease Articulación del habla clasificación Hilbert-Huang enfermedad de Parkinson Speech articulation Classification Hilbert-Huang Parkinson’s Disease |
title_short |
Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease |
title_full |
Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease |
title_fullStr |
Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease |
title_full_unstemmed |
Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease |
title_sort |
Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease |
dc.creator.fl_str_mv |
López-Pabón, Felipe O. Arias-Vergara, Tomas Orozco-Arroyave, Juan R. |
dc.contributor.author.none.fl_str_mv |
López-Pabón, Felipe O. Arias-Vergara, Tomas Orozco-Arroyave, Juan R. |
dc.subject.spa.fl_str_mv |
Articulación del habla clasificación Hilbert-Huang enfermedad de Parkinson |
topic |
Articulación del habla clasificación Hilbert-Huang enfermedad de Parkinson Speech articulation Classification Hilbert-Huang Parkinson’s Disease |
dc.subject.keywords.eng.fl_str_mv |
Speech articulation Classification Hilbert-Huang Parkinson’s Disease |
description |
La mayoría de las personas con la enfermedad de Parkinson (EP) desarrollan varios déficits del habla, incluyendo sonoridad reducida, alteración de la articulación y prosodia anormal. Este artículo presenta una metodología que permite la clasificación automática de pacientes con EP y sujetos de control sanos (CS). Se considera que la transformada de Hilbert-Huang (THH) y los Coeficientes Cepstrales en las frecuencias de Mel modelan las fonaciones moduladas (cambiando el tono de bajo a alto y de alto a bajo) de las vocales /a/, /i/, y /u/. La THH se utiliza para extraer los dos primeros formantes de las señales de audio, con el objetivo de modelar la estabilidad de la lengua mientras los hablantes producen vocales moduladas. Pruebas estadísticas de Kruskal-Wallis se utilizan para eliminar características redundantes y no relevantes, con el fin de mejorar la precisión de la clasificación. La clasificación automática de sujetos con EP vs. CS se realiza mediante una máquina de soporte vectorial de base radial. De acuerdo con los resultados, el enfoque propuesto permite la discriminación automática de sujetos con EP vs. CS con precisiones de hasta el 75 % para los hombres y 73 % para las mujeres. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-01-30 |
dc.date.accessioned.none.fl_str_mv |
2021-04-21T16:55:18Z |
dc.date.available.none.fl_str_mv |
2021-04-21T16:55:18Z |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.eng.fl_str_mv |
Articles |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.spa.spa.fl_str_mv |
Artículos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.none.fl_str_mv |
https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1401 10.22430/22565337.1401 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12622/4612 |
url |
https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1401 http://hdl.handle.net/20.500.12622/4612 |
identifier_str_mv |
10.22430/22565337.1401 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1401 10.22430/22565337.1401 |
dc.relation.ispartofjournal.none.fl_str_mv |
TecnoLógicas |
dc.rights.spa.fl_str_mv |
Copyright (c) 2020 TecnoLógicas http://creativecommons.org/licenses/by-nc-sa/4.0 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Copyright (c) 2020 TecnoLógicas http://creativecommons.org/licenses/by-nc-sa/4.0 http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Instituto Tecnológico Metropolitano - ITM |
dc.source.none.fl_str_mv |
2256-5337 0123-7799 |
dc.source.eng.fl_str_mv |
TecnoLógicas; Vol. 23 No. 47 (2020); 93-108 |
dc.source.spa.fl_str_mv |
TecnoLógicas; Vol. 23 Núm. 47 (2020); 93-108 |
institution |
Instituto Tecnológico Metropolitano |
repository.name.fl_str_mv |
Repositorio Instituto Tecnológico Metropolitano de Medellín |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1837096908134285312 |