Aplicación de aprendizaje profundo "Deep learning" en reconocimiento de peatones
En la actualidad se generan gran cantidad de accidentes de tránsito asociados al error humano por descuidos, cansancio, estados alterados de conciencia, uso del celular, distracción con los niños, ingesta de alcohol, distracción con elementos multimedia al interior de los vehículos, micro-sueños, in...
- Autores:
-
Rúa Ortiz, Andrés Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Instituto Tecnológico Metropolitano
- Repositorio:
- Repositorio ITM
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.itm.edu.co:20.500.12622/5760
- Acceso en línea:
- http://hdl.handle.net/20.500.12622/5760
- Palabra clave:
- Aprendizaje profundo
TensorFlow
Reconocimiento de peatones
Redes neuronales artificiales
Deep learning
TensorFlow
Pedestrian recognition
Artificial neural networks
Aprendizaje automático
Reconocimiento de patrones
Reconocimiento de imagen
MATLAB (lenguaje de programación)
Python (lenguaje de programación)
- Rights
- License
- Acceso abierto
Summary: | En la actualidad se generan gran cantidad de accidentes de tránsito asociados al error humano por descuidos, cansancio, estados alterados de conciencia, uso del celular, distracción con los niños, ingesta de alcohol, distracción con elementos multimedia al interior de los vehículos, micro-sueños, infartos, poca experiencia al volate, entre otros. Este proyecto tiene como objetivo reducir el parámetro del error humano al mínimo a través de controles automatizados de aprendizaje profundo programados previamente. Este último se logrará a través de la implementación del “Deep Learning” con una técnica conocida como TensorFlow. En este proceso se mostrará cómo se entrena el algoritmo en procura de que “aprenda” varios patrones previamente programados reconociendo imágenes por medio de etiquetas. Para lograr dicho proceso de “aprendizaje” debemos entrenarlo mostrándole diferentes “perspectivas” de un mismo objeto de manera tal que el algoritmo reduzca al máximo la falla por interpretación de lo detectado, es decir, que se aproxime a un cien por ciento en la precisión de lo capturado. Para que esto suceda, debemos “mostrarle” como un mismo objeto puede ocupar distintas posiciones o asumir distintas formas; por ejemplo, un peatón sentado o parado, ese mismo peatón cruzando la calle, en motocicleta o en bicicleta. También se le debe “enseñar” al algoritmo a interpretar señales de tránsito, reconocer vehículos u objetos aislados a un peatón. Esto lo logramos “mostrándole” al programa una misma imagen desde diferentes posiciones y así logrará construir un mapa en 3D del objeto. Entre más le pueda “enseñar” al algoritmo, este alcanzará una mejor interpretación del objeto y reducir falla por mala interpretación. En este producto de laboratorio se hace una exploración del concepto de aprendizaje profundo (“Deep Learning”) y de algunas de las construcciones que se implementan en esta técnica, además, de la relación intrínseca con las Redes Neuronales Artificiales (RNA) en aplicaciones cotidianas. |
---|