Ficorremediación de petróleo crudo por Chlorella sp inmovilizada bajo diferentes condiciones de crecimiento
1 disco de computadora, ilustraciones, gráficas, fotografías
- Autores:
-
Arroyo Álvarez, Yeferson José
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Sucre
- Repositorio:
- Repositorio Unisucre
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unisucre.edu.co:001/1053
- Acceso en línea:
- https://repositorio.unisucre.edu.co/handle/001/1053
- Palabra clave:
- Contaminación por Petróleo
Biorremediación
Aspectos Ambientales
- Rights
- openAccess
- License
- Universidad de Sucre, 2021
id |
RUNISUCRE2_d8a734c7f0ae4b3b89a34fef0f8a088c |
---|---|
oai_identifier_str |
oai:repositorio.unisucre.edu.co:001/1053 |
network_acronym_str |
RUNISUCRE2 |
network_name_str |
Repositorio Unisucre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Ficorremediación de petróleo crudo por Chlorella sp inmovilizada bajo diferentes condiciones de crecimiento |
title |
Ficorremediación de petróleo crudo por Chlorella sp inmovilizada bajo diferentes condiciones de crecimiento |
spellingShingle |
Ficorremediación de petróleo crudo por Chlorella sp inmovilizada bajo diferentes condiciones de crecimiento Contaminación por Petróleo Biorremediación Aspectos Ambientales |
title_short |
Ficorremediación de petróleo crudo por Chlorella sp inmovilizada bajo diferentes condiciones de crecimiento |
title_full |
Ficorremediación de petróleo crudo por Chlorella sp inmovilizada bajo diferentes condiciones de crecimiento |
title_fullStr |
Ficorremediación de petróleo crudo por Chlorella sp inmovilizada bajo diferentes condiciones de crecimiento |
title_full_unstemmed |
Ficorremediación de petróleo crudo por Chlorella sp inmovilizada bajo diferentes condiciones de crecimiento |
title_sort |
Ficorremediación de petróleo crudo por Chlorella sp inmovilizada bajo diferentes condiciones de crecimiento |
dc.creator.fl_str_mv |
Arroyo Álvarez, Yeferson José |
dc.contributor.advisor.none.fl_str_mv |
Pérez Cordero, Alexander Vitola Romero, Deimer |
dc.contributor.author.none.fl_str_mv |
Arroyo Álvarez, Yeferson José |
dc.subject.lemb.none.fl_str_mv |
Contaminación por Petróleo Biorremediación Aspectos Ambientales |
topic |
Contaminación por Petróleo Biorremediación Aspectos Ambientales |
description |
1 disco de computadora, ilustraciones, gráficas, fotografías |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2021-08-03T15:45:39Z |
dc.date.available.none.fl_str_mv |
2021-08-03T15:45:39Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unisucre.edu.co/handle/001/1053 |
url |
https://repositorio.unisucre.edu.co/handle/001/1053 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abdelaziz, A., Leite, G., Belhaj, M., & Hallenbeck, P. (2014) Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresour Technol, 157, 140–148. Afanasjeva, N. (2014). Conversión pirolítica de los concentrados resino-asfalténicos de los crudos pesados. Rev. ion, 27(2), 71-86. Agnello, A. C., Bagard, M., VanHullebusch, E.D., Esposito, G. & Huguenot, D. (2016). Comparative bioremediation of heavy and petroleum hydrocarbons co-cotaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Science of the Total Environment, 1 – 12. Akhtar, N., Iqbal, J., & Iqbal, M. (2004). Enhacement of lead (II) Biosorption by microalgal biomass inmobilized onto loofa (Luffa cylindrica) sponge. Akhtar, N., Saeed, A., & Iqbal, M. (2003). Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium. Bioresource Technology, 88, 163–165. Al-Hasan, R. H., Al-Bader, D. A., Sorkhoh, N. A. & Radwan, S. S. (1998). Evidence for n -alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Marine Biology, 130 (3), 521–527. doi:10.1007/s002270050272. Allen, R. J., & Waclaw, B. (2018). Microbial population dynamics and evolution: a statistical physicist’s guide. Reports on Progress in Physics. doi:10.1088/1361-6633/aae546 Andrade, C. & Andrade, L. (2017). An overview on the application of genus Chlorella in biotechnological processes. J. Adv. Res Biotech, 2 (1), 1-9. Angulo M, E., Castellar O, G., Cely, B, M., Ibáñez S, L., & Prasca M, L. (2017). Decoloración de aguas residuales de una industria de pinturas por la microalga Chlorella sp. Revista MVZ Córdoba, 22 (1), 5706 - 5716. doi:10.21897/rmvz.930. Atlas, R. M., & Hazen, T. C. (2011). Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. History. Environmental Science & Technology, 45 (16), 6709–6715.doi:10.1021/es2013227. Autoridad Nacional de Licencias Ambiental (2018). Base de datos de contingencia de hidrocarburos 2013 – 2018. Recuperado de: file:///C:/Users/Usuario/Downloads/A_1150347_2018814Base%20de%20datos%20Contingencias%20 Hidrocarburos%20a%20Julio%2016%20de%202018.pdf. Azcón, B. J., & Talón, M. (2008). Fundamentos de fisiología vegetal. Recuperado de: http://exa.unne.edu.ar/biologia/fisiologia.vegetal/FundamentosdeFisiologiaVegetal2008Azcon..pdf. Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32 (11). doi:10.1007/s11274-016-2137-x. Bajwa, K., Bishnoi, R. N., Kirrolia, A., Sharma, J., Gupta, S. (2017). Comparison of various growth media composition for physio-biochemical parameters of biodiesel producing microalgal species (Chlorococcum aquaticum, Scenedesmus obliquus, Nannochloropsis oculata and Chlorella pyrenoidosa). European Journal of Biotechnology and Bioscience, 5 (6), 27-31. Balachandran C, Duraipandiyan V, Balakrishna K & Ignacimuthu, S. (2012). Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERICPDA-1) isolated from oil contaminated soil. Bioresour. Technol, 112, 83-90. Barron, M. G. (2017). Photoenhanced Toxicity of Petroleum to Aquatic Invertebrates and Fish. Archives of Environmental Contamination and Toxicology, 73(1), 40–46. doi:10.1007/s00244-016-0360-y Battah M. G. El-Sayed, A.B., & El-Sayed, E.W (2013). Growth of the green alga Chlorella vulgaris as affected by different carbon sources. Life Science Journal, 10(1), 2075 – 2082. Bautista, H. & Rahman, M. (2016). Effects of crude oil pollution in the tropical rainforest biodiversity of Ecuadorian Amazon Region. Journal of Biodiversity and Environmental Sciences, 8(2), 249-254. Ben, C. K., Sánchez, E. & Mourad, B. (2015). The role of algae in bioremediation of organic pollutants. International Research. Journal of Public and Environmental Health, 1 (2), 19-32. Bergeon, C., Olin, A., Woltmann, S., Stouffer, C., & Taylor, S. (2014). Effects of Oil on Terrestrial Vertebrates: Predicting Impacts of the Macondo Blowout. Bio Science, 64 (9), 820–828. Bernard, E., Stanley, I., Grace, O., Ebere, P., Abraham, O. & Ibe, K. (2018). Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. Journal of Toxicology, 1 – 16. Beyer, J., Trannum, H. C., Bakke, T., Hodson, P. V., & Collier, T. K. (2016). Environmental effects of the Deepwater Horizon oil spill: A review. Marine Pollution Bulletin, 110 (1), 28–51. doi: 10.1016/j.marpolbul.2016.06.027. Botello, S. W. Ortiz, Varón, J. & Peña, P. S. (2016). Inmovilización microbiana en polímeros sintéticos pa ra el tratamiento de aguas residuales. Fundación universidad de San Gil, 13 (26), 99 – 110 Boufadel, M. Chen, B., Foght, B., Hodson, P. Lee, K., Swanson, S., & Venosa, A. (2015). The Behaviour and Environmental Impacts of Crude Oil Released into Aqueous Environments. Recuperado de: https://www.cepa.com/wp-content/uploads/2016/11/OIW-Report.compressed1.pdf. Brakstad, O. G., Lewis, A., & Beegle, K. C. (2018). A critical review of marine snow in the context of oil spills and oil spill dispersant treatment with focus on the Deepwater Horizon oil spill. Marine Pollution Bulletin, 135, 346–356. doi: 10.1016/j.marpolbul.2018.07.028. Brar, A., Kumar, M., Vivekanand, V., & Pareek, N. (2017). Photoautotrophic microorganisms and bioremediation of industrial effluents: current status and future prospects. 3 Biotech, 7(18), 1 - 8. doi:10.1007/s13205-017-0600-5. Broström, G., A. Carrasco, L. R. Hole, S. Dick, F. Janssen, J. Mattsson, & S. Berger. (2011). Usefulness of high resolution coastal models for operational oil spill forecast: The Full City accident. Ocean Science Discussions, 8 (3):1467-1504. http://dx. doi.org/10.5194/osd-8-1467-2011. Bunty S., Himanshi R., Himanshi, P. & Ruchika, S. (2017). Bioremediation - A Progressive Approach Toward Reducing Plastic Wastes. International Journal of Current Microbiology and Applied Sciences, 6 (12), 1116-1131. Busenell, D, I. & Has, k. H. (1940). The utilization of certain hydrocarbons by microorganisms'. Agricultural experiment station received for publication, 663 – 673. Cecchin, M., Benfatto, S., Griggio, F., Mori, A., Cazzaniga, S., Vitulo, N., … Ballottari, M. (2018). Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana. Scientific Reports, 8 (1), 1 – 13. doi:10.1038/s41598-018-24979-8. Cerniglia, C. E., Gibson, D. T., & Baalen, C. V. (1979). Algal oxidation of aromatic hydrocarbons: Formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochemical and Biophysical Research Communications, 88 (1), 50–58. doi:10.1016/0006-291x(79)91695-4. Chaillan, F., Gugger, M., Saliot, A., Couté, A., & Oudot, J. (2006). Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere, 62(10), 1574–1582.doi: 10.1016/j.chemosphere.2005.06.050. Chand, T., Kumar, V., & Kumar, V (2017). Microbial Remediation of Cyanides. En Ashok, K. R. (Ed). Bioremediation Current Research and Applications. (pp, 88 - 110). Chang, S, & Paul, R. (2010). Practical Advances in Petroleum Processing. En Walters, C. (Ed.). The Origin of Petroleum. (pp. 79 - 103). Nueva York, USA: Springer. Chang, S. E., Stone, J., Demes, K., & Piscitelli, M. (2014). Consequences of oil spills: a review and framework for informing planning. Ecology and Society, 19 (2), 1 – 26. doi:10.5751/es-06406-190226. Chen, B. Y., Chen, C.-Y., Guo, W.-Q., Chang, H.-W., Chen, W.-M., Lee, D.-J., … Chang, J.-S. (2014). Fixedbed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge. Bioresource Technology, 160, 175–181. doi: 10.1016/j.biortech.2014.02.006. Chioccioli, M., Hankamer, B., & Ross, I. L. (2014). Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLoS ONE, 9(5), e97269.doi:10.1371/journal.pone.0097269. Cyprain, O, E. (2011). A petroleum review: uses, processing, products and the environment. Journal Applied Science, 11 (12), 2084 – 2091. Daliry, S., Hallajisani, A., Mohammadi, R. J., Nouri, H., & Golzary, A. (2017). Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global J. Environ. Sci. Manage., 3(2), 217-230. Dash, H.R. & Das, S. (2012). Bioremediation of mercury and importance of bacterial mer genes. Int. Biodeterior Biodegradation. 75, 207 - 213. Demirbas, A., & Taylan, O. (2016) Removing of resins from crude oils. Petroleum Science and Technology, 34:8, 771-777, DOI: 10.1080/10916466.2016.1163397. Demirbas, A., & Taylan, O. (2016). Removing of resins from crude oils. Petroleum Science and Technology, 34(8), 771–777.doi:10.1080/10916466.2016.1163397. Di, C. F., Viscaa, A., Altimaria, P., Toroa, L., Masciocchib, B., Gaetano Iaquaniellob, G., Pagnanelli, F. (2016). Two Stage Process of Microalgae Cultivation for Starch and Carotenoid Production. CHEMICAL ENGINEERING TRANSACTIONS, 49, 415 – 420. Duca, C. A., Grova, N., Ghosh, M., Mikael, J., Peter, H. M. Jeroen, H., Vanoirbeek J., Appenzeller, B. & Godderis, L. (2018). Exposure to Polycyclic Aromatic Hydrocarbons Leads to Nonmonotonic Modulation of DNA and RNA (hydroxy)methylation in a Rat Model. Scientific reports, 8 (10577), 1 – 9. DOI:10.1038/s41598-018-28911-y. Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28–36. doi: 10.1016/j.ejbt.2016.07.003. Erdogan, E. & karaca, A. (2011). Biorremediation the crude Polluted soils. Asian Journal of Biotechnology, 3 (3), 206 – 213 Eriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., … Reisser, J. (2014). Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE, 9(12). doi: 10.1371/journal.pone.0111913. Ewa, B., & Danuta, M.-Š. (2016). Polycyclic aromatic hydrocarbons and PAH-related DNA adducts. Journal of Applied Genetics, 58 (3), 321–330. doi:10.1007/s13353-016-0380-3. Farag, S., & Soliman, N. A. (2011). Biodegradation of crude petroleum oil and environmental pollutants by Candida tropicalis strain. Brazilian Archives of Biology and Technology, 54(4), 821– 830. doi:10.1590/s1516-89132011000400023. Fingas, M. (2013). The basic of oil spill cleanup. Recuperado de: file:///C:/Users/Usuario/Downloads/Merv%20Fingas%20.pdf. Font, S. Y., Gómez, L. L., Kufundala, W. M., Salazar, H. D., Ortega, D. Y. (2018). Variación de la composición de pigmentos de Chlorella vulgaris Beijerinck, con la aplicación del campo magnético estático. Rev. Cubana Quím., 30 (1), 55 – 67. Forero, C. M, Montenegro, R. L., Pinilla, A. G., Melgarejo, M. L (2016). Inmovilización de las microalgas Scenedesmus ovalternus (Scenedesmaceae) y Chlorella vulgaris (Chlorellaceae) en esferas de alginato de calcio. Acta biol. Colomb, 21(2), 437-442. doi: http://dx.doi.org/10.15446/abc.v21n2.51253. Gamilla, M, H. & Ibrahim, M. B. (2004). Algae bioasayy for evaluating the role algae in Biorremediation of crude oil: i-isolate Strain. Bull. Environ. Contam. Toxicol, 73, 883 – 889. Gani, P., Mohamed, S. N., Peralta, H., Abdul, A., Umi Kalthsom, P. U. & Abdul Rafiq, A. Z. (2015). Phycoremediation of wastewaters and potential hydrocarbon from microalgae: a review. Advances in environmental biology, 9 (20), 1 – 8. Gatamaneni, B. L., Orsat, V., & Lefsrud, M. (2018). Factors Affecting Growth of Various Microalgal Species. Environmental Engineering Science. Gnanavel, G., Mohana, J., Thirumarimurugan, M. & Kannadasan, T. (2013). Degradation of plastics waste using microbes. Chemical Engineering, 54, 12212-12214. Godleads, O. A., Prekeyi, T. F., Samson, E. O., Igelenyah, E. (2015). Bioremediation, Biostimulation and Bioaugmention: A Review. International Journal of Environmental Bioremediation & Biodegradation, 3 (1), 28-39. Guerrero, U. M. (2018). Ruptura de oleoductos por interferencia externa, daño ambiental y sostenibilidad en Colombia. Revista producción + limpia, 13 (2), 7 – 13. Guolan, H., Hongwen, S., & Li, C. L. (2000). Study on the physiology and degradation of dye with immobilized algae. Artificial Cells, Blood Substitutes, and Biotechnology, 28(4), 347– 363.doi:10.3109/10731190009119364. Hamed, I. (2016). The Evolution and Versatility of Microalgal Biotechnology: A Review. Comprehensive Reviews in Food Science and Food Safety, 15 (6), 1104–1123. doi:10.1111/1541-4337.12227. Hamouda, R. A., Sorour, N. M., & Yeheia, D. S. (2016). Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions. International Biodeterioration & Biodegradation, 112, 128–134. doi: 10.1016/j.ibiod.2016.05.001. Héctor Cerra, H., Cristina, F, M., Horak, C., Lagomarsio, M., Torno, G., & Zarankin, E. (2010). Manual de microbiología aplicada a las industrias farmacéutica, cosmética y de productos médicos. Recuperado de: https://www.aam.org.ar/descarga-archivos/manual-microbiologia-aplicada.pdf. Helm, C. R., Costa, P. D., Debruyh, D. J. & Oshea, J. T. (2015). Overview of effects of oil spill on marine mammals. En Fingas, M. (Ed), Handbook of oil spill science and technology. (pp. 455 - 475). Canada. Copyright C. Recuperado de: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118989982. Hernández, P. A. & Labbé, I. J. (2014). Microalgas, cultivo y beneficios. Revista de Biología Marina y Oceanografía, 49 (2), 157-173. DOI 10.4067/S0718-19572014000200001. Hernández, P. A. & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de Biología Marina y Oceanografía, 49(2), 157–173. doi:10.4067/s0718-19572014000200001 Hester, W., Willis, M., Rouhani, S., Steinhoff, A., & Baker, C. (2016). Impacts of the Deepwater Horizon oil spill on the salt marsh vegetation of Louisiana. Environmental Pollution, 216, 361–370. doi: 10.1016/j.envpol.2016.05.065. Hodac, L. Christine, H., Spitzer, K., Elster, J., Fashauer, F., Brinkmann, N., Lepka, D., Diwan, V. & Fried, T. (2016). Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropicaltemperate biogeography. FEMS Microbiology Ecology, 92, 1 – 16. Hoff, R. Z. (1993). Bioremediation: an overview of its development and use for oil spill cleanup. Marine Pollution Bulletin, 26 (9), 476–481. doi:10.1016/0025-326x(93)90463-t . Idris, J., Ahmad, Z., Eyu, G. D. & Chukwuekezie, C. S. (2013). Oil spills hazard and sustainable mitigation approach: a review. Adv. Mater. Res, 845, 955-959. Ifeanyi, V. O. & Ogbulie. J. N. (2016). Biodegradation of Crude Oil by Microalgae Microcystis flos-aquae. Nigerian Journal of Microbiology, 30(2), 3459-3463. Ilavarasi, A., Mubarakali, D., Praveenkumar, R., Baldev E., & N. Thajuddin (2011). Optimization of Various Growth Media to Freshwater Microalgae for Biomass Production, 10 (6), 540 – 545. Infante, C., Angulo, E., Zárate, A., July Z. Flórez, F. & Barrios, Z. (2012). Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Avances en Ciencias e Ingeniería, 3 (2), 159-164. Jeffrey, S. W. &. Humphrey, G. F. (1975). New Spectrophotometric Equations for Determining Chlorophylls a, b, c1 and c2 in Higher Plants, Algae and Natural Phytoplankton. Biocbem. Pbysiol. Pflanzen (BPP), 167, 191-194. Joel Jaimes, S. J., Montesinos, S. A., Barbosa, C. R., Moreno, M. S., Rodríguez, B. D., Ramos, C. T., Ocharán, H. M., Toscano, G. J., Olga Beltrán, R. J. (2014). El Citocromo P-450. Rev Hosp Jua Mex, 81(4), 250- 256. Jyothi, K. (2017). Micro algal Immobilization Techniques. J. Algal Biomass Utln, 8(1), 64-70. Kadri, T., Magdouli, S., Rouissi, T. & Kaur, S. (2018). Ex-situ biodegradation of petroleum hydrocarbons using Alcanivorax borkumensis enzymes. Biochem. Eng. J. 132, 279-287. Kalhor, X. A., Movafeghi, A., Mohammadi, N, A., Abedi, E., & Bahrami, A. (2017). Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Marine Pollution Bulletin, 123 (1-2), 286–290. doi: 10.1016/j.marpolbul.2017.08.045. Karigar, C. S., & Rao, S. S. (2011). Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review. Enzyme Research, 2011, 1–11. doi:10.4061/2011/805187. Langangen, O., Olsen, E., Stige, L. C., Ohlberger, J., Yaragina, N. A., Vikebo, F. B., … Hjermann, D. O. (2017). The effects of oil spills on marine fish: Implications of spatial variation in natural mortality. Marine Pollution Bulletin, 119 (1), 102–109. doi: 10.1016/j.marpolbul.2017.03.037. Lee, E., Jalalizadeh, M., & Zhang, Q. (2015). Growth kinetic models for microalgae cultivation: A review. Algal Research, 12, 497–512.doi: 10.1016/j.algal.2015.10.004. Lee, K., Boufadel, M., Chen, B., Foght, J., Hodson, P., Swanson, S., & Venosa, A. (2015). Expert Panel Report on the Behaviors and Environmental Impacts of Crude Oil Released into Aqueous Environments. Royal Society of Canada, Ottawa, ON. ISBN: 978-1-928140-02-3. Li, Y.-R., Tsai, W.-T., Hsu, Y.-C., Xie, M.-Z., & Chen, J. J. (2014). Comparison of Autotrophic and Mixotrophic Cultivation of Green Microalgal for Biodiesel Production. Energy Procedia, 52, 371–376. doi: 10.1016/j.egypro.2014.07.088. Liu, Y. Y., Weisberg, R. H., Hu, C. C., & Zheng, L. L. (2013). Trajectory forecast as a rapid response to the Deepwater Horizon oil spill. En Liu, Y. Y., Macfadyen, A., Ji, Z. G. & R. H. Weisberg, (Ed). Monitoring and modeling the Deepwater Horizon oil spill: a record-breaking enterprise. Washington, USA: American Geophysical Union. López, M. S. & Mesa V. J. (2017). Eficiencia de la microalga Chlorella sp. Para la remoción de nutrientes en las lagunas de oxidación en la ciudad de manta. Universidad Lanca Eloy Alfaro de Manabí. Tesis de grado, 13 – 16. López, S, F., Moraña, B. L, Salusso, M. M. (2015). Aislamiento, identificación y cultivo de Chlorella vulgaris con potencial para suplemento nutricional de peces. Investigaciones en Facultades de Ingeniería del NOA, 10, 829 - 833. Mansour, H. B., Mosrati, R., Barillier, D., Ghedira, K., & Chekir-Ghedira, L. (2012). Bioremediation of industrial pharmaceutical drugs. Drug and Chemical Toxicology, 35(3), 235– 240.doi:10.3109/01480545.2011.591799 Marinho, S. E., Azevedo, C. A. A., Trigueiro, T. G., Pereira, D. C., Carneiro, M. A. A., & Camara, M. R. (2011). Bioremediation of aquaculture wastewater using macroalgae and Artemia. International Biodeterioration & Biodegradation, 65 (1), 253–257. doi: 10.1016/j.ibiod.2010.10.001. Martínez, O. M., Melé, R. A., Sabaté, C. M. Gordo, O. C., Cibrián, M. N. & Mayor, P. (2017). First evidences of Amazonian wildlife feeding on petroleum-contaminated soils: A new exposure route to petrogenic compounds? Environmental Research, 160, 514–517. McCarthy, K., Niemann, M. Palmowski, D., Peters, K. & Stankewicz, A. (2011). Geoquímica básica del petróleo para la evaluación de rocas generadoras. Oilfield review, 23 (2), 36 – 48. McDonnell, A. M., & Dang, C. H. (2013). Basic review of the cytochrome p450 system. Journal of the advanced practitioner in oncology, 4(4), 263–268. Meier, S., Craig Morton, H., Nyhammer, G., Grøsvik, B. E., Makhotin, V., Geffen, A., … Svardal, A. (2010). Development of Atlantic cod (Gadus morhua) exposed to produced water during early life stages: Effects on embryos, larvae, and juvenile fish. Marine Environmental Research, 70 (5), 383–394. Mohammad Mirzaie, M. A., Kalbasi, M., Mousavi, S. M., & Ghobadian, B. (2015). Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Preparative Biochemistry and Biotechnology, 46(2), 150–156. doi:10.1080/10826068.2014.995812. Mohammad Mirzaie, M. A., Kalbasi, M., Mousavi, S. M., & Ghobadian, B. (2015). Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Preparative Biochemistry and Biotechnology, 46(2), 150– 156.doi:10.1080/10826068.2014.995812. Morales, S. D., Martínez, R. O., Kyndt, J., & Martínez, A. (2014). Heterotrophic growth of microalgae: metabolic aspects. World Journal of Microbiology and Biotechnology, 31(1), 1–9. doi:10.1007/s11274- 014-1773-2. Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M. & Dhankher, P. O. (2016). Potential biotechnological strategies for the cleanup of heavy metals and metalloids front plan. From Plant Sci, 7, 300 – 310. Doi: 10.3389/fpls.2016.00303. Mostafaii, G. R., Aseman, E., Asgharnia, H., Akbari, H., Iranshahi, L., & Sayyaf, H. (2016). Efficiency of the earthworm eisenia fetida under the effect of organic matter for bioremediation of soils contaminated with cadmium and chromium. Brazilian Journal of Chemical Engineering, 33(4), 827–834. doi:10.1590/0104- 6632.20160334s20150230. Nair, P. C., McKinnon, R. A., & Miners, J. O. (2016). Cytochrome P450 structure–function: insights from molecular dynamics simulations. Drug Metabolism Reviews, 48(3), 434– 452.doi:10.1080/03602532.2016.1178771. NOAA. (2010). Oil Spills in Coral Reefs. Recuperado de: https://response.restoration.noaa.gov/sites/default/files/Oil_Spill_Coral.pdf. Onwurah, I. N., Ogugua, V. N., Onyike, N. B., Ochonogor, A. E.& Otitoju, O. F. (2007). Crude Oil Spills in the Environment, Effects and Some Innovative Clean-up Biotechnologies. Int. J. Environ. Res, 1 (4), 307- 320. Ortiz, V. M., Romero, M. M., & Meza, R. L. (2018). La biorremediación con microalgas (Spirulina máxima, Spirulina platensis y Chlorella vulgaris) como alternativa para tratar la eutrofización de la laguna de Ubaque, Colombia. Rev. investig. desarro. innov, 9 (1), 163-176. doi: 10.19053/20278306.v9.n1.2018.8153. Pandey, P., Pathak, H., & Saurabh Dave, S. (2016). Microbial Ecology of Hydrocarbon Degradation in the Soil: A Review. Research Journal of Environmental Toxicology, 10 (1), 1-15. Paran, G., Norshuhaila, M., Hazel, M., Ab Aziz, A., Umi, K., Abdul, R. (2015). Phycoremediation of Wastewaters and Potential Hydrocarbon from Microalgae: A Review. Advances in Environmental Biology, 9(20), 1-8. Pardo, I. T. (20 de abril del 2018). En Colombia se han derramado 3,7 millones de barriles de crudo. El Tiempo. Recuperado de: https://www.eltiempo.com/vida/medio-ambiente/cifras-de-derrames-de-crudo-encolombia-en-los-ultimos-anos-207664. Pashaei, R., Gholizadeh, M. Jodeiri I. K. & Ahad, H. (2015). The Effects of Oil Spills on Ecosystem at the Persian Gulf. Int. J. Rev. Life. Sci., 5 (3), 82-89. Perelo, W. L. (2010). Review in situ and bioremediation of organic pollutants in aquatic sediments. J. Harzard Mater, 177, 81 – 89. Doi: 10.1016/j.jhazmat.2009.12.090. Pérez, G. O., Escalante, F. M. E., De-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11–36.doi: 10.1016/j.watres.2010.08.037. Piccini, M., Raikova, S., Allen, M. J., & Chuck, C. J. (2019). A synergistic use of microalgae and macroalgae for heavy metal bioremediation and bioenergy production through hydrothermal liquefaction. Sustainable Energy & Fuels, 3, 292 – 301. doi: 10.1039/c8se00408k. Praveen, K., Abinandan, S., Natarajan, R., & Kavitha, M. S. (2018). BIOCHEMICAL RESPONSES FROM BIOMASS OF ISOLATED Chlorella sp., UNDER DIFFERENT CULTIVATION MODES: NON-LINEAR MODELLING OF GROWTH KINETICS. Brazilian Journal of Chemical Engineering, 35(2), 489– 496.doi:10.1590/0104-6632.20180352s20170188. Priyadarshani, I., Sahu, D. & Rath, B. (2015). Microalgal bioremediation: Current practices and perspectives. J Biochem Tech, 3 (3), 299-304. Prototheca zopfii (Chlorophyta) capaz de utilizar ¿gas oil¿, registrada por primera vez en aguas contaminadas de Argentina. MARÍA S. VIGNA1,2, JOSEFINA ALBERGHINA1 , SILVANA M. DEL MÓNACO3 & MIGUEL A. GALVAGNO3. ilizar “gas oil”, registrada por primera vez en aguas contaminadas DARWINIANA ISSN 0011-6793 40(1-4): 45-50. 2002 Ramírez, M. I., Arevalo, A. P., Sotomayor, S., & Bailon M. N. (2017). Contamination by oil crude extraction – Refinement and their effects on human health. Environmental Pollution, 231, 415–425. doi: 10.1016/j.envpol.2017.08.017. Ray, S. (2014). Bioremediation of Pesticides. Microbial Biodegradation and Bioremediation, 511– 518. doi:10.1016/b978-0-12-800021-2.00022-4 Roberts, D. A., Paul, N. A., Bird, M. I., & de Nys, R. (2015). Bioremediation for coal-fired power stations using macroalgae. Journal of Environmental Management, 153, 25–32. doi: 10.1016/j.jenvman.2015.01.036. Rodríguez, R. P., Sánchez, M. Y., Zumalacárregui, C. L., Osney, P., Hernández, M. A., Echeveste, M. P., Lombardie, T. A. (2015). Obtención de biomasa de microalga Chlorella vulgaris en un banco de prueba de fotobiorreactores de columna de burbujeo. AFINIDAD LXXIII, 574, 125 – 129. Romero, L. J. (2014). Adaptación de microalgas a contaminantes antropogénicos emergentes: aplicaciones (Tesis doctoral). Universidad Complutense de Madrid, Departamento de producción animal. Recuperado de: Saeed, A., & Iqbal, M. (2013). Loofa (Luffa cylindrica) sponge: Review of development of the biomatrix as a tool for biotechnological applications. Biotechnology Progress, 29(3), 573–600. doi:10.1002/btpr.1702. Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265–278.doi: 10.1016/j.rser.2014.04.007. Sammarco, P. W., Kolian, S. R., Warby, R. A., Bouldin, J. L., Subra, W. A. & Porter, S. A. (2013). Distribution and concentrations of petroleum hydrocarbons associated with the BP/ Deepwater Horizon Oil Spill, Gulf of Mexico. Mar. Pollut. Bull. 73(1), 129-143. Santos, J., Vetere, A., Wisniewski, A., Eberlin, M., & Schrader, W. (2018). Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 2: Resins and Asphaltenes. Energies, 11(10), 2767.doi:10.3390/en11102767. Sharma, S. (2012). Bioremediation: Features, Strategies and applications. Asian Journal of Pharmacy and Life Science, 2 (2), 202 – 213. Shen, H. (2016). Polycyclic Aromatic Hydrocarbons Their Global Atmospheric Emissions, Transport, and Lung Cancer Risk. Recuperado: file:///C:/Users/Usuario/Downloads/(Springer%20Theses)%20Huizhong%20Shen%20(auth. Smith, S. j., Aardenne, V. J., Klimont, R, J., Andres, J. R., Volke, A. & Arias, D. (2011). Anthropogenic sulfur dioxide emissions: 1850–2005 S. Atmos. Chem. Phys, 11, 1101–1116. Suleman, S. (2011). Oil Spills: Law on Liability with Special Reference to the Indian Regime. SSRN Electronic Journal, 1(48), 1 – 32. doi:10.2139/ssrn.2044827. Troisi, G., Barton, S., & Bexton, S. (2016). Impacts of oil spills on seabirds: Unsustainable impacts of nonrenewable energy. International Journal of Hydrogen Energy, 41(37), 16549–16555. doi: 10.1016/j.ijhydene.2016.04.011. Uma, A, M., Aruna, S., Gomathi, M. & Ali H. A. (2017). Bioremediation by free and inmobilized bacteria isolated from tannery effluent. Impact Journals, 5 (7), 75 – 90. Uzoh, C. V., Ifeanyi, V. O., Okwuwe, C. I., Oranusi, S. U., Braide, W., Iheukwumere, I. H…. Ntamzor, B.G. (2015). Effect of Light on the Biodegradation of Crude Oil by the Algae Closterium species. Journal of Natural Sciences Research, 5 (22), 112 – 118. Vacca J. E., Victor, A., Gardo, R., Angulo, M., Diana, M. & Puentes, … Plaza, V. (2017). Uso de la microalga Chlorella sp. viva en suspensión en la decoloración del agua residual de una empresa textil. Prospect, 15 (1), 93 – 99. Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38(5), 719–833.doi:10.1016/j.orggeochem.2007.01.001 Velásquez, A. (2016). Contaminación de suelos y aguas por hidrocarburos en Colombia: Análisis de la fitorremediación como estrategia biotecnológica de recuperación. Revista de Investigación Agraria y Ambiental, 8 (1158), 153 – 169. Velázquez, J. (2017). Contaminación de suelos y aguas por hidrocarburos en Colombia. Fito remediación como estrategia biotecnológica de recuperación. Revista de investigación agraria y ambiental, 8 (1), 151 – 167. Walters, C. (2007). The origin of petroleum. En Hsu, C. & Robinson, P. (Ed), practical Advances in Petroleum Procesing (pp, 79 – 101). New York, USA. Springer. Willey, J. Sherwood, L. & Woolverton. (2014). Prescotts Microbiology. Nueva York, Estados Unidos: McGrawHill. Wong, H. Y., Ho, K. C., Leung, H. M., & Yung, K. K. (2017). Growth Medium Screening for Chlorella vulgaris Growth and Lipid Production. Journal of Aquaculture & Marine Biology 6 (1), 1 – 10. Wood, J. & Franks, A. (2016). Microorganisms in heavy metal bioremediation: strategies for applying microbialcommunity engineering to remediate soils. AIMS Bioengineering, 3 (2): 211-229. Xiong, J. Q., Kurade, M. B. & Jeon, B. H. (2017). Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J, 313(1), 1251-1257. Xu, Y., & Harvey, P. J. (2019). Carotenoid Production by Dunaliella salina under Red Light. Antioxidants, 8(5), 123.doi:10.3390/antiox8050123. Yan, Y., Fu, D., & Shi, J. (2019). Screening and Immobilizing the Denitrifying Microbes in Sediment for Bioremediation. Water, 11(3), 614. doi:10.3390/w11030614. Yang, J., Dong, F. Q., Dai, Q. W., Liu, M. X., Nie, X. Q., Zhang, D., Ma, J. L. & Zhou, X. (2015). Biosorption of radionuclide uranium by Deinococcus radiodurans. Europepmc.org, 35 (4), 1010-1014. Yemashova, N. A., Murygina, V. P., Zhukov, D. V., Zakharyantz, A. A., Gladchenko, M. A., Appanna, V., & Kalyuzhnyi, S. V. (2007). Biodeterioration of crude oil and oil derived products: a review. Reviews in Environmental Science and Bio/Technology, 6(4), 315–337. doi:10.1007/s11157-006-9118-8. Zhan, J., Rong, J., & Wang, Q. |
dc.rights.spa.fl_str_mv |
Universidad de Sucre, 2021 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Universidad de Sucre, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
102 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Sucre, Colombia |
dc.publisher.spa.fl_str_mv |
Universidad de Sucre |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Educación y Ciencias |
dc.publisher.place.spa.fl_str_mv |
Sincelejo, Colombia |
dc.source.spa.fl_str_mv |
Archivo Pdf |
institution |
Universidad de Sucre |
bitstream.url.fl_str_mv |
https://repositorio.unisucre.edu.co/bitstreams/0dbf25a9-eeef-434f-82e0-5fedac58380c/download https://repositorio.unisucre.edu.co/bitstreams/bb0a50e7-e116-43ac-a6f1-cb21d70b636d/download https://repositorio.unisucre.edu.co/bitstreams/e825a7cc-7c33-4f08-bebd-5f8c895965c1/download https://repositorio.unisucre.edu.co/bitstreams/e3d6f46b-11c5-4fbe-8ce8-4db34d8c04df/download |
bitstream.checksum.fl_str_mv |
f5674ae4facb8158ce11304dab624f2b 5f839364c91422e4b2a78812717048fb 17c07f4b067d121dfcc9027d58128cd7 ca509829e217f445a617911b08fc5efe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Sucre |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814111871430557696 |
spelling |
Pérez Cordero, Alexander56db224aaeecd3bbc129f55bc51b57e3Vitola Romero, Deimer3f9fde82216e0ea12a3397656a10ea7f600Arroyo Álvarez, Yeferson José064e46143056287db9b960ee93bc87202021-08-03T15:45:39Z2021-08-03T15:45:39Z2019https://repositorio.unisucre.edu.co/handle/001/10531 disco de computadora, ilustraciones, gráficas, fotografíasLa contaminación es una problemática de gran importancia a nivel global, ya que pone el equilibrio de las poblaciones de animales, plantas, microrganismos y del ser humano en alto riesgo, así como sus propias vidas. Uno de mayores impactos lo ocasiona el petróleo, debido a que posee una toxicidad muy elevada, siendo su introducción al medio una consecuencia de la gran cantidad de incidentes que se presentan constantemente y que terminan arrojando millones de litros sobre los ecosistemas acuáticos y terrestres. No obstante, se han desarrollado algunas técnicas con las que se puede llevar a cabo su remediación; sin embargo, tales metodologías no han sido lo suficientemente eficientes como para permitir la obtención de resultados satisfactorios, pues nunca se logra en su totalidad, incluso, a veces, provocan más estragos sobre el medio que el recurso en sí mismo. Por tal motivo, se ha venido trabajando en la prospección de un nuevo enfoque, la biorremediación, que emplea organismos vivos para este propósito. Entre ellos, las microalgas del genero Chlorella sp., que reportan estudios con resultados privilegiados en lo que a su biodegradación respecta. Bajo dicho dictamen, esta investigación centró sus propósitos en la determinación del potencial ficorremediador de petróleo crudo con ésta especie inmovilizada, sometida bajo condiciones de crecimiento heterotróficas y Mixotròficas en distintas concentraciones, mediante el cálculo de los porcentajes de remoción de dicha sustancia. Los datos indican que el alga es capaz de remover aceite en ambos medios, siendo 70,52 el porcentaje promedio en Heterotrofìa y 75,49 en mixotrofia, presentándose diferencias estadísticas significativas (Pvalor = 0,5978); por su parte, la concentración a la cual se llevó acabo la mayor extracción fue la de 10 g/L. La capacidad de Chlorella sp. para crecer en este fluido obedece a sus atributos genética y metabólicos eucarióticos que le permiten desarrollarse a límites superiores a 20 g/L, favorecido esto por las ventajas que ofrece el mixotrofismo. En concordancia con lo anterior, puede decirse que la microalga inmovilizada se ratifica su estatus promisorio para el tratamiento de crudo en laboratorio, en especial si se le permite hacerlo mixotròficamentePollution is a problem of great importance globally, as it will place the balance of populations of animals, plants, microorganisms and human beings at high risk, as well as their own lives. One of the greatest risks is caused by oil, because it has a very high toxicity, its introduction being a consequence of the large number of incidents that constantly occur and end up throwing millions of liters on aquatic and terrestrial ecosystems. However, some techniques have been developed with which remediation can be carried out; nevertheless, the methodologies of stories have not been efficient enough to allow obtaining satisfactory results, because it is never achieved in its entirety, even, sometimes, causing more damage to the environment than the resource itself. For this reason, work has been done on prospecting for a new approach, bioremediation, which uses living organisms for this purpose. Among them, the microalgae of the genus Chlorella sp., Which report studies with privileged results in what their biodegradation respects. Under this opinion, this investigation focused its specificities on the determination of the potential for remedy of crude oil with this immobilized species, sometimes under heterotrophic and mixtrological growth conditions in different variables, by calculating the percentages of removal of said substance. The data indicate that the algae is capable of removing oil in both media, 70.52 being the average percentage in Heterotrophy and 75.49 in myxotrophy, presenting specific statistical differences (Pvalor = 0.5978); on the other hand, the concentration at which the greatest extraction was carried out was 10 g / L. The capacity of Chlorella sp. to grow in this fluid, it obeys its eukaryotic genetic and metabolic attributes that allow it to develop at limits greater than 20 g / L, favored by the advantages that mixotrofism offers. In accordance with the above, it can be said that the immobilized microalgae ratifies its promising status for the treatment of crude in the laboratory, especially if it is allowed to do it mixotomically.PregradoBiólogo(a)Primera ediciónBiología102 páginasapplication/pdfspaUniversidad de SucreFacultad Educación y CienciasSincelejo, ColombiaUniversidad de Sucre, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Archivo PdfFicorremediación de petróleo crudo por Chlorella sp inmovilizada bajo diferentes condiciones de crecimientoTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/coar/version/c_71e4c1898caa6e32Contaminación por PetróleoBiorremediaciónAspectos AmbientalesAbdelaziz, A., Leite, G., Belhaj, M., & Hallenbeck, P. (2014) Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresour Technol, 157, 140–148. Afanasjeva, N. (2014). Conversión pirolítica de los concentrados resino-asfalténicos de los crudos pesados. Rev. ion, 27(2), 71-86. Agnello, A. C., Bagard, M., VanHullebusch, E.D., Esposito, G. & Huguenot, D. (2016). Comparative bioremediation of heavy and petroleum hydrocarbons co-cotaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Science of the Total Environment, 1 – 12. Akhtar, N., Iqbal, J., & Iqbal, M. (2004). Enhacement of lead (II) Biosorption by microalgal biomass inmobilized onto loofa (Luffa cylindrica) sponge. Akhtar, N., Saeed, A., & Iqbal, M. (2003). Chlorella sorokiniana immobilized on the biomatrix of vegetable sponge of Luffa cylindrica: a new system to remove cadmium from contaminated aqueous medium. Bioresource Technology, 88, 163–165. Al-Hasan, R. H., Al-Bader, D. A., Sorkhoh, N. A. & Radwan, S. S. (1998). Evidence for n -alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Marine Biology, 130 (3), 521–527. doi:10.1007/s002270050272. Allen, R. J., & Waclaw, B. (2018). Microbial population dynamics and evolution: a statistical physicist’s guide. Reports on Progress in Physics. doi:10.1088/1361-6633/aae546 Andrade, C. & Andrade, L. (2017). An overview on the application of genus Chlorella in biotechnological processes. J. Adv. Res Biotech, 2 (1), 1-9. Angulo M, E., Castellar O, G., Cely, B, M., Ibáñez S, L., & Prasca M, L. (2017). Decoloración de aguas residuales de una industria de pinturas por la microalga Chlorella sp. Revista MVZ Córdoba, 22 (1), 5706 - 5716. doi:10.21897/rmvz.930. Atlas, R. M., & Hazen, T. C. (2011). Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. History. Environmental Science & Technology, 45 (16), 6709–6715.doi:10.1021/es2013227. Autoridad Nacional de Licencias Ambiental (2018). Base de datos de contingencia de hidrocarburos 2013 – 2018. Recuperado de: file:///C:/Users/Usuario/Downloads/A_1150347_2018814Base%20de%20datos%20Contingencias%20 Hidrocarburos%20a%20Julio%2016%20de%202018.pdf. Azcón, B. J., & Talón, M. (2008). Fundamentos de fisiología vegetal. Recuperado de: http://exa.unne.edu.ar/biologia/fisiologia.vegetal/FundamentosdeFisiologiaVegetal2008Azcon..pdf. Azubuike, C. C., Chikere, C. B., & Okpokwasili, G. C. (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal of Microbiology and Biotechnology, 32 (11). doi:10.1007/s11274-016-2137-x. Bajwa, K., Bishnoi, R. N., Kirrolia, A., Sharma, J., Gupta, S. (2017). Comparison of various growth media composition for physio-biochemical parameters of biodiesel producing microalgal species (Chlorococcum aquaticum, Scenedesmus obliquus, Nannochloropsis oculata and Chlorella pyrenoidosa). European Journal of Biotechnology and Bioscience, 5 (6), 27-31. Balachandran C, Duraipandiyan V, Balakrishna K & Ignacimuthu, S. (2012). Petroleum and polycyclic aromatic hydrocarbons (PAHs) degradation and naphthalene metabolism in Streptomyces sp. (ERICPDA-1) isolated from oil contaminated soil. Bioresour. Technol, 112, 83-90. Barron, M. G. (2017). Photoenhanced Toxicity of Petroleum to Aquatic Invertebrates and Fish. Archives of Environmental Contamination and Toxicology, 73(1), 40–46. doi:10.1007/s00244-016-0360-y Battah M. G. El-Sayed, A.B., & El-Sayed, E.W (2013). Growth of the green alga Chlorella vulgaris as affected by different carbon sources. Life Science Journal, 10(1), 2075 – 2082. Bautista, H. & Rahman, M. (2016). Effects of crude oil pollution in the tropical rainforest biodiversity of Ecuadorian Amazon Region. Journal of Biodiversity and Environmental Sciences, 8(2), 249-254. Ben, C. K., Sánchez, E. & Mourad, B. (2015). The role of algae in bioremediation of organic pollutants. International Research. Journal of Public and Environmental Health, 1 (2), 19-32. Bergeon, C., Olin, A., Woltmann, S., Stouffer, C., & Taylor, S. (2014). Effects of Oil on Terrestrial Vertebrates: Predicting Impacts of the Macondo Blowout. Bio Science, 64 (9), 820–828. Bernard, E., Stanley, I., Grace, O., Ebere, P., Abraham, O. & Ibe, K. (2018). Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. Journal of Toxicology, 1 – 16. Beyer, J., Trannum, H. C., Bakke, T., Hodson, P. V., & Collier, T. K. (2016). Environmental effects of the Deepwater Horizon oil spill: A review. Marine Pollution Bulletin, 110 (1), 28–51. doi: 10.1016/j.marpolbul.2016.06.027. Botello, S. W. Ortiz, Varón, J. & Peña, P. S. (2016). Inmovilización microbiana en polímeros sintéticos pa ra el tratamiento de aguas residuales. Fundación universidad de San Gil, 13 (26), 99 – 110 Boufadel, M. Chen, B., Foght, B., Hodson, P. Lee, K., Swanson, S., & Venosa, A. (2015). The Behaviour and Environmental Impacts of Crude Oil Released into Aqueous Environments. Recuperado de: https://www.cepa.com/wp-content/uploads/2016/11/OIW-Report.compressed1.pdf. Brakstad, O. G., Lewis, A., & Beegle, K. C. (2018). A critical review of marine snow in the context of oil spills and oil spill dispersant treatment with focus on the Deepwater Horizon oil spill. Marine Pollution Bulletin, 135, 346–356. doi: 10.1016/j.marpolbul.2018.07.028. Brar, A., Kumar, M., Vivekanand, V., & Pareek, N. (2017). Photoautotrophic microorganisms and bioremediation of industrial effluents: current status and future prospects. 3 Biotech, 7(18), 1 - 8. doi:10.1007/s13205-017-0600-5. Broström, G., A. Carrasco, L. R. Hole, S. Dick, F. Janssen, J. Mattsson, & S. Berger. (2011). Usefulness of high resolution coastal models for operational oil spill forecast: The Full City accident. Ocean Science Discussions, 8 (3):1467-1504. http://dx. doi.org/10.5194/osd-8-1467-2011. Bunty S., Himanshi R., Himanshi, P. & Ruchika, S. (2017). Bioremediation - A Progressive Approach Toward Reducing Plastic Wastes. International Journal of Current Microbiology and Applied Sciences, 6 (12), 1116-1131. Busenell, D, I. & Has, k. H. (1940). The utilization of certain hydrocarbons by microorganisms'. Agricultural experiment station received for publication, 663 – 673. Cecchin, M., Benfatto, S., Griggio, F., Mori, A., Cazzaniga, S., Vitulo, N., … Ballottari, M. (2018). Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana. Scientific Reports, 8 (1), 1 – 13. doi:10.1038/s41598-018-24979-8. Cerniglia, C. E., Gibson, D. T., & Baalen, C. V. (1979). Algal oxidation of aromatic hydrocarbons: Formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochemical and Biophysical Research Communications, 88 (1), 50–58. doi:10.1016/0006-291x(79)91695-4. Chaillan, F., Gugger, M., Saliot, A., Couté, A., & Oudot, J. (2006). Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere, 62(10), 1574–1582.doi: 10.1016/j.chemosphere.2005.06.050. Chand, T., Kumar, V., & Kumar, V (2017). Microbial Remediation of Cyanides. En Ashok, K. R. (Ed). Bioremediation Current Research and Applications. (pp, 88 - 110). Chang, S, & Paul, R. (2010). Practical Advances in Petroleum Processing. En Walters, C. (Ed.). The Origin of Petroleum. (pp. 79 - 103). Nueva York, USA: Springer. Chang, S. E., Stone, J., Demes, K., & Piscitelli, M. (2014). Consequences of oil spills: a review and framework for informing planning. Ecology and Society, 19 (2), 1 – 26. doi:10.5751/es-06406-190226. Chen, B. Y., Chen, C.-Y., Guo, W.-Q., Chang, H.-W., Chen, W.-M., Lee, D.-J., … Chang, J.-S. (2014). Fixedbed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge. Bioresource Technology, 160, 175–181. doi: 10.1016/j.biortech.2014.02.006. Chioccioli, M., Hankamer, B., & Ross, I. L. (2014). Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris. PLoS ONE, 9(5), e97269.doi:10.1371/journal.pone.0097269. Cyprain, O, E. (2011). A petroleum review: uses, processing, products and the environment. Journal Applied Science, 11 (12), 2084 – 2091. Daliry, S., Hallajisani, A., Mohammadi, R. J., Nouri, H., & Golzary, A. (2017). Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global J. Environ. Sci. Manage., 3(2), 217-230. Dash, H.R. & Das, S. (2012). Bioremediation of mercury and importance of bacterial mer genes. Int. Biodeterior Biodegradation. 75, 207 - 213. Demirbas, A., & Taylan, O. (2016) Removing of resins from crude oils. Petroleum Science and Technology, 34:8, 771-777, DOI: 10.1080/10916466.2016.1163397. Demirbas, A., & Taylan, O. (2016). Removing of resins from crude oils. Petroleum Science and Technology, 34(8), 771–777.doi:10.1080/10916466.2016.1163397. Di, C. F., Viscaa, A., Altimaria, P., Toroa, L., Masciocchib, B., Gaetano Iaquaniellob, G., Pagnanelli, F. (2016). Two Stage Process of Microalgae Cultivation for Starch and Carotenoid Production. CHEMICAL ENGINEERING TRANSACTIONS, 49, 415 – 420. Duca, C. A., Grova, N., Ghosh, M., Mikael, J., Peter, H. M. Jeroen, H., Vanoirbeek J., Appenzeller, B. & Godderis, L. (2018). Exposure to Polycyclic Aromatic Hydrocarbons Leads to Nonmonotonic Modulation of DNA and RNA (hydroxy)methylation in a Rat Model. Scientific reports, 8 (10577), 1 – 9. DOI:10.1038/s41598-018-28911-y. Dzionek, A., Wojcieszyńska, D., & Guzik, U. (2016). Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology, 23, 28–36. doi: 10.1016/j.ejbt.2016.07.003. Erdogan, E. & karaca, A. (2011). Biorremediation the crude Polluted soils. Asian Journal of Biotechnology, 3 (3), 206 – 213 Eriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., … Reisser, J. (2014). Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE, 9(12). doi: 10.1371/journal.pone.0111913. Ewa, B., & Danuta, M.-Š. (2016). Polycyclic aromatic hydrocarbons and PAH-related DNA adducts. Journal of Applied Genetics, 58 (3), 321–330. doi:10.1007/s13353-016-0380-3. Farag, S., & Soliman, N. A. (2011). Biodegradation of crude petroleum oil and environmental pollutants by Candida tropicalis strain. Brazilian Archives of Biology and Technology, 54(4), 821– 830. doi:10.1590/s1516-89132011000400023. Fingas, M. (2013). The basic of oil spill cleanup. Recuperado de: file:///C:/Users/Usuario/Downloads/Merv%20Fingas%20.pdf. Font, S. Y., Gómez, L. L., Kufundala, W. M., Salazar, H. D., Ortega, D. Y. (2018). Variación de la composición de pigmentos de Chlorella vulgaris Beijerinck, con la aplicación del campo magnético estático. Rev. Cubana Quím., 30 (1), 55 – 67. Forero, C. M, Montenegro, R. L., Pinilla, A. G., Melgarejo, M. L (2016). Inmovilización de las microalgas Scenedesmus ovalternus (Scenedesmaceae) y Chlorella vulgaris (Chlorellaceae) en esferas de alginato de calcio. Acta biol. Colomb, 21(2), 437-442. doi: http://dx.doi.org/10.15446/abc.v21n2.51253. Gamilla, M, H. & Ibrahim, M. B. (2004). Algae bioasayy for evaluating the role algae in Biorremediation of crude oil: i-isolate Strain. Bull. Environ. Contam. Toxicol, 73, 883 – 889. Gani, P., Mohamed, S. N., Peralta, H., Abdul, A., Umi Kalthsom, P. U. & Abdul Rafiq, A. Z. (2015). Phycoremediation of wastewaters and potential hydrocarbon from microalgae: a review. Advances in environmental biology, 9 (20), 1 – 8. Gatamaneni, B. L., Orsat, V., & Lefsrud, M. (2018). Factors Affecting Growth of Various Microalgal Species. Environmental Engineering Science. Gnanavel, G., Mohana, J., Thirumarimurugan, M. & Kannadasan, T. (2013). Degradation of plastics waste using microbes. Chemical Engineering, 54, 12212-12214. Godleads, O. A., Prekeyi, T. F., Samson, E. O., Igelenyah, E. (2015). Bioremediation, Biostimulation and Bioaugmention: A Review. International Journal of Environmental Bioremediation & Biodegradation, 3 (1), 28-39. Guerrero, U. M. (2018). Ruptura de oleoductos por interferencia externa, daño ambiental y sostenibilidad en Colombia. Revista producción + limpia, 13 (2), 7 – 13. Guolan, H., Hongwen, S., & Li, C. L. (2000). Study on the physiology and degradation of dye with immobilized algae. Artificial Cells, Blood Substitutes, and Biotechnology, 28(4), 347– 363.doi:10.3109/10731190009119364. Hamed, I. (2016). The Evolution and Versatility of Microalgal Biotechnology: A Review. Comprehensive Reviews in Food Science and Food Safety, 15 (6), 1104–1123. doi:10.1111/1541-4337.12227. Hamouda, R. A., Sorour, N. M., & Yeheia, D. S. (2016). Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions. International Biodeterioration & Biodegradation, 112, 128–134. doi: 10.1016/j.ibiod.2016.05.001. Héctor Cerra, H., Cristina, F, M., Horak, C., Lagomarsio, M., Torno, G., & Zarankin, E. (2010). Manual de microbiología aplicada a las industrias farmacéutica, cosmética y de productos médicos. Recuperado de: https://www.aam.org.ar/descarga-archivos/manual-microbiologia-aplicada.pdf. Helm, C. R., Costa, P. D., Debruyh, D. J. & Oshea, J. T. (2015). Overview of effects of oil spill on marine mammals. En Fingas, M. (Ed), Handbook of oil spill science and technology. (pp. 455 - 475). Canada. Copyright C. Recuperado de: https://onlinelibrary.wiley.com/doi/book/10.1002/9781118989982. Hernández, P. A. & Labbé, I. J. (2014). Microalgas, cultivo y beneficios. Revista de Biología Marina y Oceanografía, 49 (2), 157-173. DOI 10.4067/S0718-19572014000200001. Hernández, P. A. & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de Biología Marina y Oceanografía, 49(2), 157–173. doi:10.4067/s0718-19572014000200001 Hester, W., Willis, M., Rouhani, S., Steinhoff, A., & Baker, C. (2016). Impacts of the Deepwater Horizon oil spill on the salt marsh vegetation of Louisiana. Environmental Pollution, 216, 361–370. doi: 10.1016/j.envpol.2016.05.065. Hodac, L. Christine, H., Spitzer, K., Elster, J., Fashauer, F., Brinkmann, N., Lepka, D., Diwan, V. & Fried, T. (2016). Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropicaltemperate biogeography. FEMS Microbiology Ecology, 92, 1 – 16. Hoff, R. Z. (1993). Bioremediation: an overview of its development and use for oil spill cleanup. Marine Pollution Bulletin, 26 (9), 476–481. doi:10.1016/0025-326x(93)90463-t . Idris, J., Ahmad, Z., Eyu, G. D. & Chukwuekezie, C. S. (2013). Oil spills hazard and sustainable mitigation approach: a review. Adv. Mater. Res, 845, 955-959. Ifeanyi, V. O. & Ogbulie. J. N. (2016). Biodegradation of Crude Oil by Microalgae Microcystis flos-aquae. Nigerian Journal of Microbiology, 30(2), 3459-3463. Ilavarasi, A., Mubarakali, D., Praveenkumar, R., Baldev E., & N. Thajuddin (2011). Optimization of Various Growth Media to Freshwater Microalgae for Biomass Production, 10 (6), 540 – 545. Infante, C., Angulo, E., Zárate, A., July Z. Flórez, F. & Barrios, Z. (2012). Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Avances en Ciencias e Ingeniería, 3 (2), 159-164. Jeffrey, S. W. &. Humphrey, G. F. (1975). New Spectrophotometric Equations for Determining Chlorophylls a, b, c1 and c2 in Higher Plants, Algae and Natural Phytoplankton. Biocbem. Pbysiol. Pflanzen (BPP), 167, 191-194. Joel Jaimes, S. J., Montesinos, S. A., Barbosa, C. R., Moreno, M. S., Rodríguez, B. D., Ramos, C. T., Ocharán, H. M., Toscano, G. J., Olga Beltrán, R. J. (2014). El Citocromo P-450. Rev Hosp Jua Mex, 81(4), 250- 256. Jyothi, K. (2017). Micro algal Immobilization Techniques. J. Algal Biomass Utln, 8(1), 64-70. Kadri, T., Magdouli, S., Rouissi, T. & Kaur, S. (2018). Ex-situ biodegradation of petroleum hydrocarbons using Alcanivorax borkumensis enzymes. Biochem. Eng. J. 132, 279-287. Kalhor, X. A., Movafeghi, A., Mohammadi, N, A., Abedi, E., & Bahrami, A. (2017). Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Marine Pollution Bulletin, 123 (1-2), 286–290. doi: 10.1016/j.marpolbul.2017.08.045. Karigar, C. S., & Rao, S. S. (2011). Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review. Enzyme Research, 2011, 1–11. doi:10.4061/2011/805187. Langangen, O., Olsen, E., Stige, L. C., Ohlberger, J., Yaragina, N. A., Vikebo, F. B., … Hjermann, D. O. (2017). The effects of oil spills on marine fish: Implications of spatial variation in natural mortality. Marine Pollution Bulletin, 119 (1), 102–109. doi: 10.1016/j.marpolbul.2017.03.037. Lee, E., Jalalizadeh, M., & Zhang, Q. (2015). Growth kinetic models for microalgae cultivation: A review. Algal Research, 12, 497–512.doi: 10.1016/j.algal.2015.10.004. Lee, K., Boufadel, M., Chen, B., Foght, J., Hodson, P., Swanson, S., & Venosa, A. (2015). Expert Panel Report on the Behaviors and Environmental Impacts of Crude Oil Released into Aqueous Environments. Royal Society of Canada, Ottawa, ON. ISBN: 978-1-928140-02-3. Li, Y.-R., Tsai, W.-T., Hsu, Y.-C., Xie, M.-Z., & Chen, J. J. (2014). Comparison of Autotrophic and Mixotrophic Cultivation of Green Microalgal for Biodiesel Production. Energy Procedia, 52, 371–376. doi: 10.1016/j.egypro.2014.07.088. Liu, Y. Y., Weisberg, R. H., Hu, C. C., & Zheng, L. L. (2013). Trajectory forecast as a rapid response to the Deepwater Horizon oil spill. En Liu, Y. Y., Macfadyen, A., Ji, Z. G. & R. H. Weisberg, (Ed). Monitoring and modeling the Deepwater Horizon oil spill: a record-breaking enterprise. Washington, USA: American Geophysical Union. López, M. S. & Mesa V. J. (2017). Eficiencia de la microalga Chlorella sp. Para la remoción de nutrientes en las lagunas de oxidación en la ciudad de manta. Universidad Lanca Eloy Alfaro de Manabí. Tesis de grado, 13 – 16. López, S, F., Moraña, B. L, Salusso, M. M. (2015). Aislamiento, identificación y cultivo de Chlorella vulgaris con potencial para suplemento nutricional de peces. Investigaciones en Facultades de Ingeniería del NOA, 10, 829 - 833. Mansour, H. B., Mosrati, R., Barillier, D., Ghedira, K., & Chekir-Ghedira, L. (2012). Bioremediation of industrial pharmaceutical drugs. Drug and Chemical Toxicology, 35(3), 235– 240.doi:10.3109/01480545.2011.591799 Marinho, S. E., Azevedo, C. A. A., Trigueiro, T. G., Pereira, D. C., Carneiro, M. A. A., & Camara, M. R. (2011). Bioremediation of aquaculture wastewater using macroalgae and Artemia. International Biodeterioration & Biodegradation, 65 (1), 253–257. doi: 10.1016/j.ibiod.2010.10.001. Martínez, O. M., Melé, R. A., Sabaté, C. M. Gordo, O. C., Cibrián, M. N. & Mayor, P. (2017). First evidences of Amazonian wildlife feeding on petroleum-contaminated soils: A new exposure route to petrogenic compounds? Environmental Research, 160, 514–517. McCarthy, K., Niemann, M. Palmowski, D., Peters, K. & Stankewicz, A. (2011). Geoquímica básica del petróleo para la evaluación de rocas generadoras. Oilfield review, 23 (2), 36 – 48. McDonnell, A. M., & Dang, C. H. (2013). Basic review of the cytochrome p450 system. Journal of the advanced practitioner in oncology, 4(4), 263–268. Meier, S., Craig Morton, H., Nyhammer, G., Grøsvik, B. E., Makhotin, V., Geffen, A., … Svardal, A. (2010). Development of Atlantic cod (Gadus morhua) exposed to produced water during early life stages: Effects on embryos, larvae, and juvenile fish. Marine Environmental Research, 70 (5), 383–394. Mohammad Mirzaie, M. A., Kalbasi, M., Mousavi, S. M., & Ghobadian, B. (2015). Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Preparative Biochemistry and Biotechnology, 46(2), 150–156. doi:10.1080/10826068.2014.995812. Mohammad Mirzaie, M. A., Kalbasi, M., Mousavi, S. M., & Ghobadian, B. (2015). Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Preparative Biochemistry and Biotechnology, 46(2), 150– 156.doi:10.1080/10826068.2014.995812. Morales, S. D., Martínez, R. O., Kyndt, J., & Martínez, A. (2014). Heterotrophic growth of microalgae: metabolic aspects. World Journal of Microbiology and Biotechnology, 31(1), 1–9. doi:10.1007/s11274- 014-1773-2. Mosa, K. A., Saadoun, I., Kumar, K., Helmy, M. & Dhankher, P. O. (2016). Potential biotechnological strategies for the cleanup of heavy metals and metalloids front plan. From Plant Sci, 7, 300 – 310. Doi: 10.3389/fpls.2016.00303. Mostafaii, G. R., Aseman, E., Asgharnia, H., Akbari, H., Iranshahi, L., & Sayyaf, H. (2016). Efficiency of the earthworm eisenia fetida under the effect of organic matter for bioremediation of soils contaminated with cadmium and chromium. Brazilian Journal of Chemical Engineering, 33(4), 827–834. doi:10.1590/0104- 6632.20160334s20150230. Nair, P. C., McKinnon, R. A., & Miners, J. O. (2016). Cytochrome P450 structure–function: insights from molecular dynamics simulations. Drug Metabolism Reviews, 48(3), 434– 452.doi:10.1080/03602532.2016.1178771. NOAA. (2010). Oil Spills in Coral Reefs. Recuperado de: https://response.restoration.noaa.gov/sites/default/files/Oil_Spill_Coral.pdf. Onwurah, I. N., Ogugua, V. N., Onyike, N. B., Ochonogor, A. E.& Otitoju, O. F. (2007). Crude Oil Spills in the Environment, Effects and Some Innovative Clean-up Biotechnologies. Int. J. Environ. Res, 1 (4), 307- 320. Ortiz, V. M., Romero, M. M., & Meza, R. L. (2018). La biorremediación con microalgas (Spirulina máxima, Spirulina platensis y Chlorella vulgaris) como alternativa para tratar la eutrofización de la laguna de Ubaque, Colombia. Rev. investig. desarro. innov, 9 (1), 163-176. doi: 10.19053/20278306.v9.n1.2018.8153. Pandey, P., Pathak, H., & Saurabh Dave, S. (2016). Microbial Ecology of Hydrocarbon Degradation in the Soil: A Review. Research Journal of Environmental Toxicology, 10 (1), 1-15. Paran, G., Norshuhaila, M., Hazel, M., Ab Aziz, A., Umi, K., Abdul, R. (2015). Phycoremediation of Wastewaters and Potential Hydrocarbon from Microalgae: A Review. Advances in Environmental Biology, 9(20), 1-8. Pardo, I. T. (20 de abril del 2018). En Colombia se han derramado 3,7 millones de barriles de crudo. El Tiempo. Recuperado de: https://www.eltiempo.com/vida/medio-ambiente/cifras-de-derrames-de-crudo-encolombia-en-los-ultimos-anos-207664. Pashaei, R., Gholizadeh, M. Jodeiri I. K. & Ahad, H. (2015). The Effects of Oil Spills on Ecosystem at the Persian Gulf. Int. J. Rev. Life. Sci., 5 (3), 82-89. Perelo, W. L. (2010). Review in situ and bioremediation of organic pollutants in aquatic sediments. J. Harzard Mater, 177, 81 – 89. Doi: 10.1016/j.jhazmat.2009.12.090. Pérez, G. O., Escalante, F. M. E., De-Bashan, L. E., & Bashan, Y. (2011). Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11–36.doi: 10.1016/j.watres.2010.08.037. Piccini, M., Raikova, S., Allen, M. J., & Chuck, C. J. (2019). A synergistic use of microalgae and macroalgae for heavy metal bioremediation and bioenergy production through hydrothermal liquefaction. Sustainable Energy & Fuels, 3, 292 – 301. doi: 10.1039/c8se00408k. Praveen, K., Abinandan, S., Natarajan, R., & Kavitha, M. S. (2018). BIOCHEMICAL RESPONSES FROM BIOMASS OF ISOLATED Chlorella sp., UNDER DIFFERENT CULTIVATION MODES: NON-LINEAR MODELLING OF GROWTH KINETICS. Brazilian Journal of Chemical Engineering, 35(2), 489– 496.doi:10.1590/0104-6632.20180352s20170188. Priyadarshani, I., Sahu, D. & Rath, B. (2015). Microalgal bioremediation: Current practices and perspectives. J Biochem Tech, 3 (3), 299-304. Prototheca zopfii (Chlorophyta) capaz de utilizar ¿gas oil¿, registrada por primera vez en aguas contaminadas de Argentina. MARÍA S. VIGNA1,2, JOSEFINA ALBERGHINA1 , SILVANA M. DEL MÓNACO3 & MIGUEL A. GALVAGNO3. ilizar “gas oil”, registrada por primera vez en aguas contaminadas DARWINIANA ISSN 0011-6793 40(1-4): 45-50. 2002 Ramírez, M. I., Arevalo, A. P., Sotomayor, S., & Bailon M. N. (2017). Contamination by oil crude extraction – Refinement and their effects on human health. Environmental Pollution, 231, 415–425. doi: 10.1016/j.envpol.2017.08.017. Ray, S. (2014). Bioremediation of Pesticides. Microbial Biodegradation and Bioremediation, 511– 518. doi:10.1016/b978-0-12-800021-2.00022-4 Roberts, D. A., Paul, N. A., Bird, M. I., & de Nys, R. (2015). Bioremediation for coal-fired power stations using macroalgae. Journal of Environmental Management, 153, 25–32. doi: 10.1016/j.jenvman.2015.01.036. Rodríguez, R. P., Sánchez, M. Y., Zumalacárregui, C. L., Osney, P., Hernández, M. A., Echeveste, M. P., Lombardie, T. A. (2015). Obtención de biomasa de microalga Chlorella vulgaris en un banco de prueba de fotobiorreactores de columna de burbujeo. AFINIDAD LXXIII, 574, 125 – 129. Romero, L. J. (2014). Adaptación de microalgas a contaminantes antropogénicos emergentes: aplicaciones (Tesis doctoral). Universidad Complutense de Madrid, Departamento de producción animal. Recuperado de: Saeed, A., & Iqbal, M. (2013). Loofa (Luffa cylindrica) sponge: Review of development of the biomatrix as a tool for biotechnological applications. Biotechnology Progress, 29(3), 573–600. doi:10.1002/btpr.1702. Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265–278.doi: 10.1016/j.rser.2014.04.007. Sammarco, P. W., Kolian, S. R., Warby, R. A., Bouldin, J. L., Subra, W. A. & Porter, S. A. (2013). Distribution and concentrations of petroleum hydrocarbons associated with the BP/ Deepwater Horizon Oil Spill, Gulf of Mexico. Mar. Pollut. Bull. 73(1), 129-143. Santos, J., Vetere, A., Wisniewski, A., Eberlin, M., & Schrader, W. (2018). Comparing Crude Oils with Different API Gravities on a Molecular Level Using Mass Spectrometric Analysis. Part 2: Resins and Asphaltenes. Energies, 11(10), 2767.doi:10.3390/en11102767. Sharma, S. (2012). Bioremediation: Features, Strategies and applications. Asian Journal of Pharmacy and Life Science, 2 (2), 202 – 213. Shen, H. (2016). Polycyclic Aromatic Hydrocarbons Their Global Atmospheric Emissions, Transport, and Lung Cancer Risk. Recuperado: file:///C:/Users/Usuario/Downloads/(Springer%20Theses)%20Huizhong%20Shen%20(auth. Smith, S. j., Aardenne, V. J., Klimont, R, J., Andres, J. R., Volke, A. & Arias, D. (2011). Anthropogenic sulfur dioxide emissions: 1850–2005 S. Atmos. Chem. Phys, 11, 1101–1116. Suleman, S. (2011). Oil Spills: Law on Liability with Special Reference to the Indian Regime. SSRN Electronic Journal, 1(48), 1 – 32. doi:10.2139/ssrn.2044827. Troisi, G., Barton, S., & Bexton, S. (2016). Impacts of oil spills on seabirds: Unsustainable impacts of nonrenewable energy. International Journal of Hydrogen Energy, 41(37), 16549–16555. doi: 10.1016/j.ijhydene.2016.04.011. Uma, A, M., Aruna, S., Gomathi, M. & Ali H. A. (2017). Bioremediation by free and inmobilized bacteria isolated from tannery effluent. Impact Journals, 5 (7), 75 – 90. Uzoh, C. V., Ifeanyi, V. O., Okwuwe, C. I., Oranusi, S. U., Braide, W., Iheukwumere, I. H…. Ntamzor, B.G. (2015). Effect of Light on the Biodegradation of Crude Oil by the Algae Closterium species. Journal of Natural Sciences Research, 5 (22), 112 – 118. Vacca J. E., Victor, A., Gardo, R., Angulo, M., Diana, M. & Puentes, … Plaza, V. (2017). Uso de la microalga Chlorella sp. viva en suspensión en la decoloración del agua residual de una empresa textil. Prospect, 15 (1), 93 – 99. Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38(5), 719–833.doi:10.1016/j.orggeochem.2007.01.001 Velásquez, A. (2016). Contaminación de suelos y aguas por hidrocarburos en Colombia: Análisis de la fitorremediación como estrategia biotecnológica de recuperación. Revista de Investigación Agraria y Ambiental, 8 (1158), 153 – 169. Velázquez, J. (2017). Contaminación de suelos y aguas por hidrocarburos en Colombia. Fito remediación como estrategia biotecnológica de recuperación. Revista de investigación agraria y ambiental, 8 (1), 151 – 167. Walters, C. (2007). The origin of petroleum. En Hsu, C. & Robinson, P. (Ed), practical Advances in Petroleum Procesing (pp, 79 – 101). New York, USA. Springer. Willey, J. Sherwood, L. & Woolverton. (2014). Prescotts Microbiology. Nueva York, Estados Unidos: McGrawHill. Wong, H. Y., Ho, K. C., Leung, H. M., & Yung, K. K. (2017). Growth Medium Screening for Chlorella vulgaris Growth and Lipid Production. Journal of Aquaculture & Marine Biology 6 (1), 1 – 10. Wood, J. & Franks, A. (2016). Microorganisms in heavy metal bioremediation: strategies for applying microbialcommunity engineering to remediate soils. AIMS Bioengineering, 3 (2): 211-229. Xiong, J. Q., Kurade, M. B. & Jeon, B. H. (2017). Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J, 313(1), 1251-1257. Xu, Y., & Harvey, P. J. (2019). Carotenoid Production by Dunaliella salina under Red Light. Antioxidants, 8(5), 123.doi:10.3390/antiox8050123. Yan, Y., Fu, D., & Shi, J. (2019). Screening and Immobilizing the Denitrifying Microbes in Sediment for Bioremediation. Water, 11(3), 614. doi:10.3390/w11030614. Yang, J., Dong, F. Q., Dai, Q. W., Liu, M. X., Nie, X. Q., Zhang, D., Ma, J. L. & Zhou, X. (2015). Biosorption of radionuclide uranium by Deinococcus radiodurans. Europepmc.org, 35 (4), 1010-1014. Yemashova, N. A., Murygina, V. P., Zhukov, D. V., Zakharyantz, A. A., Gladchenko, M. A., Appanna, V., & Kalyuzhnyi, S. V. (2007). Biodeterioration of crude oil and oil derived products: a review. Reviews in Environmental Science and Bio/Technology, 6(4), 315–337. doi:10.1007/s11157-006-9118-8. Zhan, J., Rong, J., & Wang, Q. (2017). Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. International Journal of Hydrogen Energy, 42(12), 8505–8517. doi: 10.1016/j.ijhydene.2016.12.021. Zobell, C. E. (1946). Action of Microorganisms on hydrocarbons. Bacterial Rev., 10 (295), 1 - 49.Sucre, ColombiaEspecializadaPublicationORIGINALT581.5222 A779.pdfT581.5222 A779.pdfEsta investigación centró sus propósitos en la determinación del potencial ficorremediador de petróleo crudo, sometida bajo condiciones de crecimiento heterotróficas y Mixotròficas en distintas concentraciones, mediante el cálculo de los porcentajes de remoción de dicha sustancia.application/pdf1880627https://repositorio.unisucre.edu.co/bitstreams/0dbf25a9-eeef-434f-82e0-5fedac58380c/downloadf5674ae4facb8158ce11304dab624f2bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81366https://repositorio.unisucre.edu.co/bitstreams/bb0a50e7-e116-43ac-a6f1-cb21d70b636d/download5f839364c91422e4b2a78812717048fbMD52TEXTT581.5222 A779.pdf.txtT581.5222 A779.pdf.txtExtracted texttext/plain173302https://repositorio.unisucre.edu.co/bitstreams/e825a7cc-7c33-4f08-bebd-5f8c895965c1/download17c07f4b067d121dfcc9027d58128cd7MD53THUMBNAILT581.5222 A779.pdf.jpgT581.5222 A779.pdf.jpgGenerated Thumbnailimage/jpeg6226https://repositorio.unisucre.edu.co/bitstreams/e3d6f46b-11c5-4fbe-8ce8-4db34d8c04df/downloadca509829e217f445a617911b08fc5efeMD54001/1053oai:repositorio.unisucre.edu.co:001/10532024-04-17 16:30:21.228https://creativecommons.org/licenses/by-nc-nd/4.0/Universidad de Sucre, 2021open.accesshttps://repositorio.unisucre.edu.coRepositorio Institucional Universidad de Sucrebdigital@metabiblioteca.comYXV0b3Jpem8gYSBsYSBVTklWRVJTSURBRCBERSBTVUNSRSwgcGFyYToKCkkuCVF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIHkgdXNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGVkaWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKSUkuCUxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLCBlbGVjdHLDs25pY28sIGRpZ2l0YWwsIMOzcHRpY28sIHVzb3MgZW4gcmVkLCBJbnRlcm5ldCwgaW50cmFuZXQsIGV0Yy4sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgpJSUkuCUVMIEFVVE9SIOKAkyBBVVRPUkVTLCBtYW5pZmllc3RhbiBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBzdSBleGNsdXNpdmEgYXV0b3LDrWEgeSBkZXRlbnRhIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAgCgpJVi4JRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEVTVFVESUFOVEUg4oCTIEFVVE9SLCBhc3VtaXLDoSB0b2RhICBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhICBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7ICBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIFVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCg== |