Suplementación lipídica para la producción de carne bovina en confinamientos
- Autores:
-
Alvarado-Vesga, Daniela
Granja-Salcedo, Yury Tatiana
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Sucre
- Repositorio:
- Repositorio Unisucre
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unisucre.edu.co:001/1621
- Acceso en línea:
- https://repositorio.unisucre.edu.co/handle/001/1621
https://doi.org/10.24188/recia.v13.n2.2021.770
- Palabra clave:
- fatty acids
bacteria
biohydrogenation
fermentation
protozoa
ácidos grasos
bacteria
biohidrogenación
fermentación
protozoos
- Rights
- openAccess
- License
- @Autores - 2021
id |
RUNISUCRE2_84f57e3fec23ba87c3793ade659ec7cf |
---|---|
oai_identifier_str |
oai:repositorio.unisucre.edu.co:001/1621 |
network_acronym_str |
RUNISUCRE2 |
network_name_str |
Repositorio Unisucre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Suplementación lipídica para la producción de carne bovina en confinamientos |
dc.title.translated.eng.fl_str_mv |
Lipid supplementation for the production of bovine meat in feedlots |
title |
Suplementación lipídica para la producción de carne bovina en confinamientos |
spellingShingle |
Suplementación lipídica para la producción de carne bovina en confinamientos fatty acids bacteria biohydrogenation fermentation protozoa ácidos grasos bacteria biohidrogenación fermentación protozoos |
title_short |
Suplementación lipídica para la producción de carne bovina en confinamientos |
title_full |
Suplementación lipídica para la producción de carne bovina en confinamientos |
title_fullStr |
Suplementación lipídica para la producción de carne bovina en confinamientos |
title_full_unstemmed |
Suplementación lipídica para la producción de carne bovina en confinamientos |
title_sort |
Suplementación lipídica para la producción de carne bovina en confinamientos |
dc.creator.fl_str_mv |
Alvarado-Vesga, Daniela Granja-Salcedo, Yury Tatiana |
dc.contributor.author.spa.fl_str_mv |
Alvarado-Vesga, Daniela Granja-Salcedo, Yury Tatiana |
dc.subject.eng.fl_str_mv |
fatty acids bacteria biohydrogenation fermentation protozoa |
topic |
fatty acids bacteria biohydrogenation fermentation protozoa ácidos grasos bacteria biohidrogenación fermentación protozoos |
dc.subject.spa.fl_str_mv |
ácidos grasos bacteria biohidrogenación fermentación protozoos |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-02 00:00:00 2022-07-01T17:16:15Z |
dc.date.available.none.fl_str_mv |
2021-09-02 00:00:00 2022-07-01T17:16:15Z |
dc.date.issued.none.fl_str_mv |
2021-09-02 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_dcae04bc |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREV |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unisucre.edu.co/handle/001/1621 |
dc.identifier.doi.none.fl_str_mv |
10.24188/recia.v13.n2.2021.770 |
dc.identifier.eissn.none.fl_str_mv |
2027-4297 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24188/recia.v13.n2.2021.770 |
url |
https://repositorio.unisucre.edu.co/handle/001/1621 https://doi.org/10.24188/recia.v13.n2.2021.770 |
identifier_str_mv |
10.24188/recia.v13.n2.2021.770 2027-4297 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Faostat, población. FAO. 2020. http://www.fao.org/faostat/es/#compare Carvalho I, Fiorentini G, Castagnino P de S, Jesus R de, Messana J, Granja-Salcedo Y, et al. Supplementation with lipid sources alters the ruminal fermentation and duodenal flow of fatty acids in grazing Nellore steers. Anim Feed Sci Technol. 2017; 227:142-153. https://doi.org/10.1016/j.anifeedsci.2017.02.017 Granja-Salcedo Y. Glicerina bruta e lipídeos na dieta: manipulando o metabolismo ruminal de bovinos de corte. Inves Med Ved. 2016; 6. https://doi.org/10.26843/investigacao.v15i7.1476 Wanapat M, Mapato C, Pilajun R, Toburan W. Effects of vegetable oil supplementation on feed intake, rumen fermentation, growth performance, and carcass characteristic of growing swamp buffaloes. Livest Sci. 2011; 135(1):32-37. https://doi.org/10.1016/j.livsci.2010.06.006 Maia M, Chaudhary L, Bestwick C, Richardson A, McKain N, Larson T, et al. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 2010; 10:52. https://doi.org/10.1186/1471-2180-10-52 Fiorentini G, Santana M, Sampaio A, Reis R, Ribeiro A, Berchielli T. Intake and performance of confined crossbred heifers fed different lipid sources. Rev Bras Zootec. 2012; 41(6):1490-1498. https://doi.org/10.1590/S1516-35982012000600025 Medeiros R, Gomes R, Bungenstab D. Nutrição de bovinos de corte fundamentos e aplicações. 1ed. Brasília: Embrapa; 2015. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1010951/nutricao-de-bovinos-de-corte-fundamentos-e-aplicacoes Gottschall C, Canellas L, Marques P, Bittencourt H. Relationships between age, weight, average weight gain and days on feed of beef steers slaughtered at 15 or 27 months of age. Ciênc Agrár. 2009; 30(3):717-726. http://dx.doi.org/10.5433/16790359.2009v30n3p717 Fernandes A, Sampaio A, Henrique W, Oliveira E, Tullio R, Perecin D. Características da carcaça e da carne de bovinos sob diferentes dietas, em confinamento. Arq Bras Med Veterinária. 2008; 60(1):139-147. https://doi.org/10.1590/S0102-09352008000100020 Chuntrakort P, Otsuka M, Hayashi K, Takenaka A, Udchachon S, Sommart K. The effect of dietary coconut kernels, whole cottonseeds and sunflower seeds on the intake, digestibility and enteric methane emissions of Zebu beef cattle fed rice straw based diets. Livest Sci. 2014; 161:80-89. https://doi.org/10.1016/j.livsci.2014.01.003 Vahmani P, Ponnampalam EN, Kraft J, Mapiye C, Bermingham EN, Watkins PJ, et al. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020; 165:108114. https://doi.org/10.1016/j.meatsci.2020.108114 Andrade E, Polizel A, Roça R, Faria M, Resende F, Siqueira G, et al. Beef quality of young Angus × Nellore cattle supplemented with rumen-protected lipids during rearing and fatting periods. 2014; 98(4):591-598. https://doi.org/10.1016/j.meatsci.2014.05.028 McCann J, Elolimy A, Loor J. Rumen Microbiome, Probiotics, and Fermentation Additives. Vet Clin North Am Food Anim Pract. 2017; 33(3):539-553. https://doi.org/10.1016/j.cvfa.2017.06.009 Fernando S, Purvis H, Najar F, Sukharnikov L, Krehbiel C, Nagaraja T, et al. Rumen Microbial Population Dynamics during Adaptation to a High-Grain Diet. Appl Environ Microbiol. 2010; 76(22):7482-7490. https://doi.org/10.1128/AEM.00388-10 Zeineldin M, Barakat R, Elolimy A, Salem AZM, Elghandour MMY, Monroy JC. Synergetic action between the rumen microbiota and bovine health. Microb Pathog. 2018; 124:106-115. https://doi.org/10.1016/j.micpath.2018.08.038 Chaucheyras-Durand F, Ossa F. The rumen microbiome: Composition, abundance, diversity, and new investigative tools. Prof Anim Sci. 2014; 30(1):1-12. https://doi.org/10.15232/S1080-7446(15)30076-0 Chaucheyras-Durand F, Masséglia S, Fonty G, Forano E. Influence of the Composition of the Cellulolytic Flora on the Development of Hydrogenotrophic Microorganisms, Hydrogen Utilization, and Methane Production in the Rumens of Gnotobiotically Reared Lambs. Appl Environ Microbiol. 2010; 76(24):7931-7937. https://doi.org/10.1128/AEM.01784-10 Patel V, Patel AK, Parmar NR, Patel AB, Reddy B, Joshi CG. Characterization of the rumen microbiome of Indian Kankrej cattle (Bos indicus) adapted to different forage diet. Appl Microbiol Biotechnol. 2014; 98(23):9749-9761. https://doi.org/10.1007/s00253-014-6153-1 Krehbiel CR. Applied nutrition of ruminants: Fermentation and digestive physiology. Prof Anim Sci. 2014; 30(2):129-139. https://doi.org/10.15232/S1080-7446(15)30100-5 Ribeiro G, Gruninger R, Badhan A, McAllister T. Mining the rumen for fibrolytic feed enzymes. Anim Front. 2016; 6(2):20-26. https://doi.org/10.2527/af.2016-0019 Emerson E, Weimer P. Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures. Appl Microbiol Biotechnol. 2017; 101(10):4269-4278. https://doi.org/10.1007/s00253-017-8150-7 Maia M, Chaudhary L, Figueres L, Wallace RJ. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek. 2007; 91(4):303-314. https://doi.org/10.1007/s10482-006-9118-2 Granja-Salcedo Y, Dias A, Gomez-Insuasti A, Messana J, Berchielli T. Diet containing glycerine and soybean oil can reduce ruminal biohydrogenation in Nellore steers. Anim Feed Sci Technol. 2017; 225:195-204. https://doi.org/10.1016/j.anifeedsci.2017.01.021 Jami E, Mizrahi I. Similarity of the ruminal bacteria across individual lactating cows. Anaerobe. 2012; 18(3):338-343. https://doi.org/10.1016/j.anaerobe.2012.04.003 Buccioni A, Decandia M, Minieri S, Molle G, Cabiddu A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim Feed Sci Technol. 2012; 174(1-2):1-25. https://doi.org/10.1016/j.anifeedsci.2012.02.009 Lourenço M, Ramos-Morales E, Wallace RJ. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal. 2010; 4(7):1008-1023. https://doi.org/10.1017/S175173111000042X Maczulak AE. Effects of Long-Chain Fatty Acids on Growth of Rumen Bacteriat. Appl Env Microbiol. 1981; 42(5):856-862. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC244119/ Wadhwa M, Bakshi MPS, Makkar HPS. Modifying gut microbiomes in large ruminants: Opportunities in non-intensive husbandry systems. Anim Front. 2016; 6(2):27-36. https://doi.org/10.2527/af.2016-0020 Harmon DL, Swanson KC. Review: Nutritional regulation of intestinal starch and protein assimilation in ruminants. Animal. 2020; 14(S1):s17-s28. https://doi.org/10.1017/S1751731119003136 Diaz HL, Karnati SKR, Lyons MA, Dehority BA, Firkins JL. Chemotaxis toward carbohydrates and peptides by mixed ruminal protozoa when fed, fasted, or incubated with polyunsaturated fatty acids. J Dairy Sci. 2014; 97(4):2231-2243. https://doi.org/10.3168/jds.2013-7428 Rey M, Enjalbert F, Combes S, Cauquil L, Bouchez O, Monteils V. Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. J Appl Microbiol. 2014; 116(2):245-257. https://doi.org/10.1111/jam.12405 Beauchemin KA. Invited review: Current perspectives on eating and rumination activity in dairy cows. J Dairy Sci. 2018; 101(6):4762-4784. https://doi.org/10.3168/jds.2017-13706 Wang GR, Duan YL. Studies on Lignocellulose Degradation by Rumen Microorganism. Adv Mater Res. 2013; 853:253-259. https://doi.org/10.4028/www.scientific.net/AMR.853.253 Farenzena R, Kozloski GV, Mezzomo MP, Fluck AC. Forage degradability, rumen bacterial adherence and fibrolytic enzyme activity in vitro: effect of pH or glucose concentration. J Agric Sci. 2014; 152(2):325-332. https://doi.org/10.1017/S0021859613000427 Raut MP, Karunakaran E, Mukherjee J, Biggs CA, Wright PC. Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85. Desvaux M, editor. PLOS ONE. 2015; 10(10):e0141197. https://doi.org/10.1371/journal.pone.0141197 Patra AK, Yu Z. Effects of Essential Oils on Methane Production and Fermentation by, and Abundance and Diversity of, Rumen Microbial Populations. Appl Environ Microbiol. 2012; 78(12):4271-4280. https://doi.org/10.1128/AEM.00309-12 Abubakr A, Alimon A, Yaakub H, Abdullah N, Ivan M. Digestibility, rumen protozoa, and ruminal fermentation in goats receiving dietary palm oil by-products. J Saudi Soc Agric Sci. 2013; 12(2):147-154. https://doi.org/10.1016/j.jssas.2012.11.002 Peng Q, Khan NA, Wang Z, Yu P. Relationship of feeds protein structural makeup in common Prairie feeds with protein solubility, in situ ruminal degradation and intestinal digestibility. Anim Feed Sci Technol. 2014; 194:58-70. https://doi.org/10.1016/j.anifeedsci.2014.05.004 Wang ZB, Xin HS, Bao J, Duan CY, Chen Y, Qu YL. Effects of hainanmycin or monensin supplementation on ruminal protein metabolism and populations of proteolytic bacteria in Holstein heifers. Anim Feed Sci Technol. 2015; 201:99-103. https://doi.org/10.1016/j.anifeedsci.2015.01.001 Belanche A, de la Fuente G, Moorby JM, Newbold CJ. Bacterial protein degradation by different rumen protozoal groups1. J Anim Sci. 2012; 90(12):4495-4504. https://doi.org/10.2527/jas.2012-5118 De Beni Arrigoni M, Ludovico C, Factori MA. Lipid Metabolism in the Rumen. En: Nagaraja T. Rumenology. Springer International Publishing; 2016. Liu K, Li Y, Luo G, Xin H, Zhang Y, Li G. The relationships of dairy ruminal odd- and branched- chain fatty acids to the duodenal bacterial nitrogen flow and volatile fatty acids. Livest Sci. 2020; 233:103971. https://doi.org/10.1016/j.livsci.2020.103971 Lu Z, Stumpff F, Deiner C, Rosendahl J, Braun H, Abdoun K, et al. Modulation of sheep ruminal urea transport by ammonia and pH. Am J Physiol-Regul Integr Comp Physiol. 2014; 307(5):R558-R570. https://doi.org/10.1152/ajpregu.00107.2014 Souza NKP, Detmann E, Valadares Filho SC, Costa VAC, Pina DS, Gomes DI, et al. Accuracy of the estimates of ammonia concentration in rumen fluid using different analytical methods. Arq Bras Med Vet Zootec. 2013; 65(6):1752-1758. https://doi.org/10.1590/S0102-09352013000600024 Silva LFP, Dixon RM, Costa DFA. Nitrogen recycling and feed efficiency of cattle fed protein-restricted diets. Anim Prod Sci. 2019; 59(11):2093-2107. https://doi.org/10.1071/AN19234 Li C, Beauchemin KA, Yang W. Feeding diets varying in forage proportion and particle length to lactating dairy cows: I. Effects on ruminal pH and fermentation, microbial protein synthesis, digestibility, and milk production. J Dairy Sci. 2020; 103(5):4340-4354. https://doi.org/10.3168/jds.2019-17606 Prates LL, Valadares RFD, Filho SCV, Detmann E, Ouellet DR, Batista ED, et al. Investigating the effects of sex of growing Nellore cattle and crude protein intake on the utilization of recycled N for microbial protein synthesis in the rumen by using intravenous 15 N 15 N-urea infusion. Anim Feed Sci Technol. 2017; 231:119-130. https://doi.org/10.1016/j.anifeedsci.2017.06.014 Arcuri P, Ferraz F, Costa J. Microbiologia do rumen. En: Berchielli T, Pires A, Oliveira S. Nutriçao de ruminantes. 2.a ed. Jaboticabal: Funep; 2011. Nam IS, Garnsworthy PC. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J Appl Microbiol. 2007; 103(3):551-556. https://doi.org/10.1111/j.1365-2672.2007.03317.x Karnati SKR, Sylvester JT, Ribeiro CVDM, Gilligan LE, Firkins JL. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis. J Dairy Sci. 2009; 92(8):3849-3860. https://doi.org/10.3168/jds.2008-1436 Or-Rashid MM, Odongo NE, McBride BW. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids1. J Anim Sci. 2007; 85(5):1228-1234. https://doi.org/10.2527/jas.2006-385 Duckett SK, Gillis MH. Effects of oil source and fish oil addition on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. J Anim Sci. 2010; 88(8):2684-2691. https://doi.org/10.2527/jas.2009-2375 Park B-K, Lee S-M, Kim H-C, Chang S-S, Kim T-I, Cho Y-M, et al. Effects of Ruminally Protected Amino Acid-enriched Fatty Acids on Growth Performance and Carcass Characteristics of Fattening Hanwoo Cows. J Anim Sci Technol. 2010; 52(6):499-504. https://doi.org/10.5187/JAST.2010.52.6.499 Behan, Loh, Fakurazi, Kaka, Kaka, Samsudin. Effects of Supplementation of Rumen Protected Fats on Rumen Ecology and Digestibility of Nutrients in Sheep. Animals. 2019; 9(7):400. https://doi.org/10.3390/ani9070400 Syahniar TM, Ridla M, Samsudin AA, Jayanegara A. Glycerol as an Energy Source for Ruminants: A Meta-Analysis of in Vitro Experiments. Media Peternak. 2016; 39(3):189-194. https://doi.org/10.5398/medpet.2016.39.3.189 Granja-Salcedo YT, Duarte Messana J, Carneiro de Souza V, Lino Dias AV, Takeshi Kishi L, Rocha Rebelo L, et al. Effects of partial replacement of maize in the diet with crude glycerin and/or soyabean oil on ruminal fermentation and microbial population in Nellore steers. Br J Nutr. 2017; 118(9):651-660. https://doi.org/10.1017/S0007114517002689 Vito ES, Granja-Salcedo YT, Lage JF, Oliveira AS, Gionbelli MP, Messana JD, et al. Crude glycerin as an alternative to corn as a supplement for beef cattle grazing in pasture during the dry season. Semina Ciênc Agrár. 2018; 39(5):2215-2232. http://dx.doi.org/10.5433/1679-0359.2018v39n5p2215 |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.unisucre.edu.co/index.php/recia/article/download/e770/959 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 2 , Año 2021 : RECIA 13(2):JULIO-DICIEMBRE 2021 |
dc.relation.citationendpage.none.fl_str_mv |
e770 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationstartpage.none.fl_str_mv |
e770 |
dc.relation.citationvolume.spa.fl_str_mv |
13 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Colombiana de Ciencia Animal - RECIA |
dc.rights.spa.fl_str_mv |
@Autores - 2021 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
@Autores - 2021 https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Sucre |
dc.source.spa.fl_str_mv |
https://revistas.unisucre.edu.co/index.php/recia/article/view/e770 |
institution |
Universidad de Sucre |
bitstream.url.fl_str_mv |
https://repositorio.unisucre.edu.co/bitstreams/6f0ed466-8585-4343-b835-9d30c75a39e8/download |
bitstream.checksum.fl_str_mv |
c3621d8682ba5fd91cc5534d9f94081d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Sucre |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814111942517719040 |
spelling |
Alvarado-Vesga, Daniela71e05bf8998a0bf2655bf84a2a2b5d9a300Granja-Salcedo, Yury Tatiana9607fe333da8737ea574f1fd85b97fc83002021-09-02 00:00:002022-07-01T17:16:15Z2021-09-02 00:00:002022-07-01T17:16:15Z2021-09-02https://repositorio.unisucre.edu.co/handle/001/162110.24188/recia.v13.n2.2021.7702027-4297https://doi.org/10.24188/recia.v13.n2.2021.770application/pdfspaUniversidad de Sucre@Autores - 2021https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.unisucre.edu.co/index.php/recia/article/view/e770fatty acidsbacteriabiohydrogenationfermentationprotozoaácidos grasosbacteriabiohidrogenaciónfermentaciónprotozoosSuplementación lipídica para la producción de carne bovina en confinamientosLipid supplementation for the production of bovine meat in feedlotsArtículo de revistaJournal articleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_dcae04bchttp://purl.org/coar/resource_type/c_2df8fbb1Texthttp://purl.org/redcol/resource_type/ARTREVhttp://purl.org/coar/version/c_970fb48d4fbd8a85Faostat, población. FAO. 2020. http://www.fao.org/faostat/es/#compareCarvalho I, Fiorentini G, Castagnino P de S, Jesus R de, Messana J, Granja-Salcedo Y, et al. Supplementation with lipid sources alters the ruminal fermentation and duodenal flow of fatty acids in grazing Nellore steers. Anim Feed Sci Technol. 2017; 227:142-153. https://doi.org/10.1016/j.anifeedsci.2017.02.017Granja-Salcedo Y. Glicerina bruta e lipídeos na dieta: manipulando o metabolismo ruminal de bovinos de corte. Inves Med Ved. 2016; 6. https://doi.org/10.26843/investigacao.v15i7.1476Wanapat M, Mapato C, Pilajun R, Toburan W. Effects of vegetable oil supplementation on feed intake, rumen fermentation, growth performance, and carcass characteristic of growing swamp buffaloes. Livest Sci. 2011; 135(1):32-37. https://doi.org/10.1016/j.livsci.2010.06.006Maia M, Chaudhary L, Bestwick C, Richardson A, McKain N, Larson T, et al. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 2010; 10:52. https://doi.org/10.1186/1471-2180-10-52Fiorentini G, Santana M, Sampaio A, Reis R, Ribeiro A, Berchielli T. Intake and performance of confined crossbred heifers fed different lipid sources. Rev Bras Zootec. 2012; 41(6):1490-1498. https://doi.org/10.1590/S1516-35982012000600025Medeiros R, Gomes R, Bungenstab D. Nutrição de bovinos de corte fundamentos e aplicações. 1ed. Brasília: Embrapa; 2015. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1010951/nutricao-de-bovinos-de-corte-fundamentos-e-aplicacoesGottschall C, Canellas L, Marques P, Bittencourt H. Relationships between age, weight, average weight gain and days on feed of beef steers slaughtered at 15 or 27 months of age. Ciênc Agrár. 2009; 30(3):717-726. http://dx.doi.org/10.5433/16790359.2009v30n3p717Fernandes A, Sampaio A, Henrique W, Oliveira E, Tullio R, Perecin D. Características da carcaça e da carne de bovinos sob diferentes dietas, em confinamento. Arq Bras Med Veterinária. 2008; 60(1):139-147. https://doi.org/10.1590/S0102-09352008000100020Chuntrakort P, Otsuka M, Hayashi K, Takenaka A, Udchachon S, Sommart K. The effect of dietary coconut kernels, whole cottonseeds and sunflower seeds on the intake, digestibility and enteric methane emissions of Zebu beef cattle fed rice straw based diets. Livest Sci. 2014; 161:80-89. https://doi.org/10.1016/j.livsci.2014.01.003Vahmani P, Ponnampalam EN, Kraft J, Mapiye C, Bermingham EN, Watkins PJ, et al. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci. 2020; 165:108114. https://doi.org/10.1016/j.meatsci.2020.108114Andrade E, Polizel A, Roça R, Faria M, Resende F, Siqueira G, et al. Beef quality of young Angus × Nellore cattle supplemented with rumen-protected lipids during rearing and fatting periods. 2014; 98(4):591-598. https://doi.org/10.1016/j.meatsci.2014.05.028McCann J, Elolimy A, Loor J. Rumen Microbiome, Probiotics, and Fermentation Additives. Vet Clin North Am Food Anim Pract. 2017; 33(3):539-553. https://doi.org/10.1016/j.cvfa.2017.06.009Fernando S, Purvis H, Najar F, Sukharnikov L, Krehbiel C, Nagaraja T, et al. Rumen Microbial Population Dynamics during Adaptation to a High-Grain Diet. Appl Environ Microbiol. 2010; 76(22):7482-7490. https://doi.org/10.1128/AEM.00388-10Zeineldin M, Barakat R, Elolimy A, Salem AZM, Elghandour MMY, Monroy JC. Synergetic action between the rumen microbiota and bovine health. Microb Pathog. 2018; 124:106-115. https://doi.org/10.1016/j.micpath.2018.08.038Chaucheyras-Durand F, Ossa F. The rumen microbiome: Composition, abundance, diversity, and new investigative tools. Prof Anim Sci. 2014; 30(1):1-12. https://doi.org/10.15232/S1080-7446(15)30076-0Chaucheyras-Durand F, Masséglia S, Fonty G, Forano E. Influence of the Composition of the Cellulolytic Flora on the Development of Hydrogenotrophic Microorganisms, Hydrogen Utilization, and Methane Production in the Rumens of Gnotobiotically Reared Lambs. Appl Environ Microbiol. 2010; 76(24):7931-7937. https://doi.org/10.1128/AEM.01784-10Patel V, Patel AK, Parmar NR, Patel AB, Reddy B, Joshi CG. Characterization of the rumen microbiome of Indian Kankrej cattle (Bos indicus) adapted to different forage diet. Appl Microbiol Biotechnol. 2014; 98(23):9749-9761. https://doi.org/10.1007/s00253-014-6153-1Krehbiel CR. Applied nutrition of ruminants: Fermentation and digestive physiology. Prof Anim Sci. 2014; 30(2):129-139. https://doi.org/10.15232/S1080-7446(15)30100-5Ribeiro G, Gruninger R, Badhan A, McAllister T. Mining the rumen for fibrolytic feed enzymes. Anim Front. 2016; 6(2):20-26. https://doi.org/10.2527/af.2016-0019Emerson E, Weimer P. Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures. Appl Microbiol Biotechnol. 2017; 101(10):4269-4278. https://doi.org/10.1007/s00253-017-8150-7Maia M, Chaudhary L, Figueres L, Wallace RJ. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek. 2007; 91(4):303-314. https://doi.org/10.1007/s10482-006-9118-2Granja-Salcedo Y, Dias A, Gomez-Insuasti A, Messana J, Berchielli T. Diet containing glycerine and soybean oil can reduce ruminal biohydrogenation in Nellore steers. Anim Feed Sci Technol. 2017; 225:195-204. https://doi.org/10.1016/j.anifeedsci.2017.01.021Jami E, Mizrahi I. Similarity of the ruminal bacteria across individual lactating cows. Anaerobe. 2012; 18(3):338-343. https://doi.org/10.1016/j.anaerobe.2012.04.003Buccioni A, Decandia M, Minieri S, Molle G, Cabiddu A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim Feed Sci Technol. 2012; 174(1-2):1-25. https://doi.org/10.1016/j.anifeedsci.2012.02.009Lourenço M, Ramos-Morales E, Wallace RJ. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal. 2010; 4(7):1008-1023. https://doi.org/10.1017/S175173111000042XMaczulak AE. Effects of Long-Chain Fatty Acids on Growth of Rumen Bacteriat. Appl Env Microbiol. 1981; 42(5):856-862. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC244119/Wadhwa M, Bakshi MPS, Makkar HPS. Modifying gut microbiomes in large ruminants: Opportunities in non-intensive husbandry systems. Anim Front. 2016; 6(2):27-36. https://doi.org/10.2527/af.2016-0020Harmon DL, Swanson KC. Review: Nutritional regulation of intestinal starch and protein assimilation in ruminants. Animal. 2020; 14(S1):s17-s28. https://doi.org/10.1017/S1751731119003136Diaz HL, Karnati SKR, Lyons MA, Dehority BA, Firkins JL. Chemotaxis toward carbohydrates and peptides by mixed ruminal protozoa when fed, fasted, or incubated with polyunsaturated fatty acids. J Dairy Sci. 2014; 97(4):2231-2243. https://doi.org/10.3168/jds.2013-7428Rey M, Enjalbert F, Combes S, Cauquil L, Bouchez O, Monteils V. Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. J Appl Microbiol. 2014; 116(2):245-257. https://doi.org/10.1111/jam.12405Beauchemin KA. Invited review: Current perspectives on eating and rumination activity in dairy cows. J Dairy Sci. 2018; 101(6):4762-4784. https://doi.org/10.3168/jds.2017-13706Wang GR, Duan YL. Studies on Lignocellulose Degradation by Rumen Microorganism. Adv Mater Res. 2013; 853:253-259. https://doi.org/10.4028/www.scientific.net/AMR.853.253Farenzena R, Kozloski GV, Mezzomo MP, Fluck AC. Forage degradability, rumen bacterial adherence and fibrolytic enzyme activity in vitro: effect of pH or glucose concentration. J Agric Sci. 2014; 152(2):325-332. https://doi.org/10.1017/S0021859613000427Raut MP, Karunakaran E, Mukherjee J, Biggs CA, Wright PC. Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85. Desvaux M, editor. PLOS ONE. 2015; 10(10):e0141197. https://doi.org/10.1371/journal.pone.0141197Patra AK, Yu Z. Effects of Essential Oils on Methane Production and Fermentation by, and Abundance and Diversity of, Rumen Microbial Populations. Appl Environ Microbiol. 2012; 78(12):4271-4280. https://doi.org/10.1128/AEM.00309-12Abubakr A, Alimon A, Yaakub H, Abdullah N, Ivan M. Digestibility, rumen protozoa, and ruminal fermentation in goats receiving dietary palm oil by-products. J Saudi Soc Agric Sci. 2013; 12(2):147-154. https://doi.org/10.1016/j.jssas.2012.11.002Peng Q, Khan NA, Wang Z, Yu P. Relationship of feeds protein structural makeup in common Prairie feeds with protein solubility, in situ ruminal degradation and intestinal digestibility. Anim Feed Sci Technol. 2014; 194:58-70. https://doi.org/10.1016/j.anifeedsci.2014.05.004Wang ZB, Xin HS, Bao J, Duan CY, Chen Y, Qu YL. Effects of hainanmycin or monensin supplementation on ruminal protein metabolism and populations of proteolytic bacteria in Holstein heifers. Anim Feed Sci Technol. 2015; 201:99-103. https://doi.org/10.1016/j.anifeedsci.2015.01.001Belanche A, de la Fuente G, Moorby JM, Newbold CJ. Bacterial protein degradation by different rumen protozoal groups1. J Anim Sci. 2012; 90(12):4495-4504. https://doi.org/10.2527/jas.2012-5118De Beni Arrigoni M, Ludovico C, Factori MA. Lipid Metabolism in the Rumen. En: Nagaraja T. Rumenology. Springer International Publishing; 2016.Liu K, Li Y, Luo G, Xin H, Zhang Y, Li G. The relationships of dairy ruminal odd- and branched- chain fatty acids to the duodenal bacterial nitrogen flow and volatile fatty acids. Livest Sci. 2020; 233:103971. https://doi.org/10.1016/j.livsci.2020.103971Lu Z, Stumpff F, Deiner C, Rosendahl J, Braun H, Abdoun K, et al. Modulation of sheep ruminal urea transport by ammonia and pH. Am J Physiol-Regul Integr Comp Physiol. 2014; 307(5):R558-R570. https://doi.org/10.1152/ajpregu.00107.2014Souza NKP, Detmann E, Valadares Filho SC, Costa VAC, Pina DS, Gomes DI, et al. Accuracy of the estimates of ammonia concentration in rumen fluid using different analytical methods. Arq Bras Med Vet Zootec. 2013; 65(6):1752-1758. https://doi.org/10.1590/S0102-09352013000600024Silva LFP, Dixon RM, Costa DFA. Nitrogen recycling and feed efficiency of cattle fed protein-restricted diets. Anim Prod Sci. 2019; 59(11):2093-2107. https://doi.org/10.1071/AN19234Li C, Beauchemin KA, Yang W. Feeding diets varying in forage proportion and particle length to lactating dairy cows: I. Effects on ruminal pH and fermentation, microbial protein synthesis, digestibility, and milk production. J Dairy Sci. 2020; 103(5):4340-4354. https://doi.org/10.3168/jds.2019-17606Prates LL, Valadares RFD, Filho SCV, Detmann E, Ouellet DR, Batista ED, et al. Investigating the effects of sex of growing Nellore cattle and crude protein intake on the utilization of recycled N for microbial protein synthesis in the rumen by using intravenous 15 N 15 N-urea infusion. Anim Feed Sci Technol. 2017; 231:119-130. https://doi.org/10.1016/j.anifeedsci.2017.06.014Arcuri P, Ferraz F, Costa J. Microbiologia do rumen. En: Berchielli T, Pires A, Oliveira S. Nutriçao de ruminantes. 2.a ed. Jaboticabal: Funep; 2011.Nam IS, Garnsworthy PC. Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. J Appl Microbiol. 2007; 103(3):551-556. https://doi.org/10.1111/j.1365-2672.2007.03317.xKarnati SKR, Sylvester JT, Ribeiro CVDM, Gilligan LE, Firkins JL. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis. J Dairy Sci. 2009; 92(8):3849-3860. https://doi.org/10.3168/jds.2008-1436Or-Rashid MM, Odongo NE, McBride BW. Fatty acid composition of ruminal bacteria and protozoa, with emphasis on conjugated linoleic acid, vaccenic acid, and odd-chain and branched-chain fatty acids1. J Anim Sci. 2007; 85(5):1228-1234. https://doi.org/10.2527/jas.2006-385Duckett SK, Gillis MH. Effects of oil source and fish oil addition on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. J Anim Sci. 2010; 88(8):2684-2691. https://doi.org/10.2527/jas.2009-2375Park B-K, Lee S-M, Kim H-C, Chang S-S, Kim T-I, Cho Y-M, et al. Effects of Ruminally Protected Amino Acid-enriched Fatty Acids on Growth Performance and Carcass Characteristics of Fattening Hanwoo Cows. J Anim Sci Technol. 2010; 52(6):499-504. https://doi.org/10.5187/JAST.2010.52.6.499Behan, Loh, Fakurazi, Kaka, Kaka, Samsudin. Effects of Supplementation of Rumen Protected Fats on Rumen Ecology and Digestibility of Nutrients in Sheep. Animals. 2019; 9(7):400. https://doi.org/10.3390/ani9070400Syahniar TM, Ridla M, Samsudin AA, Jayanegara A. Glycerol as an Energy Source for Ruminants: A Meta-Analysis of in Vitro Experiments. Media Peternak. 2016; 39(3):189-194. https://doi.org/10.5398/medpet.2016.39.3.189Granja-Salcedo YT, Duarte Messana J, Carneiro de Souza V, Lino Dias AV, Takeshi Kishi L, Rocha Rebelo L, et al. Effects of partial replacement of maize in the diet with crude glycerin and/or soyabean oil on ruminal fermentation and microbial population in Nellore steers. Br J Nutr. 2017; 118(9):651-660. https://doi.org/10.1017/S0007114517002689Vito ES, Granja-Salcedo YT, Lage JF, Oliveira AS, Gionbelli MP, Messana JD, et al. Crude glycerin as an alternative to corn as a supplement for beef cattle grazing in pasture during the dry season. Semina Ciênc Agrár. 2018; 39(5):2215-2232. http://dx.doi.org/10.5433/1679-0359.2018v39n5p2215https://revistas.unisucre.edu.co/index.php/recia/article/download/e770/959Núm. 2 , Año 2021 : RECIA 13(2):JULIO-DICIEMBRE 2021e7702e77013Revista Colombiana de Ciencia Animal - RECIAPublicationOREORE.xmltext/xml2598https://repositorio.unisucre.edu.co/bitstreams/6f0ed466-8585-4343-b835-9d30c75a39e8/downloadc3621d8682ba5fd91cc5534d9f94081dMD51001/1621oai:repositorio.unisucre.edu.co:001/16212024-04-17 16:31:04.774https://creativecommons.org/licenses/by-nc-sa/4.0/@Autores - 2021metadata.onlyhttps://repositorio.unisucre.edu.coRepositorio Institucional Universidad de Sucrebdigital@metabiblioteca.com |