El sueño: fisiología y homeostasis

Todos los animales disponen de mecanismos fisiológicos y homeostáticos para generar, mantener, ajustar y sincronizar los ciclos endógenos/exógenos del sueño. Varias áreas del cerebro intervienen en la activación y regulación de los ciclos sueño/vigilia y su sincronía con el ciclo luz/oscuridad. Toda...

Full description

Autores:
Padilla-Gil, Dora Nancy
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad de Sucre
Repositorio:
Repositorio Unisucre
Idioma:
spa
OAI Identifier:
oai:repositorio.unisucre.edu.co:001/1721
Acceso en línea:
https://repositorio.unisucre.edu.co/handle/001/1721
https://doi.org/10.24188/recia.v15.n1.2023.985
Palabra clave:
neurotransmitters
non rem sleep
rem sleep
slow wave sleep
neurotransmisores
ondas lentas del sueño
sueño nrem
sueño rem
Rights
openAccess
License
Dora Nancy Padilla-Gil - 2023
id RUNISUCRE2_7a93520b60d7a9809cb7fb2a5e6ffae1
oai_identifier_str oai:repositorio.unisucre.edu.co:001/1721
network_acronym_str RUNISUCRE2
network_name_str Repositorio Unisucre
repository_id_str
dc.title.spa.fl_str_mv El sueño: fisiología y homeostasis
dc.title.translated.eng.fl_str_mv The sleep: Physiology and homeostasis
title El sueño: fisiología y homeostasis
spellingShingle El sueño: fisiología y homeostasis
neurotransmitters
non rem sleep
rem sleep
slow wave sleep
neurotransmisores
ondas lentas del sueño
sueño nrem
sueño rem
title_short El sueño: fisiología y homeostasis
title_full El sueño: fisiología y homeostasis
title_fullStr El sueño: fisiología y homeostasis
title_full_unstemmed El sueño: fisiología y homeostasis
title_sort El sueño: fisiología y homeostasis
dc.creator.fl_str_mv Padilla-Gil, Dora Nancy
dc.contributor.author.spa.fl_str_mv Padilla-Gil, Dora Nancy
dc.subject.eng.fl_str_mv neurotransmitters
non rem sleep
rem sleep
slow wave sleep
topic neurotransmitters
non rem sleep
rem sleep
slow wave sleep
neurotransmisores
ondas lentas del sueño
sueño nrem
sueño rem
dc.subject.spa.fl_str_mv neurotransmisores
ondas lentas del sueño
sueño nrem
sueño rem
description Todos los animales disponen de mecanismos fisiológicos y homeostáticos para generar, mantener, ajustar y sincronizar los ciclos endógenos/exógenos del sueño. Varias áreas del cerebro intervienen en la activación y regulación de los ciclos sueño/vigilia y su sincronía con el ciclo luz/oscuridad. Toda esta actividad fisiológica está incluida en el reloj biológico (o ritmo circadiano) de cada animal, el cual está modulado por genes, proteínas, y neurotransmisores. El sueño se relaciona con los procesos de recuperación o reparación, mantenimiento y restauración de la eficacia de todos los sistemas del organismo, principalmente de los sistemas nervioso, endocrino e inmunológico. Dada la importancia del sueño tanto para los animales como para los humanos, esta revisión presenta una reseña sobre la fisiología y homeostasis del sueño, documentada a través de bibliografía científica publicada en los últimos cinco años (2017-2022), en revistas científicas como Science y Nature, de las bases de datos PubMed, Science Direct, o clasificadas en Scimago. El sueño está regulado por factores exógenos y endógenos, en estos últimos son actores principales los neurotransmisores (serotonina, histamina), neuromoduladores (noradrenalina), hormonas (sistema orexina/hipocretina, melatonina), el sistema glinfático y los genes que activan las diferentes vías de señalización para que funcione en forma óptima las neuronas y la glía del encéfalo.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-29 05:46:57
2023-07-05T09:30:40Z
dc.date.available.none.fl_str_mv 2023-06-29 05:46:57
2023-07-05T09:30:40Z
dc.date.issued.none.fl_str_mv 2023-06-29
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_dcae04bc
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREV
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unisucre.edu.co/handle/001/1721
dc.identifier.doi.none.fl_str_mv 10.24188/recia.v15.n1.2023.985
dc.identifier.eissn.none.fl_str_mv 2027-4297
dc.identifier.url.none.fl_str_mv https://doi.org/10.24188/recia.v15.n1.2023.985
url https://repositorio.unisucre.edu.co/handle/001/1721
https://doi.org/10.24188/recia.v15.n1.2023.985
identifier_str_mv 10.24188/recia.v15.n1.2023.985
2027-4297
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Siegel JM. Clues to the functions of mammalian sleep. Nature. 2005; 437(7063):1264–1271. https://doi.org/10.1038/nature04285
Yadav A, Kumar R, Tiwari J, Kumar V, Rani S. Sleep in birds: Lying on the continuum of activity and rest. Biol Rhythm Res. 2017; 48(5):805–814. https://doi.org/10.1080/09291016.2017.1346850
Van der Auwera P, Frooninckx L, Buscemi K, Vance RT, Watteyne J, Mirabeau O, et al. RPamide neuropeptides NLP-22 and NLP-2 act through GnRH-like receptors to promote sleep and wakefulness in C. elegans. Sci Rep. 2020; 10(1):9929. https://doi.org/10.1038/s41598-020-66536-2
Helfrich-Förster C. Sleep in Insects. Ann Rev Entomol. 2018; 63(1):69–86. https://doi.org/10.1146/annurev-ento-020117-043201
Navarro-Sanchis C, Brock O, Winsky-Sommerer R, Thuret S. Modulation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health. Front Neural Circuits. 2017; 11(74). https://doi.org/10.3389/fncir.2017.00074
Spence AR, LeWinter H, Tingley MW. Anna’s hummingbird (Calypte anna) physiological response to novel thermal and hypoxic conditions at high elevations. J Exp Biol. 2022; 225(10):jeb243294. https://doi.org/10.1242/jeb.243294
Krüger K, Prinzinger R, Schuchmann KL. Torpor and metabolism in hummingbirds. Comp Biochem Physiol Part A: Physiol. 1982; 73(4):679–689. https://doi.org/10.1016/0300-9629(82)90275-4
Shankar A, Schroeder RJ, Wethington SM, Graham CH, Powers DR. Hummingbird torpor in context: Duration, more than temperature, is the key to nighttime energy savings. J Avian Biol. 2020; 51(5):jav.02305. https://doi.org/10.1111/jav.02305
Wolf BO, McKechnie AE, Schmitt CJ, Czenze ZJ, Johnson AB, Witt CC. Extreme and variable torpor among high-elevation Andean hummingbird species. Biol Lett. 2020; 16(9):20200428. https://doi.org/10.1098/rsbl.2020.0428
Nagai H, de Vivo L, Marshall W, Tononi G, Cirelli C. Effects of Severe Sleep Disruption on the Synaptic Ultrastructure of Young Mice. eNeuro. 2021; 8(4):0077. https://doi.org/10.1523/ENEURO.0077-21.2021
Aulsebrook AE, Johnsson RD, Lesku JA. Light, Sleep and Performance in Diurnal Birds. Clocks & Sleep. 2021; 3(1):115–131. https://doi.org/10.3390/clockssleep3010008
Johnsson RD, Connelly F, Gaviraghi Mussoi J, Vyssotski AL, Cain KE, Roth TC, et al. Sleep loss impairs cognitive performance and alters song output in Australian magpies. Sci Rep. 2022; 12(1):6645. https://doi.org/10.1038/s41598-022-10162-7
Hahn MA, Heib D, Schabus M, Hoedlmoser K, Helfrich RF. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. ELife. 2020; 9:e53730. https://doi.org/10.7554/eLife.53730
Hahn MA, Bothe K, Heib D, Schabus M, Helfrich RF, Hoedlmoser K. Slow oscillation–spindle coupling strength predicts real-life gross-motor learning in adolescents and adults. ELife. 2022; 11:e66761. https://doi.org/10.7554/eLife.66761
Alrousan G, Hassan A, Pillai AA, Atrooz F, Salim S. Early Life Sleep Deprivation and Brain Development: Insights From Human and Animal Studies. Front Neurosci. 2022; 16:833786. https://doi.org/10.3389/fnins.2022.833786
Hernandez-Reif M, Gungordu N. Infant sleep behaviors relate to their later cognitive and language abilities and morning cortisol stress hormone levels. Infant Behav Dev. 2022; 67:101700. https://doi.org/10.1016/j.infbeh.2022.101700
Schlieber M, Han J. The Role of Sleep in Young Children’s Development: A Review. J Genet Psychol. 2021; 182(4):205–217. https://doi.org/10.1080/00221325.2021.1908218
Campbell SS, Tobler I. Animal sleep: A review of sleep duration across phylogeny. Neurosci Biobehav Rev. 1984; 8(3):269–300. https://doi.org/10.1016/0149-7634(84)90054-X
Klein K, Busby MK. Slumber in a cell: honeycomb used by honeybees for food, brood, heating and sleeping. PeerJ. 2020; 8:e9583 https://doi.org/7717/peerj.9583
Samson DR, Vining A, Nunn CL. Sleep influences cognitive performance in lemurs. Anim Cogn. 2019; 22(5):697–706. https://doi.org/10.1007/s10071-019-01266-1
Geissmann Q, Beckwith EJ, Gilestro GF. Most sleep does not serve a vital function: Evidence from Drosophila melanogaster. Sci Adv. 2019; 5(2):9253. https://doi.org/10.1126/sciadv.aau9253
Brown RE, Spratt TJ, Kaplan GB. Translational approaches to influence sleep and arousal. Brain Res Bull. 2022; 185:140–161. https://doi.org/10.1016/j.brainresbull.2022.05.002
Fernandez-Chiappe F, Hermann-Luibl C, Peteranderl A, Reinhard N, Senthilan PR, Hieke M, et al. Dopamine Signaling in Wake-Promoting Clock Neurons Is Not Required for the Normal Regulation of Sleep in Drosophila. J. Neurosci. 2020;40(50):9617–9633. https://doi.org/10.1523/jneurosci.1488-20.2020
Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Sci. 2019; 366(6465):628–631. https://doi.org/10.1126/science.aax5440
Guo D, Thomas RJ, Liu Y, Shea SA, Lu J, Peng CK. Slow wave synchronization and sleep state transitions. Sci Rep. 2022; 12(1):7467. https://doi.org/10.1038/s41598-022-11513-0
Norimoto H, Fenk LA, Li HH, Tosches MA, Gallego-Flores T, Hain D, et al. A claustrum in reptiles and its role in slow-wave sleep. Nature. 2020; 578(7795):413–418. https://doi.org/10.1038/s41586-020-1993-6
Bandarabadi M, Herrera CG, Gent TC, Bassetti C, Schindler K, Adamantidis AR. A role for spindles in the onset of rapid eye movement sleep. Nat Commun. 2020; 11(1):5247. https://doi.org/10.1038/s41467-020-19076-2
Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin Knockout Mice. Cell. 1999; 98(4):437–451. https://doi.org/10.1016/S0092-8674(00)81973-X
Gazerani P. Nightmares in Migraine: A Focused Review. Behav Sci. 2021; 11(9):122. https://doi.org/10.3390/bs11090122
Nitzan N, Swanson R, Schmitz D, Buzsáki G. Brain-wide interactions during hippocampal sharp wave ripples. Proc Natl Acad Sci. 2022; 119(20):e2200931119. https://doi.org/10.1073/pnas.2200931119
Salehpour F, Khademi M, Bragin DE, DiDuro JO. Photobiomodulation Therapy and the Glymphatic System: Promising Applications for Augmenting the Brain Lymphatic Drainage System. Int J Mol Sci. 2022; 23(6):2975. https://doi.org/10.3390/ijms23062975
Russell JK, Bubser M, Newhouse PA, Lindsley CW, Jones CK. Age and circadian rhythm-dependent effects of M1 muscarinic acetylcholine receptor positive allosteric modulators and donepezil on sleep-wake architecture and arousal. Alzheimers Dement. 2021; 17(S9). https://doi.org/10.1002/alz.057851
Schneider J, Lewis PA, Koester D, Born J, Ngo HVV. Susceptibility to auditory closed-loop stimulation of sleep slow oscillations changes with age. Sleep. 2020; 43(12):zsaa111. https://doi.org/10.1093/sleep/zsaa111
Vanderlinden J, Boen F, Puyenbroeck SV, van Uffelen JGZ. The effects of a real-life lifestyle program on physical activity and objective and subjective sleep in adults aged 55+ years. BMC Public Health. 2022; 22(1):353. https://doi.org/10.1186/s12889-022-12780-210.1016/j.bcp.2021.114438
Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson’s disease and preclinical models. Mol Neurodegener. 2022; 17(1):2. https://doi.org/10.1186/s13024-021-00504-w
Van der Meij J, Martinez-Gonzalez D, Beckers GJL, Rattenborg NC. Neurophysiology of avian sleep: comparing natural sleep and isoflurane anesthesia. Front Neurosci. 2019; 13:262. https://doi.org/10.3389/fnins. 2019.00262
Yadav A, Tiwari J, Vaish V, Malik S, Rani S. Migration gives sleepless nights to the birds: A study on a Palearctic–Indian migrant, Emberiza bruniceps. J Ornithol. 2021; 162(1):77–87. https://doi.org/10.1007/s10336-020-01829-x
Kendall-Bar JM, Vyssotski AL, Mukhametov LM, Siegel JM, Lyamin OI. Eye state asymmetry during aquatic unihemispheric slow wave sleep in northern fur seals (Callorhinus ursinus). PloS one. 2019; 14(5):e0217025. https://doi.org/10.1371/journal.pone.0217025
Lyamin OI, Mukhametov LM, Siegel JM. Sleep in the northern fur seal. Curr Opin Neurobiol. 2017; 44:144–151. https://doi.org/10.1016/j.conb.2017.04.009
Medeiros SL de S, Paiva MMM de, Lopes PH, Blanco W, Lima FD de, Oliveira JBC, et al. Cyclic alternation of quiet and active sleep states in the octopus. iScience. 2021; 24(4):102223. https://doi.org/10.1016/j.isci.2021.102223
Carús-Cadavieco M, De Andrés I. Adenosina y control homeostático del sueño. Acciones en estructuras diana de los circuitos de vigilia y sueño. Rev Neurol. 2012; 55:413–420. https://neurologia.com/articulo/2012258
Mignot E, Zeitzer J, Pizza F, Plazzi G. Sleep Problems in Narcolepsy and the Role of Hypocretin/Orexin Deficiency. En: Steiner MA, Yanagisawa M, Clozel M, editors. Front Neurol Neurosci. S. Karger AG. 2021; 45:103–116. https://doi.org/10.1159/000514959
Wu MF, John J, Maidment N, Lam HA, Siegel JM. Hypocretin release in normal and narcoleptic dogs after food and sleep deprivation, eating, and movement. Am J Physiol Regul Integr Comp Physiol. 2002; 283(5):1079–1086. https://doi.org/10.1152/ajpregu.00207.2002
Zhao P, You Y, Wang Z, Zhou Y, Chai G, Yan G, et al. Orexin A peptidergic system: Comparative sleep behavior, morphology and population in brains between wild type and Alzheimer’s disease mice. Brain Struct Funct. 2022; 227(3):1051–1065. https://doi.org/10.1007/s00429-021-02447-w
Jacobson LH, Hoyer D, Lecea L. Hypocretins (orexins): The ultimate translational neuropeptides. J Intern Med. 2022; 291(5):533–556. https://doi.org/10.1111/joim.13406
Shen YC, Sun X, Li L, Zhang HY, Huang ZL, Wang YQ. Roles of Neuropeptides in Sleep–Wake Regulation. Int J Mol Sci. 2022; 23(9):4599. https://doi.org/10.3390/ijms23094599
Jaggard JB, Stahl BA, Lloyd E, Prober DA, Duboue ER, Keene AC. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. ELife. 2018; 7:e32637. https://doi.org/10.7554/eLife.32637
McGaugh SE, Passow CN, Jaggard JB, Stahl BA, Keene AC. Unique transcriptional signatures of sleep loss across independently evolved cavefish populations. J Exp Zool B Mol. 2020; 334(7–8):497–510. https://doi.org/10.1002/jez.b.22949
Anghel L, Baroiu L, Popazu C, Pătraș D, Fotea S, Nechifor A, et al. Benefits and adverse events of melatonin use in the elderly (Review). Exp Ther Med. 2022; 23(3):219. https://doi.org/10.3892/etm.2022.11142
Lalanne S, Fougerou-Leurent C, Anderson GM, Schroder CM, Nir T, Chokron S, et al. Melatonin: From Pharmacokinetics to Clinical Use in Autism Spectrum Disorder. Int J Mol Sci. 2021; 22(3):1490. https://doi.org/10.3390/ijms22031490
Niu L, Li Y, Zong P, Liu P, Shui Y, Chen B, et al. Melatonin promotes sleep by activating the BK channel in C. elegans. Proc Natl Acad Sci. 2020; 117(40):25128–25137. https://doi.org/10.1073/pnas.2010928117
Fowler S, Hoedt EC, Talley NJ, Keely S, Burns GL. Circadian Rhythms and Melatonin Metabolism in Patients With Disorders of Gut-Brain Interactions. Front Neurosci. 2022; 16:825246. https://doi.org/10.3389/fnins.2022.825246
Parks CL, Robinson PS, Sibille E, Shenk T, Toth M. Increased anxiety of mice lacking the serotonin 1A receptor. Proc Natl Acad Sci. 1998; 95(18):10734–10739. https://doi.org/10.1073/pnas.95.18.10734
Quintero-Villegas A, Valdés-Ferrer SI. Role of 5-HT7 receptors in the immune system in health and disease. Mol Med. 2020; 26(1):2. https://doi.org/10.1186/s10020-019-0126-x
Lee DA, Oikonomou G, Cammidge T, Andreev A, Hong Y, Hurley H, et al. Neuropeptide VF neurons promote sleep via the serotonergic raphe. ELife. 2020; 9:e54491. https://doi.org/10.7554/eLife.54491
Wang S, Wang Z, Mu Y. Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sci. 2022; 12(2):134. https://doi.org/10.3390/brainsci12020134
Manger PR, Eschenko O. The Mammalian Locus Coeruleus Complex-Consistencies and Variances in Nuclear Organization. Brain Sci. 2021; 11(11):1486. https://doi.org/10.3390/brainsci11111486
Osorio-Forero A, Cherrad N, Banterle L, Fernandez LMJ, Lüthi A. When the Locus Coeruleus Speaks Up in Sleep: Recent Insights, Emerging Perspectives. Int J Mol Sci. 2022; 23(9):5028. https://doi.org/10.3390/ijms23095028
Ashton A, Jagannath A. Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling. Front Neurosci. 2020; 14:636. https://doi.org/10.3389/fnins.2020.00636
Hasegawa E, Miyasaka A, Sakurai K, Cherasse Y, Li Y, Sakurai T. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Sci. 2022; 375(6584):994–1000. https://doi.org/10.1126/science.abl6618
Takács VT, Cserép C, Schlingloff D, Pósfai B, Szőnyi A, Sos KE, et al. Co-transmission of acetylcholine and GABA regulates hippocampal states. Nat Commun. 2018; 9(1):2848. https://doi.org/10.1038/s41467-018-05136-1
Inayat S, Qandeel, Nazariahangarkolaee M, Singh S, McNaughton BL, Whishaw IQ, et al. Low acetylcholine during early sleep is important for motor memory consolidation. Sleep. 2020; 43(6):zsz297. https://doi.org/10.1093/sleep/zsz297
Czarnecki P, Lin J, Aton SJ, Zochowski M. Dynamical Mechanism Underlying Scale-Free Network Reorganization in Low Acetylcholine States Corresponding to Slow Wave Sleep. Front Netw Physiol. 2021;1:759131. https://doi.org/10.3389/fnetp.2021.759131
Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci. 2021; 15:680214. https://doi.org/10.3389/fnins.2021.680214
Nakamura T, Naganuma F, Kudomi U, Roh S, Yanai K, Yoshikawa T. Oral histidine intake improves working memory through the activation of histaminergic nervous system in mice. Biochem Biophys Res Commun. 2022; 609:141–148. https://doi.org/10.1016/j.bbrc.2022.04.016
Yoshikawa T, Nakamura T, Yanai K. Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br J Pharmacol. 2021; 178(4):750–769. https://doi.org/10.1111/bph.15220
Hablitz LM, Nedergaard M. The Glymphatic System: A Novel Component of Fundamental Neurobiology. J Neurosci. 2021; 41(37):7698–7711. https://doi.org/10.1523/JNEUROSCI.0619-21.2021
Reddy OC, van der Werf YD. The Sleeping Brain: Harnessing the Power of the Glymphatic System through Lifestyle Choices. Brain Sci. 2020; 10(11):868. https://doi.org/10.3390/brainsci10110868
Sun A, Wang J. Choroid Plexus and Drug Removal Mechanisms. AAPS J. 2021; 23(3):61. https://doi.org/10.1208/s12248-021-00587-9
Hablitz LM, Plá V, Giannetto M, Vinitsky HS, Stæger FF, Metcalfe T, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun. 2020; 11(1):4411. https://doi.org/10.1038/s41467-020-18115-2
Picchioni D, Özbay PS, Mandelkow H, de Zwart JA, Wang Y, van Gelderen P, et al. Autonomic arousals contribute to brain fluid pulsations during sleep. Neuroimage. 2022; 249:118888. https://doi.org/10.1016/j.neuroimage.2022.118888
Helakari H, Korhonen V, Holst SC, Piispala J, Kallio M, Väyrynen T, et al. Human NREM Sleep Promotes Brain-Wide Vasomotor and Respiratory Pulsations. J Neurosci. 2022; 42(12):2503–2515. https://doi.org/10.1523/JNEUROSCI.0934-21.2022
Leanza G, Gulino R, Zorec R. Noradrenergic Hypothesis Linking Neurodegeneration-Based Cognitive Decline and Astroglia. Front Mol Neurosci. 2018; 11(254). https://doi.org/10.3389/fnmol.2018.00254
Blackman J, Love S, Sinclair L, Cain R, Coulthard E. APOE ε4, Alzheimer’s disease neuropathology and sleep disturbance, in individuals with and without dementia. Alzheimer’s Res Ther. 2022; 14(1):47. https://doi.org/10.1186/s13195-022-00992-y
Xiao SY, Liu YJ, Lu W, Sha ZW, Xu C, Yu ZH, et al. Possible Neuropathology of Sleep Disturbance Linking to Alzheimer’s Disease: Astrocytic and Microglial Roles. Front Cell Neurosci. 2022; 16:875138. https://doi.org/10.3389/fncel.2022.875138
Corsi G, Picard K, Castro MA, Garofalo S, Tucci F, Chece G, et al. Microglia modulate hippocampal synaptic transmission and sleep duration along the light/dark cycle. Glia. 2022; 70(1):89–105. https://doi.org/10.1002/glia.24090
Gentry NW, McMahon T, Yamazaki M, Webb J, Arnold TD, Rosi S, et al. Microglia are involved in the protection of memories formed during sleep deprivation. Neurobiol Sleep Circadian Rhythms. 2022; 12:100073. https://doi.org/10.1016/j.nbscr.2021.100073
Xin J, Wang C, Cheng X, Xie C, Zhang Q, Ke Y, et al. CX3C-chemokine receptor 1 modulates cognitive dysfunction induced by sleep deprivation. Chin Med J. 2022; 135(2):205–215. https://doi.org/10.1097/CM9.0000000000001769
Barahona RA, Morabito S, Swarup V, Green KN. Cortical diurnal rhythms remain intact with microglial depletion. Sci Rep. 2022; 12(1):114. https://doi.org/10.1038/s41598-021-04079-w
Wan T, Zhu W, Zhao Y, Zhang X, Ye R, Zuo M, et al. Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice. Nat Commun. 2022; 13(1):1134. https://doi.org/10.1038/s41467-022-28777-9
Bojarskaite L, Bjørnstad DM, Pettersen KH, Cunen C, Hermansen GH, Åbjørsbråten KS, et al. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat Commun. 2020; 11(1):3240. https://doi.org/10.1038/s41467-020-17062-2
Ingiosi AM, Hayworth CR, Harvey DO, Singletary KG, Rempe MJ, Wisor JP, et al. A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation. Curr Biol. 2020; 30(22):4373-4383.e7. https://doi.org/10.1016/j.cub.2020.08.052
Chaturvedi R, Stork T, Yuan C, Freeman MR, Emery P. Astrocytic GABA transporter controls sleep by modulating GABAergic signaling in Drosophila circadian neurons. Curr Biol. 2022; 32(9):1895-1908.e5. https://doi.org/10.1016/j.cub.2022.02.066
Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, Mahan TE, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Sci. 2019; 363(6429):880–884. https://doi.org/10.1126/science.aav2546
Si X, Guo T, Wang Z, Fang Y, Gu L, Cao L, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson’s disease. NPJ Parkinsons Dis. 2022; 8(1):54. https://doi.org/10.1038/s41531-022-00316-9
dc.relation.bitstream.none.fl_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/download/985/1067
https://revistas.unisucre.edu.co/index.php/recia/article/download/985/1068
https://revistas.unisucre.edu.co/index.php/recia/article/download/985/1069
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2023 : RECIA 15(1):ENERO-JUNIO 2023
dc.relation.citationendpage.none.fl_str_mv e985
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv e985
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.ispartofjournal.spa.fl_str_mv Revista Colombiana de Ciencia Animal - RECIA
dc.rights.spa.fl_str_mv Dora Nancy Padilla-Gil - 2023
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Dora Nancy Padilla-Gil - 2023
https://creativecommons.org/licenses/by/4.0
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
application/epub+zip
audio/mpeg
dc.publisher.spa.fl_str_mv Universidad de Sucre
dc.source.spa.fl_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/view/985
institution Universidad de Sucre
bitstream.url.fl_str_mv https://repositorio.unisucre.edu.co/bitstreams/697a39a7-315b-4ec4-9a39-206196269544/download
bitstream.checksum.fl_str_mv 11ff78a40eaa49c1115ff07e613a650e
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Sucre
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814111924777910272
spelling Padilla-Gil, Dora Nancyc5f5862e3c75153cf3ce59bce3ee2ff33002023-06-29 05:46:572023-07-05T09:30:40Z2023-06-29 05:46:572023-07-05T09:30:40Z2023-06-29https://repositorio.unisucre.edu.co/handle/001/172110.24188/recia.v15.n1.2023.9852027-4297https://doi.org/10.24188/recia.v15.n1.2023.985Todos los animales disponen de mecanismos fisiológicos y homeostáticos para generar, mantener, ajustar y sincronizar los ciclos endógenos/exógenos del sueño. Varias áreas del cerebro intervienen en la activación y regulación de los ciclos sueño/vigilia y su sincronía con el ciclo luz/oscuridad. Toda esta actividad fisiológica está incluida en el reloj biológico (o ritmo circadiano) de cada animal, el cual está modulado por genes, proteínas, y neurotransmisores. El sueño se relaciona con los procesos de recuperación o reparación, mantenimiento y restauración de la eficacia de todos los sistemas del organismo, principalmente de los sistemas nervioso, endocrino e inmunológico. Dada la importancia del sueño tanto para los animales como para los humanos, esta revisión presenta una reseña sobre la fisiología y homeostasis del sueño, documentada a través de bibliografía científica publicada en los últimos cinco años (2017-2022), en revistas científicas como Science y Nature, de las bases de datos PubMed, Science Direct, o clasificadas en Scimago. El sueño está regulado por factores exógenos y endógenos, en estos últimos son actores principales los neurotransmisores (serotonina, histamina), neuromoduladores (noradrenalina), hormonas (sistema orexina/hipocretina, melatonina), el sistema glinfático y los genes que activan las diferentes vías de señalización para que funcione en forma óptima las neuronas y la glía del encéfalo.All animals have physiological and homeostatic mechanisms to generate, maintain, adjust and synchronize the endogenous/exogenous cycles sleep. Various areas of the brain are involved in the activation and regulation of the sleep/wake cycle and its synchrony with the light/dark cycle. All this activity is included in the biological clock (or circadian rhythm) of each animal, the which is modulated by genes, proteins and neurotransmitters. The sleep is related to the recovery or repair processes, maintenance and restoration of the efficiency of all the body systems, mainly of the nervous, endocrine and immune systems. Given the importance of the sleep for both the animals and humans, this article presents a review about the physiology and homeostasis sleep documented through scientific bibliography published in the last five years (2017-2022), in scientific journals such as Science and Nature, the databases PubMed, Science Direct, or the Scimago journal rankings. The sleep is regulated by exogenous and endogenous factors, in the latter are main actors the neurotransmitters (serotonin, histamine), neuromodulators (noradrenaline), hormones (orexin/hypocretin system, melatonin), glymphatic system, and genes that active the different signaling pathways so that neurons and glial cells in the brain work optimally.application/pdfapplication/epub+zipaudio/mpegspaUniversidad de SucreDora Nancy Padilla-Gil - 2023https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución 4.0.http://purl.org/coar/access_right/c_abf2https://revistas.unisucre.edu.co/index.php/recia/article/view/985neurotransmittersnon rem sleeprem sleepslow wave sleepneurotransmisoresondas lentas del sueñosueño nremsueño remEl sueño: fisiología y homeostasisThe sleep: Physiology and homeostasisArtículo de revistainfo:eu-repo/semantics/articleJournal articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_dcae04bchttp://purl.org/coar/resource_type/c_2df8fbb1Texthttp://purl.org/redcol/resource_type/ARTREVhttp://purl.org/coar/version/c_970fb48d4fbd8a85Siegel JM. Clues to the functions of mammalian sleep. Nature. 2005; 437(7063):1264–1271. https://doi.org/10.1038/nature04285Yadav A, Kumar R, Tiwari J, Kumar V, Rani S. Sleep in birds: Lying on the continuum of activity and rest. Biol Rhythm Res. 2017; 48(5):805–814. https://doi.org/10.1080/09291016.2017.1346850Van der Auwera P, Frooninckx L, Buscemi K, Vance RT, Watteyne J, Mirabeau O, et al. RPamide neuropeptides NLP-22 and NLP-2 act through GnRH-like receptors to promote sleep and wakefulness in C. elegans. Sci Rep. 2020; 10(1):9929. https://doi.org/10.1038/s41598-020-66536-2Helfrich-Förster C. Sleep in Insects. Ann Rev Entomol. 2018; 63(1):69–86. https://doi.org/10.1146/annurev-ento-020117-043201Navarro-Sanchis C, Brock O, Winsky-Sommerer R, Thuret S. Modulation of Adult Hippocampal Neurogenesis by Sleep: Impact on Mental Health. Front Neural Circuits. 2017; 11(74). https://doi.org/10.3389/fncir.2017.00074Spence AR, LeWinter H, Tingley MW. Anna’s hummingbird (Calypte anna) physiological response to novel thermal and hypoxic conditions at high elevations. J Exp Biol. 2022; 225(10):jeb243294. https://doi.org/10.1242/jeb.243294Krüger K, Prinzinger R, Schuchmann KL. Torpor and metabolism in hummingbirds. Comp Biochem Physiol Part A: Physiol. 1982; 73(4):679–689. https://doi.org/10.1016/0300-9629(82)90275-4Shankar A, Schroeder RJ, Wethington SM, Graham CH, Powers DR. Hummingbird torpor in context: Duration, more than temperature, is the key to nighttime energy savings. J Avian Biol. 2020; 51(5):jav.02305. https://doi.org/10.1111/jav.02305Wolf BO, McKechnie AE, Schmitt CJ, Czenze ZJ, Johnson AB, Witt CC. Extreme and variable torpor among high-elevation Andean hummingbird species. Biol Lett. 2020; 16(9):20200428. https://doi.org/10.1098/rsbl.2020.0428Nagai H, de Vivo L, Marshall W, Tononi G, Cirelli C. Effects of Severe Sleep Disruption on the Synaptic Ultrastructure of Young Mice. eNeuro. 2021; 8(4):0077. https://doi.org/10.1523/ENEURO.0077-21.2021Aulsebrook AE, Johnsson RD, Lesku JA. Light, Sleep and Performance in Diurnal Birds. Clocks & Sleep. 2021; 3(1):115–131. https://doi.org/10.3390/clockssleep3010008Johnsson RD, Connelly F, Gaviraghi Mussoi J, Vyssotski AL, Cain KE, Roth TC, et al. Sleep loss impairs cognitive performance and alters song output in Australian magpies. Sci Rep. 2022; 12(1):6645. https://doi.org/10.1038/s41598-022-10162-7Hahn MA, Heib D, Schabus M, Hoedlmoser K, Helfrich RF. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. ELife. 2020; 9:e53730. https://doi.org/10.7554/eLife.53730Hahn MA, Bothe K, Heib D, Schabus M, Helfrich RF, Hoedlmoser K. Slow oscillation–spindle coupling strength predicts real-life gross-motor learning in adolescents and adults. ELife. 2022; 11:e66761. https://doi.org/10.7554/eLife.66761Alrousan G, Hassan A, Pillai AA, Atrooz F, Salim S. Early Life Sleep Deprivation and Brain Development: Insights From Human and Animal Studies. Front Neurosci. 2022; 16:833786. https://doi.org/10.3389/fnins.2022.833786Hernandez-Reif M, Gungordu N. Infant sleep behaviors relate to their later cognitive and language abilities and morning cortisol stress hormone levels. Infant Behav Dev. 2022; 67:101700. https://doi.org/10.1016/j.infbeh.2022.101700Schlieber M, Han J. The Role of Sleep in Young Children’s Development: A Review. J Genet Psychol. 2021; 182(4):205–217. https://doi.org/10.1080/00221325.2021.1908218Campbell SS, Tobler I. Animal sleep: A review of sleep duration across phylogeny. Neurosci Biobehav Rev. 1984; 8(3):269–300. https://doi.org/10.1016/0149-7634(84)90054-XKlein K, Busby MK. Slumber in a cell: honeycomb used by honeybees for food, brood, heating and sleeping. PeerJ. 2020; 8:e9583 https://doi.org/7717/peerj.9583Samson DR, Vining A, Nunn CL. Sleep influences cognitive performance in lemurs. Anim Cogn. 2019; 22(5):697–706. https://doi.org/10.1007/s10071-019-01266-1Geissmann Q, Beckwith EJ, Gilestro GF. Most sleep does not serve a vital function: Evidence from Drosophila melanogaster. Sci Adv. 2019; 5(2):9253. https://doi.org/10.1126/sciadv.aau9253Brown RE, Spratt TJ, Kaplan GB. Translational approaches to influence sleep and arousal. Brain Res Bull. 2022; 185:140–161. https://doi.org/10.1016/j.brainresbull.2022.05.002Fernandez-Chiappe F, Hermann-Luibl C, Peteranderl A, Reinhard N, Senthilan PR, Hieke M, et al. Dopamine Signaling in Wake-Promoting Clock Neurons Is Not Required for the Normal Regulation of Sleep in Drosophila. J. Neurosci. 2020;40(50):9617–9633. https://doi.org/10.1523/jneurosci.1488-20.2020Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Sci. 2019; 366(6465):628–631. https://doi.org/10.1126/science.aax5440Guo D, Thomas RJ, Liu Y, Shea SA, Lu J, Peng CK. Slow wave synchronization and sleep state transitions. Sci Rep. 2022; 12(1):7467. https://doi.org/10.1038/s41598-022-11513-0Norimoto H, Fenk LA, Li HH, Tosches MA, Gallego-Flores T, Hain D, et al. A claustrum in reptiles and its role in slow-wave sleep. Nature. 2020; 578(7795):413–418. https://doi.org/10.1038/s41586-020-1993-6Bandarabadi M, Herrera CG, Gent TC, Bassetti C, Schindler K, Adamantidis AR. A role for spindles in the onset of rapid eye movement sleep. Nat Commun. 2020; 11(1):5247. https://doi.org/10.1038/s41467-020-19076-2Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin Knockout Mice. Cell. 1999; 98(4):437–451. https://doi.org/10.1016/S0092-8674(00)81973-XGazerani P. Nightmares in Migraine: A Focused Review. Behav Sci. 2021; 11(9):122. https://doi.org/10.3390/bs11090122Nitzan N, Swanson R, Schmitz D, Buzsáki G. Brain-wide interactions during hippocampal sharp wave ripples. Proc Natl Acad Sci. 2022; 119(20):e2200931119. https://doi.org/10.1073/pnas.2200931119Salehpour F, Khademi M, Bragin DE, DiDuro JO. Photobiomodulation Therapy and the Glymphatic System: Promising Applications for Augmenting the Brain Lymphatic Drainage System. Int J Mol Sci. 2022; 23(6):2975. https://doi.org/10.3390/ijms23062975Russell JK, Bubser M, Newhouse PA, Lindsley CW, Jones CK. Age and circadian rhythm-dependent effects of M1 muscarinic acetylcholine receptor positive allosteric modulators and donepezil on sleep-wake architecture and arousal. Alzheimers Dement. 2021; 17(S9). https://doi.org/10.1002/alz.057851Schneider J, Lewis PA, Koester D, Born J, Ngo HVV. Susceptibility to auditory closed-loop stimulation of sleep slow oscillations changes with age. Sleep. 2020; 43(12):zsaa111. https://doi.org/10.1093/sleep/zsaa111Vanderlinden J, Boen F, Puyenbroeck SV, van Uffelen JGZ. The effects of a real-life lifestyle program on physical activity and objective and subjective sleep in adults aged 55+ years. BMC Public Health. 2022; 22(1):353. https://doi.org/10.1186/s12889-022-12780-210.1016/j.bcp.2021.114438Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson’s disease and preclinical models. Mol Neurodegener. 2022; 17(1):2. https://doi.org/10.1186/s13024-021-00504-wVan der Meij J, Martinez-Gonzalez D, Beckers GJL, Rattenborg NC. Neurophysiology of avian sleep: comparing natural sleep and isoflurane anesthesia. Front Neurosci. 2019; 13:262. https://doi.org/10.3389/fnins. 2019.00262Yadav A, Tiwari J, Vaish V, Malik S, Rani S. Migration gives sleepless nights to the birds: A study on a Palearctic–Indian migrant, Emberiza bruniceps. J Ornithol. 2021; 162(1):77–87. https://doi.org/10.1007/s10336-020-01829-xKendall-Bar JM, Vyssotski AL, Mukhametov LM, Siegel JM, Lyamin OI. Eye state asymmetry during aquatic unihemispheric slow wave sleep in northern fur seals (Callorhinus ursinus). PloS one. 2019; 14(5):e0217025. https://doi.org/10.1371/journal.pone.0217025Lyamin OI, Mukhametov LM, Siegel JM. Sleep in the northern fur seal. Curr Opin Neurobiol. 2017; 44:144–151. https://doi.org/10.1016/j.conb.2017.04.009Medeiros SL de S, Paiva MMM de, Lopes PH, Blanco W, Lima FD de, Oliveira JBC, et al. Cyclic alternation of quiet and active sleep states in the octopus. iScience. 2021; 24(4):102223. https://doi.org/10.1016/j.isci.2021.102223Carús-Cadavieco M, De Andrés I. Adenosina y control homeostático del sueño. Acciones en estructuras diana de los circuitos de vigilia y sueño. Rev Neurol. 2012; 55:413–420. https://neurologia.com/articulo/2012258Mignot E, Zeitzer J, Pizza F, Plazzi G. Sleep Problems in Narcolepsy and the Role of Hypocretin/Orexin Deficiency. En: Steiner MA, Yanagisawa M, Clozel M, editors. Front Neurol Neurosci. S. Karger AG. 2021; 45:103–116. https://doi.org/10.1159/000514959Wu MF, John J, Maidment N, Lam HA, Siegel JM. Hypocretin release in normal and narcoleptic dogs after food and sleep deprivation, eating, and movement. Am J Physiol Regul Integr Comp Physiol. 2002; 283(5):1079–1086. https://doi.org/10.1152/ajpregu.00207.2002Zhao P, You Y, Wang Z, Zhou Y, Chai G, Yan G, et al. Orexin A peptidergic system: Comparative sleep behavior, morphology and population in brains between wild type and Alzheimer’s disease mice. Brain Struct Funct. 2022; 227(3):1051–1065. https://doi.org/10.1007/s00429-021-02447-wJacobson LH, Hoyer D, Lecea L. Hypocretins (orexins): The ultimate translational neuropeptides. J Intern Med. 2022; 291(5):533–556. https://doi.org/10.1111/joim.13406Shen YC, Sun X, Li L, Zhang HY, Huang ZL, Wang YQ. Roles of Neuropeptides in Sleep–Wake Regulation. Int J Mol Sci. 2022; 23(9):4599. https://doi.org/10.3390/ijms23094599Jaggard JB, Stahl BA, Lloyd E, Prober DA, Duboue ER, Keene AC. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. ELife. 2018; 7:e32637. https://doi.org/10.7554/eLife.32637McGaugh SE, Passow CN, Jaggard JB, Stahl BA, Keene AC. Unique transcriptional signatures of sleep loss across independently evolved cavefish populations. J Exp Zool B Mol. 2020; 334(7–8):497–510. https://doi.org/10.1002/jez.b.22949Anghel L, Baroiu L, Popazu C, Pătraș D, Fotea S, Nechifor A, et al. Benefits and adverse events of melatonin use in the elderly (Review). Exp Ther Med. 2022; 23(3):219. https://doi.org/10.3892/etm.2022.11142Lalanne S, Fougerou-Leurent C, Anderson GM, Schroder CM, Nir T, Chokron S, et al. Melatonin: From Pharmacokinetics to Clinical Use in Autism Spectrum Disorder. Int J Mol Sci. 2021; 22(3):1490. https://doi.org/10.3390/ijms22031490Niu L, Li Y, Zong P, Liu P, Shui Y, Chen B, et al. Melatonin promotes sleep by activating the BK channel in C. elegans. Proc Natl Acad Sci. 2020; 117(40):25128–25137. https://doi.org/10.1073/pnas.2010928117Fowler S, Hoedt EC, Talley NJ, Keely S, Burns GL. Circadian Rhythms and Melatonin Metabolism in Patients With Disorders of Gut-Brain Interactions. Front Neurosci. 2022; 16:825246. https://doi.org/10.3389/fnins.2022.825246Parks CL, Robinson PS, Sibille E, Shenk T, Toth M. Increased anxiety of mice lacking the serotonin 1A receptor. Proc Natl Acad Sci. 1998; 95(18):10734–10739. https://doi.org/10.1073/pnas.95.18.10734Quintero-Villegas A, Valdés-Ferrer SI. Role of 5-HT7 receptors in the immune system in health and disease. Mol Med. 2020; 26(1):2. https://doi.org/10.1186/s10020-019-0126-xLee DA, Oikonomou G, Cammidge T, Andreev A, Hong Y, Hurley H, et al. Neuropeptide VF neurons promote sleep via the serotonergic raphe. ELife. 2020; 9:e54491. https://doi.org/10.7554/eLife.54491Wang S, Wang Z, Mu Y. Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sci. 2022; 12(2):134. https://doi.org/10.3390/brainsci12020134Manger PR, Eschenko O. The Mammalian Locus Coeruleus Complex-Consistencies and Variances in Nuclear Organization. Brain Sci. 2021; 11(11):1486. https://doi.org/10.3390/brainsci11111486Osorio-Forero A, Cherrad N, Banterle L, Fernandez LMJ, Lüthi A. When the Locus Coeruleus Speaks Up in Sleep: Recent Insights, Emerging Perspectives. Int J Mol Sci. 2022; 23(9):5028. https://doi.org/10.3390/ijms23095028Ashton A, Jagannath A. Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling. Front Neurosci. 2020; 14:636. https://doi.org/10.3389/fnins.2020.00636Hasegawa E, Miyasaka A, Sakurai K, Cherasse Y, Li Y, Sakurai T. Rapid eye movement sleep is initiated by basolateral amygdala dopamine signaling in mice. Sci. 2022; 375(6584):994–1000. https://doi.org/10.1126/science.abl6618Takács VT, Cserép C, Schlingloff D, Pósfai B, Szőnyi A, Sos KE, et al. Co-transmission of acetylcholine and GABA regulates hippocampal states. Nat Commun. 2018; 9(1):2848. https://doi.org/10.1038/s41467-018-05136-1Inayat S, Qandeel, Nazariahangarkolaee M, Singh S, McNaughton BL, Whishaw IQ, et al. Low acetylcholine during early sleep is important for motor memory consolidation. Sleep. 2020; 43(6):zsz297. https://doi.org/10.1093/sleep/zsz297Czarnecki P, Lin J, Aton SJ, Zochowski M. Dynamical Mechanism Underlying Scale-Free Network Reorganization in Low Acetylcholine States Corresponding to Slow Wave Sleep. Front Netw Physiol. 2021;1:759131. https://doi.org/10.3389/fnetp.2021.759131Carthy E, Ellender T. Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci. 2021; 15:680214. https://doi.org/10.3389/fnins.2021.680214Nakamura T, Naganuma F, Kudomi U, Roh S, Yanai K, Yoshikawa T. Oral histidine intake improves working memory through the activation of histaminergic nervous system in mice. Biochem Biophys Res Commun. 2022; 609:141–148. https://doi.org/10.1016/j.bbrc.2022.04.016Yoshikawa T, Nakamura T, Yanai K. Histaminergic neurons in the tuberomammillary nucleus as a control centre for wakefulness. Br J Pharmacol. 2021; 178(4):750–769. https://doi.org/10.1111/bph.15220Hablitz LM, Nedergaard M. The Glymphatic System: A Novel Component of Fundamental Neurobiology. J Neurosci. 2021; 41(37):7698–7711. https://doi.org/10.1523/JNEUROSCI.0619-21.2021Reddy OC, van der Werf YD. The Sleeping Brain: Harnessing the Power of the Glymphatic System through Lifestyle Choices. Brain Sci. 2020; 10(11):868. https://doi.org/10.3390/brainsci10110868Sun A, Wang J. Choroid Plexus and Drug Removal Mechanisms. AAPS J. 2021; 23(3):61. https://doi.org/10.1208/s12248-021-00587-9Hablitz LM, Plá V, Giannetto M, Vinitsky HS, Stæger FF, Metcalfe T, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun. 2020; 11(1):4411. https://doi.org/10.1038/s41467-020-18115-2Picchioni D, Özbay PS, Mandelkow H, de Zwart JA, Wang Y, van Gelderen P, et al. Autonomic arousals contribute to brain fluid pulsations during sleep. Neuroimage. 2022; 249:118888. https://doi.org/10.1016/j.neuroimage.2022.118888Helakari H, Korhonen V, Holst SC, Piispala J, Kallio M, Väyrynen T, et al. Human NREM Sleep Promotes Brain-Wide Vasomotor and Respiratory Pulsations. J Neurosci. 2022; 42(12):2503–2515. https://doi.org/10.1523/JNEUROSCI.0934-21.2022Leanza G, Gulino R, Zorec R. Noradrenergic Hypothesis Linking Neurodegeneration-Based Cognitive Decline and Astroglia. Front Mol Neurosci. 2018; 11(254). https://doi.org/10.3389/fnmol.2018.00254Blackman J, Love S, Sinclair L, Cain R, Coulthard E. APOE ε4, Alzheimer’s disease neuropathology and sleep disturbance, in individuals with and without dementia. Alzheimer’s Res Ther. 2022; 14(1):47. https://doi.org/10.1186/s13195-022-00992-yXiao SY, Liu YJ, Lu W, Sha ZW, Xu C, Yu ZH, et al. Possible Neuropathology of Sleep Disturbance Linking to Alzheimer’s Disease: Astrocytic and Microglial Roles. Front Cell Neurosci. 2022; 16:875138. https://doi.org/10.3389/fncel.2022.875138Corsi G, Picard K, Castro MA, Garofalo S, Tucci F, Chece G, et al. Microglia modulate hippocampal synaptic transmission and sleep duration along the light/dark cycle. Glia. 2022; 70(1):89–105. https://doi.org/10.1002/glia.24090Gentry NW, McMahon T, Yamazaki M, Webb J, Arnold TD, Rosi S, et al. Microglia are involved in the protection of memories formed during sleep deprivation. Neurobiol Sleep Circadian Rhythms. 2022; 12:100073. https://doi.org/10.1016/j.nbscr.2021.100073Xin J, Wang C, Cheng X, Xie C, Zhang Q, Ke Y, et al. CX3C-chemokine receptor 1 modulates cognitive dysfunction induced by sleep deprivation. Chin Med J. 2022; 135(2):205–215. https://doi.org/10.1097/CM9.0000000000001769Barahona RA, Morabito S, Swarup V, Green KN. Cortical diurnal rhythms remain intact with microglial depletion. Sci Rep. 2022; 12(1):114. https://doi.org/10.1038/s41598-021-04079-wWan T, Zhu W, Zhao Y, Zhang X, Ye R, Zuo M, et al. Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice. Nat Commun. 2022; 13(1):1134. https://doi.org/10.1038/s41467-022-28777-9Bojarskaite L, Bjørnstad DM, Pettersen KH, Cunen C, Hermansen GH, Åbjørsbråten KS, et al. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat Commun. 2020; 11(1):3240. https://doi.org/10.1038/s41467-020-17062-2Ingiosi AM, Hayworth CR, Harvey DO, Singletary KG, Rempe MJ, Wisor JP, et al. A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation. Curr Biol. 2020; 30(22):4373-4383.e7. https://doi.org/10.1016/j.cub.2020.08.052Chaturvedi R, Stork T, Yuan C, Freeman MR, Emery P. Astrocytic GABA transporter controls sleep by modulating GABAergic signaling in Drosophila circadian neurons. Curr Biol. 2022; 32(9):1895-1908.e5. https://doi.org/10.1016/j.cub.2022.02.066Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, Mahan TE, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Sci. 2019; 363(6429):880–884. https://doi.org/10.1126/science.aav2546Si X, Guo T, Wang Z, Fang Y, Gu L, Cao L, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson’s disease. NPJ Parkinsons Dis. 2022; 8(1):54. https://doi.org/10.1038/s41531-022-00316-9https://revistas.unisucre.edu.co/index.php/recia/article/download/985/1067https://revistas.unisucre.edu.co/index.php/recia/article/download/985/1068https://revistas.unisucre.edu.co/index.php/recia/article/download/985/1069Núm. 1 , Año 2023 : RECIA 15(1):ENERO-JUNIO 2023e9851e98515Revista Colombiana de Ciencia Animal - RECIAPublicationOREORE.xmltext/xml2470https://repositorio.unisucre.edu.co/bitstreams/697a39a7-315b-4ec4-9a39-206196269544/download11ff78a40eaa49c1115ff07e613a650eMD51001/1721oai:repositorio.unisucre.edu.co:001/17212024-04-17 16:30:52.954https://creativecommons.org/licenses/by/4.0Dora Nancy Padilla-Gil - 2023metadata.onlyhttps://repositorio.unisucre.edu.coRepositorio Institucional Universidad de Sucrebdigital@metabiblioteca.com