Resistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en Colombia

Autores:
Ayubb T, Nataly
Cerra G, Armando
Chamorro A, Leonardo
Pérez C, Alexander
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad de Sucre
Repositorio:
Repositorio Unisucre
Idioma:
spa
OAI Identifier:
oai:repositorio.unisucre.edu.co:001/1543
Acceso en línea:
https://repositorio.unisucre.edu.co/handle/001/1543
https://doi.org/10.24188/recia.v9.n2.2017.610
Palabra clave:
Rizospheric bacteria
rizosphere
tolerance
Cd
Bacteria endófita
rizósfera
tolerancia
Cadmio
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id RUNISUCRE2_3326dd31fcaaf5e2032c90af7df71f6f
oai_identifier_str oai:repositorio.unisucre.edu.co:001/1543
network_acronym_str RUNISUCRE2
network_name_str Repositorio Unisucre
repository_id_str
dc.title.spa.fl_str_mv Resistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en Colombia
dc.title.translated.eng.fl_str_mv Cadmium resistance of endophytic bacteria and rizosféricas bacteria isolated from Oriza sativa in Colombia
title Resistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en Colombia
spellingShingle Resistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en Colombia
Rizospheric bacteria
rizosphere
tolerance
Cd
Bacteria endófita
rizósfera
tolerancia
Cadmio
title_short Resistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en Colombia
title_full Resistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en Colombia
title_fullStr Resistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en Colombia
title_full_unstemmed Resistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en Colombia
title_sort Resistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en Colombia
dc.creator.fl_str_mv Ayubb T, Nataly
Cerra G, Armando
Chamorro A, Leonardo
Pérez C, Alexander
dc.contributor.author.spa.fl_str_mv Ayubb T, Nataly
Cerra G, Armando
Chamorro A, Leonardo
Pérez C, Alexander
dc.subject.eng.fl_str_mv Rizospheric bacteria
rizosphere
tolerance
Cd
topic Rizospheric bacteria
rizosphere
tolerance
Cd
Bacteria endófita
rizósfera
tolerancia
Cadmio
dc.subject.spa.fl_str_mv Bacteria endófita
rizósfera
tolerancia
Cadmio
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-12-01 00:00:00
2022-07-01T17:15:58Z
dc.date.available.none.fl_str_mv 2017-12-01 00:00:00
2022-07-01T17:15:58Z
dc.date.issued.none.fl_str_mv 2017-12-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unisucre.edu.co/handle/001/1543
dc.identifier.doi.none.fl_str_mv 10.24188/recia.v9.n2.2017.610
dc.identifier.eissn.none.fl_str_mv 2027-4297
dc.identifier.url.none.fl_str_mv https://doi.org/10.24188/recia.v9.n2.2017.610
url https://repositorio.unisucre.edu.co/handle/001/1543
https://doi.org/10.24188/recia.v9.n2.2017.610
identifier_str_mv 10.24188/recia.v9.n2.2017.610
2027-4297
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv ADHYA, T.K.; KUMAR, N.; REDDY, G.; PODILE, A.R.; BEE, H.; SAMANTARAY, B. 2015. Microbial Mobilization of Soil of Phosphorus and Sustainable P Management in Agricultural Soils. Current Science. 108:1280-1287.
ALARCÓN, A.; FERRERA C.R. 2012. Biofertilizantes: Importancia y utilización en la agricultura. Revista Mexicana de Ciencias Agrícolas. 26 (2): 191-203.
ARAUJO, W. L.; MARCON, W.J.; MACCHERONI, E.J.; VAN, J.W.; AZEVEDO, J.L. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied Environmental Microbiology. 68:4906-4914.
BEHERA, B.; SINGDEVSACHAN, S.; MISHRA, R.; DUTTA, S.; THATOI, H. 2014. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove, a review. Biocatalysis and Agricultural Biotechnology. 3(2): 97-110
BELIMOV, A.; HONTZEAS, N.; SAFRONOVA, V.; DEMCHINSKAYA, S.; PILUZZA, G.; BULLITTA, S.; GLICK, B. 2005. Cadmium tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea LC zern.). Soil Biology & Biochemistry. 37:241-50.
BEVIVINO, A.; DAMALSTRI, C.; TABACCHIONI, S.; CHIARINI, L. 2000. Efficacy of Burkholderia cepacia MCL 7 in disease suppression and growth promotion of maize. Biology and Fertility of Soils. 31(4): 225-231.
CABALLERO M.J.; ONOFRE L.J.; ESTRADA, D.P.; MARTINEZ, A.L. 2007. The tomato rhizosphere, an environment rich in nitrógen-fixing Burkholderia species with capabilities of interest for agriculture and biorremediation. Applied Environmental Microbiology. 73(3): 5308-5319.
CAÑIZARES, R. 2000. Bioabsorción de metales pesados mediante el uso de biomasa microbiana. Revista Latinoamericana de Microbiología 42:131- 143.
CHUN YU, J.; XIA-FANG, S.; MENG, Q.; QING-YA, W. 2008. Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal contaminated paddy feld soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere. 72(2):57-64.
COMPANT, S.; DUFFY, B.; NOWAK, J.; CLEMENT, C.; BARKA, E.A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied Environmental Microbiology. 71:4951-4959.
DEMANECHE, S.; KAY, E.; GOURBIERE, F.; SIMONET, P. 2001. Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil. Applied and Environmental Microbiology. 67 (6): 2617-2621.
DI TOPPI, L.S.; GABBRIELLI, R. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany. 41: 105- 130.
DUGAN, M. 2004. Field Training Manual For Laboratory Analysts. Disponible en: www.home.alltel.net/mikeric/chap 10up/chapter 10 Nitrogen. Htm.
GUERRA, B.; SANDOVAL, A.; MANRIQUE, L.; BARRERA, S. 2014. Ensayos preliminares in vitro de bioabsorción de cadmio por cepas fúngicas nativas de suelos contaminados. Innovaciencia 2014; 2 (1): 53 – 58
GONZALEZ, A.G. 2006. El fósforo y los microorganismos del suelo, Departamento Desarrollo, Rizobacter Argentina. S.A.
HERNÁNDEZ, A.; MEDINA, N.; QUIÑÓNEZ, M.; HOFTE, M.; HENDRICH, M.; HERNÁNDEZ, A. N. 2004. Strain identification of Burkholderia cepacia and Pseudomonas fluorescens associated to maize crop by pholyphasic taxonomi. Revista Mexicana de Fitopatología. 22(2): 198-207
HIRONOBU, M.; HISAU M. 2008. Endophytic bacteria in the plant rice. Microbes Environmental. 23:19-117.
JONES, D. L.; OBURGER, E. 2011. Solubilization of phosphorus by soil microorganisms. Phosphorus in Action (pp. 169-198): Springer.
KAMALAKANNAN, S.; KRISHNAMOORTHY R. 2006. Isolation of mercury resistant bacteria and in?uence of abiotic factors on bioavailability of mercury –a case study in Pulicat Lake north of Chennai, south east India. Science of the Total Environment. 367:341-353
KAMIKA, I.; MOMBA, M.N. 2013. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal rich industrial wastewater. BMC Microbiology. 10(4):13- 28
LODEWYCKX, C.; TAGHAVI, S.; MERGEAY, M.; VANGRONSVELD, J.; CLIJSTERS, H.; VAN DER LELIE, D. 2001. The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. International Journal of Phytoremediation. 3:173- 187
LÓPEZ, D.B.S.; HOYOS, A.M.G.; PERDOMO, F.A.R.; BUITRAGO, R.R.B. 2014. Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fosfato en Lactuca sativa cultivar White Boston. Revista Colombiana de Biotecnología. 16(2): 122-128.
MA, Y.; RAJKUMAR, M.; LUO, Y.; FREITAS, H. 2011. Inoculation of endophytic bacteria on host and non-host plants effects on plant growth and Ni uptake. Journal of Hazardous Materials. 196:230-7.
MADHAIYAN, M.; POONGUZHALI, S.; SA, T. 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere. 69: 220-228
MANO, H.; TANAKA, F.; WATANABE, A.; KAGA, H.; OKUNISHI, S.; MORISAKI, H. 2006. Culturable surface and endophytic bacterial ?ora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy feld. Microbes Environmental. 21:86-100
MOCALI, S.; BERTELLI, E.; MENGONI A.; SFALANGA, A.; VILIANI, F.; CACIOTTI, A & TEGLI S.G. 2003. Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Research in Microbiology. 154:105-114
MOHAMMAD, G.; PRASAD, R. 1998. Influence of microbial fertilizers on biomass accumulation in polypotted Eucalyptus calmadulensis. Journal of Tropical Ecology. 4:74-7.
MOSSIALOS, A.; MEYER, J.M.; BUDZIKIEWICZ, H.; WOLFF, U.; KOEDAM, N.; BAYSSE, C.; ANJAIAH, V.; CORNELIS, P. 2000. Quinolobactin, a New Siderophore of Pseudomonas fluorescens ATCC 17400, the production of wich is repressed by the cognate Pyoverdine. Applied and environmental Microbiology. 66(2): 487-492.
NAVA, P.E.; GARCÍA, G.C.; CAMACHO, B.J.R.; VÁZQUEZ, M.E.L. 2012. Bioplaguicidas: una opción para el control biológico de plagas. Ra Ximhai. 8(3): 17-29.
ORELIO, C.C.; BEIBOER, H.W.; MORSINK, M.C.; TEKTAS, S.; DEKTER, H.E.; VAN LEEUWEN, W.B. 2014. Comparison of Raman spectroscopy and two molecular diagnostic methods for Burkholderia cepacia complex species identification. Journal Microbiology Methods 107:126-132.
O’SULLIVAN, D.J.; O’GARA, F.1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiology Reviews. 56:662-676.
PÉREZ, C.; DE LA FUENTE, L.; ARIAS, A.; ALTIER, N. 2000. Uso de Pseudomonas fluorescens nativas para el control de enfermedades de implantación en Lotus corniculatus L. Agrociencia. 4(1):41-47.
PÉREZ, C.; ROJAS, J.; FUENTES, C. 2010. Diversidad de bacterias totales y endófitas asociadas a raíces del pasto Bothriochloa pertusa (L) A. Camus. Revista Colombiana de Ciencia Animal. 2(1): 58-72.
PEREZ, A.; CHAMORRO, L. 2013. Endophytic bacteria: a new field of research for development of agricultural sector. Revista Colombiana de ciencia Animal. 5(2):439-462.
PÉREZ, C.; TUBERQUIA, A.; AMELL, D. 2014. Actividad in vitro de bacterias endófitas fijadoras de nitrógeno y solubilizadoras de fosfatos. Revista Agronomía. Mesoamericana. 25(2):213-223.
PÉREZ, A.; MARTÍNEZ, D.; BARRAZA, Z.; MARRUGO, J. 2016. Bacterias endófitas asociadas a los géneros Cyperus y paspalum en suelos contaminados con mercurio. Revista U.D.C.A Actualidades & Divulgación Científica. 19(1): 67-76,
PILLAY, V.K.; NORWARK, J. 1997. Inoculam, density, temperature, and genotype effect on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.), seeding inoculated with a pseudomonal bacterium. Canadian Journal of Microbiology. 43:354-61.
RATHNAYAKE, I.V.N.; MALLAVARAPU, M.; KRISHNAMURTI, G.S.R.; BOLAN N.S.; NAIDU R. 2013. Heavy metal toxicity to bacteria – Are the existing growth media accurate enough to determine heavy metal toxicity. Chemosphere 90:1195-1200.
ROCKNE, K.; SANFORD, J.; SANFORD, R.; BRIAN, P.; JAMES, T.; STALEYAND, S. 2000. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Applied and Environmental Microbiology. 66: (4)1595-1601.
RIERA, M. C. 2003. Manejo de la biofertilización con hongos micorrízicos arbusculares y rizobacterias en secuencias de cultivos sobre suelo Ferralítico rojo. [Tesis en opción al grado de Doctor en Ciencias Agrícolas]. La Habana: Instituto Nacional de Ciencias Agrícolas. 120.
RYAN, R. P.; GERMAINE, K.; FRANKS, A.; RYAN, D. J.; DOWLING, D. N. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters. 278(1): 1-9.
SÁNCHEZ, D.B.; GARCÍA, A.M.; ROMERO, F.A.; BONILLA, R.R. 2014. Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fosfato en Lactuca sativa cultivar White Boston. Revista Colombiana de Biotecnología. 16(2): 122-128.
SCHWYN, B.; NEILANDS, J.B. 1987.Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry. 160: 47-56.
SHANKAR, B.; SHASHIKALA, J.; KRISHNAMURTHY, Y.L. 2009. Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiology Research. 164:290-6 SHENG, X.; XIA, J.; JIANG, C.; HE, L.; QIAN, M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution. 156: 1164–1170.
SOMEYA, N.; TSUCHIYA, K.; SUGISAWA, S.; NOGUCHI, M; YOSHIDA, T. 2008. Growth Promotion of Lettuce (Lactuca sativa L.) by a Rhizobacterium Pseudomonas fluorscens Strain LRB3W1 under Iron-Limiting Condition. Environmental Control in Biology. 46(2):139-146.
SUN, L.N.; ZHANG, Y.F.; HE, L.Y.; CHEN, Z.J.; WANG, Q.Y.; QIAN, M. 2010. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper tolerant plant species on copper mine wasteland. Bioresource Technology 101:501-509
VIKRAM, A. 2007. Efficacy of phosphate solubilizing bacteria isolated from Vertisols on growth and yield parameters of sorghum. Research Journal of Microbiology. 2: 550-559.
WEISBERG, M.; JOSEPH, P.; HALE, B.; BEYERSMANN, D. 2003. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology. 192: 95-110.
ZHANG, Y.F.; HE, L.Y;CHEN, Z.J.; ZHANG, W.H.; WANG, Q.Y.; QIAN, M.; SHENG, X.F. 2011. Characterization of leadresistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. Journal of Hazardous Materials. 186:1720-1725.
dc.relation.bitstream.none.fl_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/download/610/pdf
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2017 : RECIA 9(SUPL 2):DICIEMBRE
dc.relation.citationendpage.none.fl_str_mv 293
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv 281
dc.relation.citationvolume.spa.fl_str_mv 9
dc.relation.ispartofjournal.spa.fl_str_mv Revista Colombiana de Ciencia Animal - RECIA
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Sucre
dc.source.spa.fl_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/view/610
institution Universidad de Sucre
bitstream.url.fl_str_mv https://repositorio.unisucre.edu.co/bitstreams/41f34e0b-8f21-432b-a933-e4e08f2442c6/download
bitstream.checksum.fl_str_mv 3f36143ce62692b850369c959a158082
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Sucre
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814111968298008576
spelling Ayubb T, Natalyea44d2bb6b046fb4edf3a806c2dedf40300Cerra G, Armandode63c97fceee5582221352e2cda9751f300Chamorro A, Leonardo20329374bc07538eadb41feb8f79e41ePérez C, Alexanderd99dae1430c81aeb5d37e96bc7170a7d2017-12-01 00:00:002022-07-01T17:15:58Z2017-12-01 00:00:002022-07-01T17:15:58Z2017-12-01https://repositorio.unisucre.edu.co/handle/001/154310.24188/recia.v9.n2.2017.6102027-4297https://doi.org/10.24188/recia.v9.n2.2017.610application/pdfspaUniversidad de Sucrehttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.unisucre.edu.co/index.php/recia/article/view/610Rizospheric bacteriarizospheretoleranceCdBacteria endófitarizósferatoleranciaCadmioResistencia a cadmio (Cd) de bacterias endófitas y bacterias rizosféricas aisladas a partir de Oriza sativa en ColombiaCadmium resistance of endophytic bacteria and rizosféricas bacteria isolated from Oriza sativa in ColombiaArtículo de revistaJournal articleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Texthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85ADHYA, T.K.; KUMAR, N.; REDDY, G.; PODILE, A.R.; BEE, H.; SAMANTARAY, B. 2015. Microbial Mobilization of Soil of Phosphorus and Sustainable P Management in Agricultural Soils. Current Science. 108:1280-1287.ALARCÓN, A.; FERRERA C.R. 2012. Biofertilizantes: Importancia y utilización en la agricultura. Revista Mexicana de Ciencias Agrícolas. 26 (2): 191-203.ARAUJO, W. L.; MARCON, W.J.; MACCHERONI, E.J.; VAN, J.W.; AZEVEDO, J.L. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied Environmental Microbiology. 68:4906-4914.BEHERA, B.; SINGDEVSACHAN, S.; MISHRA, R.; DUTTA, S.; THATOI, H. 2014. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove, a review. Biocatalysis and Agricultural Biotechnology. 3(2): 97-110BELIMOV, A.; HONTZEAS, N.; SAFRONOVA, V.; DEMCHINSKAYA, S.; PILUZZA, G.; BULLITTA, S.; GLICK, B. 2005. Cadmium tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea LC zern.). Soil Biology & Biochemistry. 37:241-50.BEVIVINO, A.; DAMALSTRI, C.; TABACCHIONI, S.; CHIARINI, L. 2000. Efficacy of Burkholderia cepacia MCL 7 in disease suppression and growth promotion of maize. Biology and Fertility of Soils. 31(4): 225-231.CABALLERO M.J.; ONOFRE L.J.; ESTRADA, D.P.; MARTINEZ, A.L. 2007. The tomato rhizosphere, an environment rich in nitrógen-fixing Burkholderia species with capabilities of interest for agriculture and biorremediation. Applied Environmental Microbiology. 73(3): 5308-5319.CAÑIZARES, R. 2000. Bioabsorción de metales pesados mediante el uso de biomasa microbiana. Revista Latinoamericana de Microbiología 42:131- 143.CHUN YU, J.; XIA-FANG, S.; MENG, Q.; QING-YA, W. 2008. Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal contaminated paddy feld soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere. 72(2):57-64.COMPANT, S.; DUFFY, B.; NOWAK, J.; CLEMENT, C.; BARKA, E.A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied Environmental Microbiology. 71:4951-4959.DEMANECHE, S.; KAY, E.; GOURBIERE, F.; SIMONET, P. 2001. Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil. Applied and Environmental Microbiology. 67 (6): 2617-2621.DI TOPPI, L.S.; GABBRIELLI, R. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany. 41: 105- 130.DUGAN, M. 2004. Field Training Manual For Laboratory Analysts. Disponible en: www.home.alltel.net/mikeric/chap 10up/chapter 10 Nitrogen. Htm.GUERRA, B.; SANDOVAL, A.; MANRIQUE, L.; BARRERA, S. 2014. Ensayos preliminares in vitro de bioabsorción de cadmio por cepas fúngicas nativas de suelos contaminados. Innovaciencia 2014; 2 (1): 53 – 58GONZALEZ, A.G. 2006. El fósforo y los microorganismos del suelo, Departamento Desarrollo, Rizobacter Argentina. S.A.HERNÁNDEZ, A.; MEDINA, N.; QUIÑÓNEZ, M.; HOFTE, M.; HENDRICH, M.; HERNÁNDEZ, A. N. 2004. Strain identification of Burkholderia cepacia and Pseudomonas fluorescens associated to maize crop by pholyphasic taxonomi. Revista Mexicana de Fitopatología. 22(2): 198-207HIRONOBU, M.; HISAU M. 2008. Endophytic bacteria in the plant rice. Microbes Environmental. 23:19-117.JONES, D. L.; OBURGER, E. 2011. Solubilization of phosphorus by soil microorganisms. Phosphorus in Action (pp. 169-198): Springer.KAMALAKANNAN, S.; KRISHNAMOORTHY R. 2006. Isolation of mercury resistant bacteria and in?uence of abiotic factors on bioavailability of mercury –a case study in Pulicat Lake north of Chennai, south east India. Science of the Total Environment. 367:341-353KAMIKA, I.; MOMBA, M.N. 2013. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal rich industrial wastewater. BMC Microbiology. 10(4):13- 28LODEWYCKX, C.; TAGHAVI, S.; MERGEAY, M.; VANGRONSVELD, J.; CLIJSTERS, H.; VAN DER LELIE, D. 2001. The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. International Journal of Phytoremediation. 3:173- 187LÓPEZ, D.B.S.; HOYOS, A.M.G.; PERDOMO, F.A.R.; BUITRAGO, R.R.B. 2014. Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fosfato en Lactuca sativa cultivar White Boston. Revista Colombiana de Biotecnología. 16(2): 122-128.MA, Y.; RAJKUMAR, M.; LUO, Y.; FREITAS, H. 2011. Inoculation of endophytic bacteria on host and non-host plants effects on plant growth and Ni uptake. Journal of Hazardous Materials. 196:230-7.MADHAIYAN, M.; POONGUZHALI, S.; SA, T. 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere. 69: 220-228MANO, H.; TANAKA, F.; WATANABE, A.; KAGA, H.; OKUNISHI, S.; MORISAKI, H. 2006. Culturable surface and endophytic bacterial ?ora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy feld. Microbes Environmental. 21:86-100MOCALI, S.; BERTELLI, E.; MENGONI A.; SFALANGA, A.; VILIANI, F.; CACIOTTI, A & TEGLI S.G. 2003. Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Research in Microbiology. 154:105-114MOHAMMAD, G.; PRASAD, R. 1998. Influence of microbial fertilizers on biomass accumulation in polypotted Eucalyptus calmadulensis. Journal of Tropical Ecology. 4:74-7.MOSSIALOS, A.; MEYER, J.M.; BUDZIKIEWICZ, H.; WOLFF, U.; KOEDAM, N.; BAYSSE, C.; ANJAIAH, V.; CORNELIS, P. 2000. Quinolobactin, a New Siderophore of Pseudomonas fluorescens ATCC 17400, the production of wich is repressed by the cognate Pyoverdine. Applied and environmental Microbiology. 66(2): 487-492.NAVA, P.E.; GARCÍA, G.C.; CAMACHO, B.J.R.; VÁZQUEZ, M.E.L. 2012. Bioplaguicidas: una opción para el control biológico de plagas. Ra Ximhai. 8(3): 17-29.ORELIO, C.C.; BEIBOER, H.W.; MORSINK, M.C.; TEKTAS, S.; DEKTER, H.E.; VAN LEEUWEN, W.B. 2014. Comparison of Raman spectroscopy and two molecular diagnostic methods for Burkholderia cepacia complex species identification. Journal Microbiology Methods 107:126-132.O’SULLIVAN, D.J.; O’GARA, F.1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiology Reviews. 56:662-676.PÉREZ, C.; DE LA FUENTE, L.; ARIAS, A.; ALTIER, N. 2000. Uso de Pseudomonas fluorescens nativas para el control de enfermedades de implantación en Lotus corniculatus L. Agrociencia. 4(1):41-47.PÉREZ, C.; ROJAS, J.; FUENTES, C. 2010. Diversidad de bacterias totales y endófitas asociadas a raíces del pasto Bothriochloa pertusa (L) A. Camus. Revista Colombiana de Ciencia Animal. 2(1): 58-72.PEREZ, A.; CHAMORRO, L. 2013. Endophytic bacteria: a new field of research for development of agricultural sector. Revista Colombiana de ciencia Animal. 5(2):439-462.PÉREZ, C.; TUBERQUIA, A.; AMELL, D. 2014. Actividad in vitro de bacterias endófitas fijadoras de nitrógeno y solubilizadoras de fosfatos. Revista Agronomía. Mesoamericana. 25(2):213-223.PÉREZ, A.; MARTÍNEZ, D.; BARRAZA, Z.; MARRUGO, J. 2016. Bacterias endófitas asociadas a los géneros Cyperus y paspalum en suelos contaminados con mercurio. Revista U.D.C.A Actualidades & Divulgación Científica. 19(1): 67-76,PILLAY, V.K.; NORWARK, J. 1997. Inoculam, density, temperature, and genotype effect on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.), seeding inoculated with a pseudomonal bacterium. Canadian Journal of Microbiology. 43:354-61.RATHNAYAKE, I.V.N.; MALLAVARAPU, M.; KRISHNAMURTI, G.S.R.; BOLAN N.S.; NAIDU R. 2013. Heavy metal toxicity to bacteria – Are the existing growth media accurate enough to determine heavy metal toxicity. Chemosphere 90:1195-1200.ROCKNE, K.; SANFORD, J.; SANFORD, R.; BRIAN, P.; JAMES, T.; STALEYAND, S. 2000. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Applied and Environmental Microbiology. 66: (4)1595-1601.RIERA, M. C. 2003. Manejo de la biofertilización con hongos micorrízicos arbusculares y rizobacterias en secuencias de cultivos sobre suelo Ferralítico rojo. [Tesis en opción al grado de Doctor en Ciencias Agrícolas]. La Habana: Instituto Nacional de Ciencias Agrícolas. 120.RYAN, R. P.; GERMAINE, K.; FRANKS, A.; RYAN, D. J.; DOWLING, D. N. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters. 278(1): 1-9.SÁNCHEZ, D.B.; GARCÍA, A.M.; ROMERO, F.A.; BONILLA, R.R. 2014. Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fosfato en Lactuca sativa cultivar White Boston. Revista Colombiana de Biotecnología. 16(2): 122-128.SCHWYN, B.; NEILANDS, J.B. 1987.Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry. 160: 47-56.SHANKAR, B.; SHASHIKALA, J.; KRISHNAMURTHY, Y.L. 2009. Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiology Research. 164:290-6 SHENG, X.; XIA, J.; JIANG, C.; HE, L.; QIAN, M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution. 156: 1164–1170.SOMEYA, N.; TSUCHIYA, K.; SUGISAWA, S.; NOGUCHI, M; YOSHIDA, T. 2008. Growth Promotion of Lettuce (Lactuca sativa L.) by a Rhizobacterium Pseudomonas fluorscens Strain LRB3W1 under Iron-Limiting Condition. Environmental Control in Biology. 46(2):139-146.SUN, L.N.; ZHANG, Y.F.; HE, L.Y.; CHEN, Z.J.; WANG, Q.Y.; QIAN, M. 2010. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper tolerant plant species on copper mine wasteland. Bioresource Technology 101:501-509VIKRAM, A. 2007. Efficacy of phosphate solubilizing bacteria isolated from Vertisols on growth and yield parameters of sorghum. Research Journal of Microbiology. 2: 550-559.WEISBERG, M.; JOSEPH, P.; HALE, B.; BEYERSMANN, D. 2003. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology. 192: 95-110.ZHANG, Y.F.; HE, L.Y;CHEN, Z.J.; ZHANG, W.H.; WANG, Q.Y.; QIAN, M.; SHENG, X.F. 2011. Characterization of leadresistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. Journal of Hazardous Materials. 186:1720-1725.https://revistas.unisucre.edu.co/index.php/recia/article/download/610/pdfNúm. 2 , Año 2017 : RECIA 9(SUPL 2):DICIEMBRE29322819Revista Colombiana de Ciencia Animal - RECIAPublicationOREORE.xmltext/xml2762https://repositorio.unisucre.edu.co/bitstreams/41f34e0b-8f21-432b-a933-e4e08f2442c6/download3f36143ce62692b850369c959a158082MD51001/1543oai:repositorio.unisucre.edu.co:001/15432024-04-17 16:31:29.549https://creativecommons.org/licenses/by-nc-sa/4.0/metadata.onlyhttps://repositorio.unisucre.edu.coRepositorio Institucional Universidad de Sucrebdigital@metabiblioteca.com