Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico
- Autores:
-
RODAS M., ELKIN
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad de Sucre
- Repositorio:
- Repositorio Unisucre
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unisucre.edu.co:001/1195
- Acceso en línea:
- https://repositorio.unisucre.edu.co/handle/001/1195
https://doi.org/10.24188/recia.v8.n1.2016.202
- Palabra clave:
- Bacterias hidrolíticas
enzimas extracelulares
tratamiento de aguas residuales de frigorífico.
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-sa/4.0/
id |
RUNISUCRE2_2ce8a61d8f01e3a9686c8e075c9edb0e |
---|---|
oai_identifier_str |
oai:repositorio.unisucre.edu.co:001/1195 |
network_acronym_str |
RUNISUCRE2 |
network_name_str |
Repositorio Unisucre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico |
dc.title.translated.eng.fl_str_mv |
Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico |
title |
Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico |
spellingShingle |
Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico Bacterias hidrolíticas enzimas extracelulares tratamiento de aguas residuales de frigorífico. |
title_short |
Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico |
title_full |
Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico |
title_fullStr |
Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico |
title_full_unstemmed |
Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico |
title_sort |
Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico |
dc.creator.fl_str_mv |
RODAS M., ELKIN |
dc.contributor.author.spa.fl_str_mv |
RODAS M., ELKIN |
dc.subject.spa.fl_str_mv |
Bacterias hidrolíticas enzimas extracelulares tratamiento de aguas residuales de frigorífico. |
topic |
Bacterias hidrolíticas enzimas extracelulares tratamiento de aguas residuales de frigorífico. |
publishDate |
2016 |
dc.date.accessioned.none.fl_str_mv |
2016-01-04 00:00:00 2022-06-30T15:04:00Z |
dc.date.available.none.fl_str_mv |
2016-01-04 00:00:00 2022-06-30T15:04:00Z |
dc.date.issued.none.fl_str_mv |
2016-01-04 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.eng.fl_str_mv |
Journal article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unisucre.edu.co/handle/001/1195 |
dc.identifier.doi.none.fl_str_mv |
10.24188/recia.v8.n1.2016.202 |
dc.identifier.eissn.none.fl_str_mv |
2027-4297 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.24188/recia.v8.n1.2016.202 |
url |
https://repositorio.unisucre.edu.co/handle/001/1195 https://doi.org/10.24188/recia.v8.n1.2016.202 |
identifier_str_mv |
10.24188/recia.v8.n1.2016.202 2027-4297 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
ARNOSTI, C. 2011. Microbial Extracellular Enzymes and the Marine Carbon Cycle. Annual Reviews 3:401-425. BAZRAFSHAN, E.; MOSTAFAPOUR, F.K.; FARZADKIA, M.; OWNAGH, K.A.; MAHVI; A.H. 2012. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process. Plos One 7 (8):1-8. BEN-GIGIREY B, DE SOUSA J.M.V.B, VILLA T.G. (2000). Characterization of biogenic amine-producing Stenotrophomonas maltophilia strains isolated from white muscle of fresh and frozen albacore tuna. Int J Food Microbiol 57:19-31. CAVALEIRO, A.J.; SOUSA, D.Z.; ALVES, M.M. 2010. Methane production from oleate: assessing the bioaugmentation potential of Syntrophomonas zehnderi.water research 44 (17):4940-4947. ÇADIRCI B.H.; ÇITAK S. 2005. A Comparison of Two Methods Used for Measuring Antagonistic Activity of Lactic Acid Bacteria. Pakistan Journal of Nutrition 4 (4): 237-241. ?ATER, M.; FANEDL, L.; MALOVRH, S.; LOGAR, R.M. 2015. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Bioresource technology 186: 261-269. CHAN, Y.J.; CHONG, M.F.; LAW, C.L.; HASSELL, D.G. 2009. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal 155:1-18. CHEN, Q.; NI, J.; MA, T.; LIU, T.; ZHENG, M. 2015. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresource technology 183:25-32. CUNHA, A.; ALMEIDA, A.; COELHO, F.J.R.C.; GOMES, N.C.M.; OLIVEIRA, V.; SANTOS, A.L. 2010. Bacterial extracellular enzymatic activity in globally changing aquatic ecosystems. Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz, Spain: Formatex Research Center: 124-135. FACCHIN, S.; ALVES, P. D.; DE FARIA SIQUEIRA, F.; BARROCA, T. M.; NETTO, J.M.; KALAPOTHAKIS, E. 2013. Biodiversity and secretion of enzymes with potential utility in wastewater treatment. Open Journal of Ecology 3 (1):34-47. GERARDI, M.H. 2003. The microbiology of anaerobic digesters. John Wiley & Sons. USA. HANKIN, L.; ANAGNOSTAKIS, S. L. 1975. The use of solid media for detection of enzymes production by fungi. Mycologia 67 (3): 597-607. HERRERO, M.; STUCKEY, D.C. 2014. Bioaugmentation and its application in wastewater treatment: A review. Chemosphere 1:10. HU, X.; LI, A.; FAN, J.; DENG, C.; ZHANG, Q. 2008. Biotreatment of q-nitrophenol and nitrobenzene in mixed wastewater through selective bioaugmentation. Bioresour. Technol. 99: 4529-4533. ICHIDA, J.M.; KRIZOVA, L.; LEFEVRE, C.A.; KEENER, H.M.; ELWELL, D.L.; BURTT JR., E.H. 2001. Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. Journal of Microbiological Methods 47:199-208. LEALEM, F.; GASHE, B. A. 1994. Amylase production by a gram-positive bacterium isolated from fermenting tef (Eraglostis tef). J. Appl. Bacteriol. 77 (3): 348 352. LEFEBVRE, X.; PAUL, E.; MAURET, M. 1998. Kinetic characterization of saponified domestic lipid residues aerobic biodegradation. Water Research 32: 3031-3038. LIU, Y.; KANG, X., LI, X.L.; YUAN, Y. 2015. Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment. Bioresource technology 190:487-91 MARONE, A.,;MASSINI, G.; PATRIARCA, C.; SIGNORINI, A.; VARRONE, C.; IZZO, G. 2012. Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. international journal of hydrogen energy 37 (7):5612-5622. MARTIN-RYALS, A.; SCHIDEMAN, L.; LI, P.; WILKINSON, H.; WAGNER, R. 2015. Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms. Bioresource technology 189:62-70. MOHAN, S.V.; RAO, N.C.; PRASAD, K.K.; SARMA, P.N. 2005. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater. Process Biochemistry 40 (8):2849-2857. MUÑOZ, D.M. 2005. Sistema de tratamiento de aguas residuales de matadero: Para una población menor 2000 habitantes [System of residual water treatment of slaughter house: For a smaller population 2000 inhabitants. Facultad de Ciencias Agropecuarias 3 (1):87-98. PABÓN, S. L.; GÉLVEZ, J.H.S. 2009. Arranque y operación a escala real de un sistema de tratamiento de lodos activos para aguas residuales de matadero. Ingeniería e Investigación 29 (2):53-58. PALATSI, J.; VIÑAS, M.; GUIVERNAU, M.; FERNANDEZ, B.; FLOTATS, X . 2011. Anaerobic digestion of slaughterhouse waste: Main process limitations and microbial community interactions. Bioresource Technology 102:2219–2227. PARK, D.; LEE, D.S.; KIM, Y.M.; PARK, J.M. 2008. Bioaugmentation of cyanide-degrading microorganisms in a fullscale cokes wastewater treatment facility. Bioresour. Technol. 99:2092–2096. TEATHER, R. M.; WOOD, P. J. 1982. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43 (4):777-780. VAN DER GAST, C.J.; WHITELEY, A.S.; THOMPSON, I.P. 2004. Temporal dynamics and degradation activity of a bacterial inoculum for treating waste metal-working fluid. Environmental Microbiology 6:254–263. VAVILIN, A. .; FERNANDEZ, B.; PALATSI, J.; FLOTATS, X.. 2008. Hydrolysis kinetics in anaerobic degradation of particulate organic material Waste Manag. 28 (6):939–951 VIDAL, G.; CARVALHO, A.; MÉNDEZ, R.; LEMA, J.M. 2000. Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresource Technology 74:231-239. YU, Z.T.; MOHN, W.W. 2002. Bioaugmentation with the resin-acid degrading bacteria Zoogloea resiniphila DhA-35 to counteract pH stress in an aerated lagoon treating pulp and paper mill effluent. Water Res. 36:2793–2801. |
dc.relation.bitstream.none.fl_str_mv |
https://revistas.unisucre.edu.co/index.php/recia/article/download/202/243 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2016 : RECIA 8(1):Enero-Junio |
dc.relation.citationendpage.none.fl_str_mv |
43 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationstartpage.none.fl_str_mv |
37 |
dc.relation.citationvolume.spa.fl_str_mv |
8 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Colombiana de Ciencia Animal - RECIA |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de Sucre |
dc.source.spa.fl_str_mv |
https://revistas.unisucre.edu.co/index.php/recia/article/view/202 |
institution |
Universidad de Sucre |
bitstream.url.fl_str_mv |
https://repositorio.unisucre.edu.co/bitstreams/4baa5bba-41d7-4caa-9276-1156316476e7/download |
bitstream.checksum.fl_str_mv |
48e7c278b9de8ffa745bd13f2a8fb005 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad de Sucre |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814111882939727872 |
spelling |
RODAS M., ELKIN2383aa449c234e56ac114ac7b0fd5aec3002016-01-04 00:00:002022-06-30T15:04:00Z2016-01-04 00:00:002022-06-30T15:04:00Z2016-01-04https://repositorio.unisucre.edu.co/handle/001/119510.24188/recia.v8.n1.2016.2022027-4297https://doi.org/10.24188/recia.v8.n1.2016.202application/pdfspaUniversidad de Sucrehttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.unisucre.edu.co/index.php/recia/article/view/202Bacterias hidrolíticasenzimas extracelularestratamiento de aguas residuales de frigorífico.Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigoríficoActividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigoríficoArtículo de revistaJournal articleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Texthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85ARNOSTI, C. 2011. Microbial Extracellular Enzymes and the Marine Carbon Cycle. Annual Reviews 3:401-425.BAZRAFSHAN, E.; MOSTAFAPOUR, F.K.; FARZADKIA, M.; OWNAGH, K.A.; MAHVI; A.H. 2012. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process. Plos One 7 (8):1-8.BEN-GIGIREY B, DE SOUSA J.M.V.B, VILLA T.G. (2000). Characterization of biogenic amine-producing Stenotrophomonas maltophilia strains isolated from white muscle of fresh and frozen albacore tuna. Int J Food Microbiol 57:19-31.CAVALEIRO, A.J.; SOUSA, D.Z.; ALVES, M.M. 2010. Methane production from oleate: assessing the bioaugmentation potential of Syntrophomonas zehnderi.water research 44 (17):4940-4947.ÇADIRCI B.H.; ÇITAK S. 2005. A Comparison of Two Methods Used for Measuring Antagonistic Activity of Lactic Acid Bacteria. Pakistan Journal of Nutrition 4 (4): 237-241.?ATER, M.; FANEDL, L.; MALOVRH, S.; LOGAR, R.M. 2015. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Bioresource technology 186: 261-269.CHAN, Y.J.; CHONG, M.F.; LAW, C.L.; HASSELL, D.G. 2009. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal 155:1-18.CHEN, Q.; NI, J.; MA, T.; LIU, T.; ZHENG, M. 2015. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresource technology 183:25-32.CUNHA, A.; ALMEIDA, A.; COELHO, F.J.R.C.; GOMES, N.C.M.; OLIVEIRA, V.; SANTOS, A.L. 2010. Bacterial extracellular enzymatic activity in globally changing aquatic ecosystems. Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz, Spain: Formatex Research Center: 124-135.FACCHIN, S.; ALVES, P. D.; DE FARIA SIQUEIRA, F.; BARROCA, T. M.; NETTO, J.M.; KALAPOTHAKIS, E. 2013. Biodiversity and secretion of enzymes with potential utility in wastewater treatment. Open Journal of Ecology 3 (1):34-47.GERARDI, M.H. 2003. The microbiology of anaerobic digesters. John Wiley & Sons. USA.HANKIN, L.; ANAGNOSTAKIS, S. L. 1975. The use of solid media for detection of enzymes production by fungi. Mycologia 67 (3): 597-607.HERRERO, M.; STUCKEY, D.C. 2014. Bioaugmentation and its application in wastewater treatment: A review. Chemosphere 1:10.HU, X.; LI, A.; FAN, J.; DENG, C.; ZHANG, Q. 2008. Biotreatment of q-nitrophenol and nitrobenzene in mixed wastewater through selective bioaugmentation. Bioresour. Technol. 99: 4529-4533.ICHIDA, J.M.; KRIZOVA, L.; LEFEVRE, C.A.; KEENER, H.M.; ELWELL, D.L.; BURTT JR., E.H. 2001. Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. Journal of Microbiological Methods 47:199-208.LEALEM, F.; GASHE, B. A. 1994. Amylase production by a gram-positive bacterium isolated from fermenting tef (Eraglostis tef). J. Appl. Bacteriol. 77 (3): 348 352.LEFEBVRE, X.; PAUL, E.; MAURET, M. 1998. Kinetic characterization of saponified domestic lipid residues aerobic biodegradation. Water Research 32: 3031-3038.LIU, Y.; KANG, X., LI, X.L.; YUAN, Y. 2015. Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment. Bioresource technology 190:487-91MARONE, A.,;MASSINI, G.; PATRIARCA, C.; SIGNORINI, A.; VARRONE, C.; IZZO, G. 2012. Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. international journal of hydrogen energy 37 (7):5612-5622.MARTIN-RYALS, A.; SCHIDEMAN, L.; LI, P.; WILKINSON, H.; WAGNER, R. 2015. Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms. Bioresource technology 189:62-70.MOHAN, S.V.; RAO, N.C.; PRASAD, K.K.; SARMA, P.N. 2005. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater. Process Biochemistry 40 (8):2849-2857.MUÑOZ, D.M. 2005. Sistema de tratamiento de aguas residuales de matadero: Para una población menor 2000 habitantes [System of residual water treatment of slaughter house: For a smaller population 2000 inhabitants. Facultad de Ciencias Agropecuarias 3 (1):87-98.PABÓN, S. L.; GÉLVEZ, J.H.S. 2009. Arranque y operación a escala real de un sistema de tratamiento de lodos activos para aguas residuales de matadero. Ingeniería e Investigación 29 (2):53-58.PALATSI, J.; VIÑAS, M.; GUIVERNAU, M.; FERNANDEZ, B.; FLOTATS, X . 2011. Anaerobic digestion of slaughterhouse waste: Main process limitations and microbial community interactions. Bioresource Technology 102:2219–2227.PARK, D.; LEE, D.S.; KIM, Y.M.; PARK, J.M. 2008. Bioaugmentation of cyanide-degrading microorganisms in a fullscale cokes wastewater treatment facility. Bioresour. Technol. 99:2092–2096.TEATHER, R. M.; WOOD, P. J. 1982. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43 (4):777-780.VAN DER GAST, C.J.; WHITELEY, A.S.; THOMPSON, I.P. 2004. Temporal dynamics and degradation activity of a bacterial inoculum for treating waste metal-working fluid. Environmental Microbiology 6:254–263.VAVILIN, A. .; FERNANDEZ, B.; PALATSI, J.; FLOTATS, X.. 2008. Hydrolysis kinetics in anaerobic degradation of particulate organic material Waste Manag. 28 (6):939–951VIDAL, G.; CARVALHO, A.; MÉNDEZ, R.; LEMA, J.M. 2000. Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresource Technology 74:231-239.YU, Z.T.; MOHN, W.W. 2002. Bioaugmentation with the resin-acid degrading bacteria Zoogloea resiniphila DhA-35 to counteract pH stress in an aerated lagoon treating pulp and paper mill effluent. Water Res. 36:2793–2801.https://revistas.unisucre.edu.co/index.php/recia/article/download/202/243Núm. 1 , Año 2016 : RECIA 8(1):Enero-Junio431378Revista Colombiana de Ciencia Animal - RECIAPublicationOREORE.xmltext/xml2608https://repositorio.unisucre.edu.co/bitstreams/4baa5bba-41d7-4caa-9276-1156316476e7/download48e7c278b9de8ffa745bd13f2a8fb005MD51001/1195oai:repositorio.unisucre.edu.co:001/11952024-04-17 16:30:24.202https://creativecommons.org/licenses/by-nc-sa/4.0/metadata.onlyhttps://repositorio.unisucre.edu.coRepositorio Institucional Universidad de Sucrebdigital@metabiblioteca.com |