Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico

Autores:
RODAS M., ELKIN
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad de Sucre
Repositorio:
Repositorio Unisucre
Idioma:
spa
OAI Identifier:
oai:repositorio.unisucre.edu.co:001/1195
Acceso en línea:
https://repositorio.unisucre.edu.co/handle/001/1195
https://doi.org/10.24188/recia.v8.n1.2016.202
Palabra clave:
Bacterias hidrolíticas
enzimas extracelulares
tratamiento de aguas residuales de frigorífico.
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id RUNISUCRE2_2ce8a61d8f01e3a9686c8e075c9edb0e
oai_identifier_str oai:repositorio.unisucre.edu.co:001/1195
network_acronym_str RUNISUCRE2
network_name_str Repositorio Unisucre
repository_id_str
dc.title.spa.fl_str_mv Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico
dc.title.translated.eng.fl_str_mv Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico
title Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico
spellingShingle Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico
Bacterias hidrolíticas
enzimas extracelulares
tratamiento de aguas residuales de frigorífico.
title_short Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico
title_full Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico
title_fullStr Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico
title_full_unstemmed Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico
title_sort Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigorífico
dc.creator.fl_str_mv RODAS M., ELKIN
dc.contributor.author.spa.fl_str_mv RODAS M., ELKIN
dc.subject.spa.fl_str_mv Bacterias hidrolíticas
enzimas extracelulares
tratamiento de aguas residuales de frigorífico.
topic Bacterias hidrolíticas
enzimas extracelulares
tratamiento de aguas residuales de frigorífico.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2016-01-04 00:00:00
2022-06-30T15:04:00Z
dc.date.available.none.fl_str_mv 2016-01-04 00:00:00
2022-06-30T15:04:00Z
dc.date.issued.none.fl_str_mv 2016-01-04
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unisucre.edu.co/handle/001/1195
dc.identifier.doi.none.fl_str_mv 10.24188/recia.v8.n1.2016.202
dc.identifier.eissn.none.fl_str_mv 2027-4297
dc.identifier.url.none.fl_str_mv https://doi.org/10.24188/recia.v8.n1.2016.202
url https://repositorio.unisucre.edu.co/handle/001/1195
https://doi.org/10.24188/recia.v8.n1.2016.202
identifier_str_mv 10.24188/recia.v8.n1.2016.202
2027-4297
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv ARNOSTI, C. 2011. Microbial Extracellular Enzymes and the Marine Carbon Cycle. Annual Reviews 3:401-425.
BAZRAFSHAN, E.; MOSTAFAPOUR, F.K.; FARZADKIA, M.; OWNAGH, K.A.; MAHVI; A.H. 2012. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process. Plos One 7 (8):1-8.
BEN-GIGIREY B, DE SOUSA J.M.V.B, VILLA T.G. (2000). Characterization of biogenic amine-producing Stenotrophomonas maltophilia strains isolated from white muscle of fresh and frozen albacore tuna. Int J Food Microbiol 57:19-31.
CAVALEIRO, A.J.; SOUSA, D.Z.; ALVES, M.M. 2010. Methane production from oleate: assessing the bioaugmentation potential of Syntrophomonas zehnderi.water research 44 (17):4940-4947.
ÇADIRCI B.H.; ÇITAK S. 2005. A Comparison of Two Methods Used for Measuring Antagonistic Activity of Lactic Acid Bacteria. Pakistan Journal of Nutrition 4 (4): 237-241.
?ATER, M.; FANEDL, L.; MALOVRH, S.; LOGAR, R.M. 2015. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Bioresource technology 186: 261-269.
CHAN, Y.J.; CHONG, M.F.; LAW, C.L.; HASSELL, D.G. 2009. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal 155:1-18.
CHEN, Q.; NI, J.; MA, T.; LIU, T.; ZHENG, M. 2015. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresource technology 183:25-32.
CUNHA, A.; ALMEIDA, A.; COELHO, F.J.R.C.; GOMES, N.C.M.; OLIVEIRA, V.; SANTOS, A.L. 2010. Bacterial extracellular enzymatic activity in globally changing aquatic ecosystems. Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz, Spain: Formatex Research Center: 124-135.
FACCHIN, S.; ALVES, P. D.; DE FARIA SIQUEIRA, F.; BARROCA, T. M.; NETTO, J.M.; KALAPOTHAKIS, E. 2013. Biodiversity and secretion of enzymes with potential utility in wastewater treatment. Open Journal of Ecology 3 (1):34-47.
GERARDI, M.H. 2003. The microbiology of anaerobic digesters. John Wiley & Sons. USA.
HANKIN, L.; ANAGNOSTAKIS, S. L. 1975. The use of solid media for detection of enzymes production by fungi. Mycologia 67 (3): 597-607.
HERRERO, M.; STUCKEY, D.C. 2014. Bioaugmentation and its application in wastewater treatment: A review. Chemosphere 1:10.
HU, X.; LI, A.; FAN, J.; DENG, C.; ZHANG, Q. 2008. Biotreatment of q-nitrophenol and nitrobenzene in mixed wastewater through selective bioaugmentation. Bioresour. Technol. 99: 4529-4533.
ICHIDA, J.M.; KRIZOVA, L.; LEFEVRE, C.A.; KEENER, H.M.; ELWELL, D.L.; BURTT JR., E.H. 2001. Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. Journal of Microbiological Methods 47:199-208.
LEALEM, F.; GASHE, B. A. 1994. Amylase production by a gram-positive bacterium isolated from fermenting tef (Eraglostis tef). J. Appl. Bacteriol. 77 (3): 348 352.
LEFEBVRE, X.; PAUL, E.; MAURET, M. 1998. Kinetic characterization of saponified domestic lipid residues aerobic biodegradation. Water Research 32: 3031-3038.
LIU, Y.; KANG, X., LI, X.L.; YUAN, Y. 2015. Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment. Bioresource technology 190:487-91
MARONE, A.,;MASSINI, G.; PATRIARCA, C.; SIGNORINI, A.; VARRONE, C.; IZZO, G. 2012. Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. international journal of hydrogen energy 37 (7):5612-5622.
MARTIN-RYALS, A.; SCHIDEMAN, L.; LI, P.; WILKINSON, H.; WAGNER, R. 2015. Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms. Bioresource technology 189:62-70.
MOHAN, S.V.; RAO, N.C.; PRASAD, K.K.; SARMA, P.N. 2005. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater. Process Biochemistry 40 (8):2849-2857.
MUÑOZ, D.M. 2005. Sistema de tratamiento de aguas residuales de matadero: Para una población menor 2000 habitantes [System of residual water treatment of slaughter house: For a smaller population 2000 inhabitants. Facultad de Ciencias Agropecuarias 3 (1):87-98.
PABÓN, S. L.; GÉLVEZ, J.H.S. 2009. Arranque y operación a escala real de un sistema de tratamiento de lodos activos para aguas residuales de matadero. Ingeniería e Investigación 29 (2):53-58.
PALATSI, J.; VIÑAS, M.; GUIVERNAU, M.; FERNANDEZ, B.; FLOTATS, X . 2011. Anaerobic digestion of slaughterhouse waste: Main process limitations and microbial community interactions. Bioresource Technology 102:2219–2227.
PARK, D.; LEE, D.S.; KIM, Y.M.; PARK, J.M. 2008. Bioaugmentation of cyanide-degrading microorganisms in a fullscale cokes wastewater treatment facility. Bioresour. Technol. 99:2092–2096.
TEATHER, R. M.; WOOD, P. J. 1982. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43 (4):777-780.
VAN DER GAST, C.J.; WHITELEY, A.S.; THOMPSON, I.P. 2004. Temporal dynamics and degradation activity of a bacterial inoculum for treating waste metal-working fluid. Environmental Microbiology 6:254–263.
VAVILIN, A. .; FERNANDEZ, B.; PALATSI, J.; FLOTATS, X.. 2008. Hydrolysis kinetics in anaerobic degradation of particulate organic material Waste Manag. 28 (6):939–951
VIDAL, G.; CARVALHO, A.; MÉNDEZ, R.; LEMA, J.M. 2000. Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresource Technology 74:231-239.
YU, Z.T.; MOHN, W.W. 2002. Bioaugmentation with the resin-acid degrading bacteria Zoogloea resiniphila DhA-35 to counteract pH stress in an aerated lagoon treating pulp and paper mill effluent. Water Res. 36:2793–2801.
dc.relation.bitstream.none.fl_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/download/202/243
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2016 : RECIA 8(1):Enero-Junio
dc.relation.citationendpage.none.fl_str_mv 43
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 37
dc.relation.citationvolume.spa.fl_str_mv 8
dc.relation.ispartofjournal.spa.fl_str_mv Revista Colombiana de Ciencia Animal - RECIA
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Sucre
dc.source.spa.fl_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/view/202
institution Universidad de Sucre
bitstream.url.fl_str_mv https://repositorio.unisucre.edu.co/bitstreams/4baa5bba-41d7-4caa-9276-1156316476e7/download
bitstream.checksum.fl_str_mv 48e7c278b9de8ffa745bd13f2a8fb005
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Sucre
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814111882939727872
spelling RODAS M., ELKIN2383aa449c234e56ac114ac7b0fd5aec3002016-01-04 00:00:002022-06-30T15:04:00Z2016-01-04 00:00:002022-06-30T15:04:00Z2016-01-04https://repositorio.unisucre.edu.co/handle/001/119510.24188/recia.v8.n1.2016.2022027-4297https://doi.org/10.24188/recia.v8.n1.2016.202application/pdfspaUniversidad de Sucrehttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.unisucre.edu.co/index.php/recia/article/view/202Bacterias hidrolíticasenzimas extracelularestratamiento de aguas residuales de frigorífico.Actividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigoríficoActividad hidrolítica de aislados bacterianos con potencial aplicación en el tratamiento de efluentes de frigoríficoArtículo de revistaJournal articleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Texthttp://purl.org/redcol/resource_type/ARTREFhttp://purl.org/coar/version/c_970fb48d4fbd8a85ARNOSTI, C. 2011. Microbial Extracellular Enzymes and the Marine Carbon Cycle. Annual Reviews 3:401-425.BAZRAFSHAN, E.; MOSTAFAPOUR, F.K.; FARZADKIA, M.; OWNAGH, K.A.; MAHVI; A.H. 2012. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process. Plos One 7 (8):1-8.BEN-GIGIREY B, DE SOUSA J.M.V.B, VILLA T.G. (2000). Characterization of biogenic amine-producing Stenotrophomonas maltophilia strains isolated from white muscle of fresh and frozen albacore tuna. Int J Food Microbiol 57:19-31.CAVALEIRO, A.J.; SOUSA, D.Z.; ALVES, M.M. 2010. Methane production from oleate: assessing the bioaugmentation potential of Syntrophomonas zehnderi.water research 44 (17):4940-4947.ÇADIRCI B.H.; ÇITAK S. 2005. A Comparison of Two Methods Used for Measuring Antagonistic Activity of Lactic Acid Bacteria. Pakistan Journal of Nutrition 4 (4): 237-241.?ATER, M.; FANEDL, L.; MALOVRH, S.; LOGAR, R.M. 2015. Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Bioresource technology 186: 261-269.CHAN, Y.J.; CHONG, M.F.; LAW, C.L.; HASSELL, D.G. 2009. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal 155:1-18.CHEN, Q.; NI, J.; MA, T.; LIU, T.; ZHENG, M. 2015. Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresource technology 183:25-32.CUNHA, A.; ALMEIDA, A.; COELHO, F.J.R.C.; GOMES, N.C.M.; OLIVEIRA, V.; SANTOS, A.L. 2010. Bacterial extracellular enzymatic activity in globally changing aquatic ecosystems. Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz, Spain: Formatex Research Center: 124-135.FACCHIN, S.; ALVES, P. D.; DE FARIA SIQUEIRA, F.; BARROCA, T. M.; NETTO, J.M.; KALAPOTHAKIS, E. 2013. Biodiversity and secretion of enzymes with potential utility in wastewater treatment. Open Journal of Ecology 3 (1):34-47.GERARDI, M.H. 2003. The microbiology of anaerobic digesters. John Wiley & Sons. USA.HANKIN, L.; ANAGNOSTAKIS, S. L. 1975. The use of solid media for detection of enzymes production by fungi. Mycologia 67 (3): 597-607.HERRERO, M.; STUCKEY, D.C. 2014. Bioaugmentation and its application in wastewater treatment: A review. Chemosphere 1:10.HU, X.; LI, A.; FAN, J.; DENG, C.; ZHANG, Q. 2008. Biotreatment of q-nitrophenol and nitrobenzene in mixed wastewater through selective bioaugmentation. Bioresour. Technol. 99: 4529-4533.ICHIDA, J.M.; KRIZOVA, L.; LEFEVRE, C.A.; KEENER, H.M.; ELWELL, D.L.; BURTT JR., E.H. 2001. Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. Journal of Microbiological Methods 47:199-208.LEALEM, F.; GASHE, B. A. 1994. Amylase production by a gram-positive bacterium isolated from fermenting tef (Eraglostis tef). J. Appl. Bacteriol. 77 (3): 348 352.LEFEBVRE, X.; PAUL, E.; MAURET, M. 1998. Kinetic characterization of saponified domestic lipid residues aerobic biodegradation. Water Research 32: 3031-3038.LIU, Y.; KANG, X., LI, X.L.; YUAN, Y. 2015. Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment. Bioresource technology 190:487-91MARONE, A.,;MASSINI, G.; PATRIARCA, C.; SIGNORINI, A.; VARRONE, C.; IZZO, G. 2012. Hydrogen production from vegetable waste by bioaugmentation of indigenous fermentative communities. international journal of hydrogen energy 37 (7):5612-5622.MARTIN-RYALS, A.; SCHIDEMAN, L.; LI, P.; WILKINSON, H.; WAGNER, R. 2015. Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms. Bioresource technology 189:62-70.MOHAN, S.V.; RAO, N.C.; PRASAD, K.K.; SARMA, P.N. 2005. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater. Process Biochemistry 40 (8):2849-2857.MUÑOZ, D.M. 2005. Sistema de tratamiento de aguas residuales de matadero: Para una población menor 2000 habitantes [System of residual water treatment of slaughter house: For a smaller population 2000 inhabitants. Facultad de Ciencias Agropecuarias 3 (1):87-98.PABÓN, S. L.; GÉLVEZ, J.H.S. 2009. Arranque y operación a escala real de un sistema de tratamiento de lodos activos para aguas residuales de matadero. Ingeniería e Investigación 29 (2):53-58.PALATSI, J.; VIÑAS, M.; GUIVERNAU, M.; FERNANDEZ, B.; FLOTATS, X . 2011. Anaerobic digestion of slaughterhouse waste: Main process limitations and microbial community interactions. Bioresource Technology 102:2219–2227.PARK, D.; LEE, D.S.; KIM, Y.M.; PARK, J.M. 2008. Bioaugmentation of cyanide-degrading microorganisms in a fullscale cokes wastewater treatment facility. Bioresour. Technol. 99:2092–2096.TEATHER, R. M.; WOOD, P. J. 1982. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43 (4):777-780.VAN DER GAST, C.J.; WHITELEY, A.S.; THOMPSON, I.P. 2004. Temporal dynamics and degradation activity of a bacterial inoculum for treating waste metal-working fluid. Environmental Microbiology 6:254–263.VAVILIN, A. .; FERNANDEZ, B.; PALATSI, J.; FLOTATS, X.. 2008. Hydrolysis kinetics in anaerobic degradation of particulate organic material Waste Manag. 28 (6):939–951VIDAL, G.; CARVALHO, A.; MÉNDEZ, R.; LEMA, J.M. 2000. Influence of the content in fats and proteins on the anaerobic biodegradability of dairy wastewaters. Bioresource Technology 74:231-239.YU, Z.T.; MOHN, W.W. 2002. Bioaugmentation with the resin-acid degrading bacteria Zoogloea resiniphila DhA-35 to counteract pH stress in an aerated lagoon treating pulp and paper mill effluent. Water Res. 36:2793–2801.https://revistas.unisucre.edu.co/index.php/recia/article/download/202/243Núm. 1 , Año 2016 : RECIA 8(1):Enero-Junio431378Revista Colombiana de Ciencia Animal - RECIAPublicationOREORE.xmltext/xml2608https://repositorio.unisucre.edu.co/bitstreams/4baa5bba-41d7-4caa-9276-1156316476e7/download48e7c278b9de8ffa745bd13f2a8fb005MD51001/1195oai:repositorio.unisucre.edu.co:001/11952024-04-17 16:30:24.202https://creativecommons.org/licenses/by-nc-sa/4.0/metadata.onlyhttps://repositorio.unisucre.edu.coRepositorio Institucional Universidad de Sucrebdigital@metabiblioteca.com