Vacunas anticonceptivas y para inmunocastración. Su aplicación en la Medicina Veterinaria.

Autores:
Campal-Espinosa, Ana Cristina
Junco-Barranco, Jesús Arturo
Fuentes-Aguilar, Franklin
Calzada-Aguilera, Lesvia
Bover Campal, Ana Claudia
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Sucre
Repositorio:
Repositorio Unisucre
Idioma:
eng
OAI Identifier:
oai:repositorio.unisucre.edu.co:001/1615
Acceso en línea:
https://repositorio.unisucre.edu.co/handle/001/1615
https://doi.org/10.24188/recia.v12.n2.2020.760
Palabra clave:
Contraception
GnRH
immunocastration
spermatozoa
vaccines
zona pellucida
Anticoncepción
GnRH
inmunocastración
espermatozoides
vacunas
zona pelúcida
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-sa/4.0/
id RUNISUCRE2_13acae623cb8d27ff69aed87227ebb78
oai_identifier_str oai:repositorio.unisucre.edu.co:001/1615
network_acronym_str RUNISUCRE2
network_name_str Repositorio Unisucre
repository_id_str
dc.title.spa.fl_str_mv Vacunas anticonceptivas y para inmunocastración. Su aplicación en la Medicina Veterinaria.
dc.title.translated.eng.fl_str_mv Contraception and immunocastration vaccines. Use in veterinary medicine
title Vacunas anticonceptivas y para inmunocastración. Su aplicación en la Medicina Veterinaria.
spellingShingle Vacunas anticonceptivas y para inmunocastración. Su aplicación en la Medicina Veterinaria.
Contraception
GnRH
immunocastration
spermatozoa
vaccines
zona pellucida
Anticoncepción
GnRH
inmunocastración
espermatozoides
vacunas
zona pelúcida
title_short Vacunas anticonceptivas y para inmunocastración. Su aplicación en la Medicina Veterinaria.
title_full Vacunas anticonceptivas y para inmunocastración. Su aplicación en la Medicina Veterinaria.
title_fullStr Vacunas anticonceptivas y para inmunocastración. Su aplicación en la Medicina Veterinaria.
title_full_unstemmed Vacunas anticonceptivas y para inmunocastración. Su aplicación en la Medicina Veterinaria.
title_sort Vacunas anticonceptivas y para inmunocastración. Su aplicación en la Medicina Veterinaria.
dc.creator.fl_str_mv Campal-Espinosa, Ana Cristina
Junco-Barranco, Jesús Arturo
Fuentes-Aguilar, Franklin
Calzada-Aguilera, Lesvia
Bover Campal, Ana Claudia
dc.contributor.author.spa.fl_str_mv Campal-Espinosa, Ana Cristina
Junco-Barranco, Jesús Arturo
Fuentes-Aguilar, Franklin
Calzada-Aguilera, Lesvia
Bover Campal, Ana Claudia
dc.subject.eng.fl_str_mv Contraception
GnRH
immunocastration
spermatozoa
vaccines
zona pellucida
topic Contraception
GnRH
immunocastration
spermatozoa
vaccines
zona pellucida
Anticoncepción
GnRH
inmunocastración
espermatozoides
vacunas
zona pelúcida
dc.subject.spa.fl_str_mv Anticoncepción
GnRH
inmunocastración
espermatozoides
vacunas
zona pelúcida
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-01 00:00:00
2022-07-01T17:16:14Z
dc.date.available.none.fl_str_mv 2020-07-01 00:00:00
2022-07-01T17:16:14Z
dc.date.issued.none.fl_str_mv 2020-07-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.eng.fl_str_mv Journal article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_dcae04bc
dc.type.content.eng.fl_str_mv Text
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREV
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unisucre.edu.co/handle/001/1615
dc.identifier.doi.none.fl_str_mv 10.24188/recia.v12.n2.2020.760
dc.identifier.eissn.none.fl_str_mv 2027-4297
dc.identifier.url.none.fl_str_mv https://doi.org/10.24188/recia.v12.n2.2020.760
url https://repositorio.unisucre.edu.co/handle/001/1615
https://doi.org/10.24188/recia.v12.n2.2020.760
identifier_str_mv 10.24188/recia.v12.n2.2020.760
2027-4297
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.references.eng.fl_str_mv Needham T, Lambrechts H, Hoffman LC. Castration of male livestock and the potential of immunocastration to improve animal welfare and production traits: Invited Review. S Afr J Anim Sci. 2017; 47(6):731-742. https://dx.doi.org/10.4314/sajas.v47i6.1
Rault JL, Lay DC Jr., Marchant-Forde JN. Castration induced pain in pigs and other livestock. Appl Anim Behav Sci. 2011; 135:214-225. https://dx.doi.org/10.1016/j.applanim.2011.10.017
Mallory DA, Nash JM, Ellersieck MR, Smith MF, Patterson DJ. Comparison of long-term progestin-based protocols to synchronize estrus before fixed-time artificial insemination in beef heifers. Anim. Sci. 2011; 89:1358–1365. https://dx.doi.org/10.2527/jas.2010-3694
Báez G, Grajales H. Anestro post parto en ganado bovino en el trópico. Rev MVZ Cordoba. 2009; 14(3):1867-1875 https://doi.org/10.21897/rmvz.347
ACC&D. Contraception and fertility control in dogs and cats: A report of the alliance for contraception in dogs and cats. 5. Marketing overview and issues. Alliance for Contraception in Cats & Dogs - ACC&D. 2013. https://www.acc-d.org/docs/default-source/Resource-Library-Docs/accd-e-book.pdf?sfvrsn=0
Candek–Potokar M, Skrlep M, Batorek Lukac N. Raising entire males or immunocastrates – outlook on meat quality. Procedia Food Sci. 2015; 5:30–33. https://doi.org/10.1016/j.profoo.2015.09.008
European Commission. European declaration on alternatives to surgical castration of pigs. [Internet]. 2018. [access January 2019]. URL available at: https://ec.europa.eu/food/sites/food/files/animals/docs/aw_prac_farm_pigs_cast-alt_declaration_en.pdf
PIGCAS. Report on recommendations for research and policy support. Deliverable D4.1 of the EU project PIGCAS: attitude, practices and state of the art regarding piglet castration in Europe. [Internet]. Institut National De La Recherche Agronomique: Francia; 2009. URL available at: https://cordis.europa.eu/project/id/43969/de
Han X, Zhou Y, Zeng Y, Sui F, Liu Y, Tan Y, Cao X, Du X, Meng F, Zeng X. Effects of active immunization against GnRH versus surgical castration on hypothalamic-pituitary function in boars. Theriogenology. 2017; 97:89–97. https://doi.org/10.1016/j.theriogenology.2017.04.038
Aluwé M, Vanhonacker F, Millet S, Tuyttens AM. Influence of hands-on experience on pig farmers’ attitude towards alternatives for surgical castration of male piglets. Res Vet Sci. 2015; 103:80-86. https://doi.org/10.1016/j.rvsc.2015.09.019
De Roest K, Montanari C, Fowler T, Baltussen, W. Resource efficiency and economic implications of alternatives to surgical castration without anaesthesia. Animal. 2009; 3(11):1522-1531. https://doi.org/10.1017/S1751731109990516
Meeusen ENT, Walker J, Peters A, Pastoret PP, Jungersen G. Current status of veterinary vaccines. Clin Microbiol Rev. 2007; 20(3):489–510. https://doi.org/10.1128/CMR.00005-07
Gupta SK, Shrestha A, Minhas V. Milestones in contraceptive vaccines development and hurdles in their application. Hum Vaccin Immunother. 2014; 10(4):911-925. https://doi.org/10.4161/hv.27202
Gupta SK, Bhandari B, Shrestha A, Biswal BK, Palaniappan C, Malhotra SS, Gupta N. Mammalian zona pellucida glycoproteins: structure and function during fertilization. Cell Tissue Res. 2012; 349:665-678. https://doi.org/10.1007/s00441-011-1319-y
Bechert US, Fraker MA. Twenty Years of SpayVac® Research: Potential Implications for Regulating Feral Horse and Burro Populations in the United States. HUM-WILDL INTERACT. 2018; 12(1):Article13. https://doi.org/10.26077/q4yh-6m43
Roelle JE, Germanie SS, Kene AJ, Cade BS. Efficacy of SpayVac as a Contraceptive in Feral Horses. Wildl Soc Bull. 2017; 41(1):107–115. https://doi.org/10.1002/wsb.729
Rutberg AT, Naugle RE, Turner JW, Fraker MA, Flanagan DR. Field testing of single-administration porcine zona pellucida contraceptive vaccines in white-tailed deer (Odocoileus virginianus). Wildl Res. 2013; 40(4):281-288. https://doi.org/10.1071/WR12117
Rutberg AK, Grams JW, Turner Jr, Hopkins H. Contraceptive efficacy of priming and boosting doses of controlled-release PZP in wild horses. Wildl Res. 2017; 44(2):174–181. https://doi.org/10.1071/WR16123
Joonè CJ, Schulman ML and Bertschinger HJ. Ovarian dysfunction associated with zona pellucida-based immunocontraceptive vaccines. Theriogenology. 2017; 89:329-337. https://doi.org/10.1016/j.theriogenology.2016.09.018
Mohammad I, Khilwani B, Ansari AS, Lohiya NK. Contraceptive vaccines: Implications in male and female fertility regulation. In: SK Gupta, NK Lohiya (ed). Molecular Medicine: Bench to bedside and beyond. First Edition. Indian Society for Study of Reproduction and Fertility; 2018.
Hampton JO, Hyndman TH, Barnes A, Collins T. Is Wildlife Fertility Control Always Humane? Animals. 2015; 5:1047-1071. https://doi.org/10.3390/ani5040398
Goldberg E, Shelton JA. Immunologic properties of LDH-C4 for contraceptive vaccine development. In: Zatuchni GI, Goldsmith A, Sciarra JJ, Spieler J (eds). Male Contraception Advances and Future Prospects. Harper and Row: Philadelphia; 1986.
Primakoff P, Lathrop W, Woolman L, Cowan A, Myles D. Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20. Nature. 1988; 335:543-546. https://doi.org/10.1038/335543a0
Naz RK, Alexander NJ, Isahakia M, Hamilton MD. Monoclonal antibody to a human sperm membrane glycoprotein that inhibits fertilization. Science. 1984; 225:342-344. https://doi.org/10.1126/science.6539947
Cheema R, Vashishat N, Bansal A, Bakhri G, Gandotra V. Immuno-contraceptive potential of sperm specific LDHC4 and SPAM-1 (PH-20) sub units in dog. Open J Anim Sci. 2012; 2:265-280. https://doi.org/10.4236/ojas.2012.24037
Cheema RS, Vashishat N, Bansal AK, Gandotra VK. Mutual interaction of dog sperm LDHC4, PH-20, actin and tubulin proteins and their immunocontraceptive potential in bitches. Indian J Anim Res. 2015; 49(4):461-469. https://doi.org/10.5958/0976-0555.2015.00040.0
Tollner T, Overstreet J, Branciforte D, Primakoff P. Immunization of female cynomolgus macaques with a synthetic epitope of sperm‐specific lactate dehydrogenase results in high antibody titers but does not reduce fertility. Mol Reprod Dev. 2002; 62:257-264. https://doi.org/10.1002/mrd.10063
Moudgal NR, Jeyakumar M, Krishnamurthy HN, Sridhar S, Krishnamurthy H, Martín F. Development of male contraceptive vaccine— a perspective. Hum Reprod Update. 1997; 3(4):335–346. https://doi.org/10.1093/humupd/3.4.335
Cohoreau C, Klett D, Combarnous Y. Structure – function relationships of glycoproteins hormones and their subunits´ ancestors. Front Endocrinol (Lausanne). 2015; 6:26. https://doi.org/10.3389/fendo.2015.00026
Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet. 1997; 15:201–204. https://doi.org/10.1038/ng0297-201
Yang L-H, Li J-T, Yan P, Liu H-L, Zeng S-Y, Wu Y-Z, et al. Follicle-stimulating hormone receptor (FSHR)-derived peptide vaccine induced infertility in mice without pathological effect on reproductive organs. Reprod Fertil Dev. 2011; 23:544-550. https://doi.org/10.1071/RD10142
Maggi R. Physiology of gonadotropin-releasing hormone (GNRH): beyond the control of reproductive functions. MOJ Anat Physiol. 2016; 2(5):150‒154. https://doi.org/10.15406/mojap.2016.02.00063
Talwar P. Immunobiology of gonadotropin-releasing hormone. J Steroid Biochem Mol Biol. 1985; 23(5):795-800. https://doi.org/10.1016/s0022-4731(85)80016-9
Ferro VA, Stimson WH. Effects of adjuvant, dose and carrier pre-sensitization on the immunization efficacy of a GnRH analogue. Drug Des Discov. 1996; 14(3):179-195. https://www.ncbi.nlm.nih.gov/pubmed/9017362
Giri DK, Jayaraman S, Neelaram GS, Jayashankar R, Talwar GP. Prostatic hypoplasia in bonnet monkeys following immunization with semi synthetic anti-LHRH vaccine. Exp Mol Pathol. 1991; 54(3):255–264. https://doi.org/10.1016/0014-4800(91)90035-v
Hoskinson RM, Rigby RDG, Mattner PE, Huynh VL, D’Occhio M, Neish A, et al. Vaxstrate; An anti-reproductive vaccine for cattle. Aust J Biotechnol. 1990; 4(3):166-170. http://hdl.handle.net/102.100.100/255038?index=1
Zamaratskaia G, Krøyer Rasmussen M. Immunocastration of male pigs – situation today. International 58th Meat Industry Conference “Meat Safety and Quality: Where it goes?” Procedia Food Sci. 2015; 5:324–327. https://doi.org/10.1016/j.profoo.2015.09.064
Hernández-García FI, Duarte JL, Pérez MA, Raboso C, del Rosario AI, Izquierdo M. Successful long-term pre-pubertal immunocastration of pure bred Iberian gilts reared in extensive systems. Acta Agric. Slov. 2013; (Suppl 4):123–126. http://aas.bf.uni-lj.si/zootehnika/supl/4-2013/PDF/4-2013-123-126.pdf
Dalmau A, Velarde A, Rodríguez P, Pedernera C, Lionch P, Fäbrega E, et al. Use of anti-GnRF vaccine to suppress estrus in cross - bred Iberian female pigs. Theriogenology. 2015; 84:342-347. https://doi.org/10.1016/j.theriogenology.2015.03.025
Amatayakul - Chantler S, Hoe F, Jackson JA, Roca RO, Stegner JE, King V,et al. Effects on performance and carcass and meat quality attributes following immunocastration with the gonadotropin releasing factor vaccine Bopriva or surgical castration of Bos indicus bulls raised on pasture in Brazil. Meat Sci. 2013; 95(1):78–94. https://doi.org/10.1016/j.meatsci.2013.04.008
Amatayakul - Chantler S, Jackson JA, Stegner JE, King V, Rubio LMS, Howard R, et al. Immunocastration of Bos indicus × Brown Swiss bulls in feedlot with gonadotropin-releasing hormone vaccine Bopriva provides improved performance and meat quality. J Anim Sci. 2012; 90:3718–3728. https://doi.org/10.2527/jas.2011-4826
Miller, Lowell A.; Rhyan, Jack; and Killian, Gary, GonaCon TM, a Versatile GnRH Contraceptive for a Large Variety of Pest Animal Problems. USDA National Wildlife Research Center - Staff Publications. 2004. https://digitalcommons.unl.edu/icwdm_usdanwrc/371
Ülker H, Yilmaz A, Karakuş F, Yörük, M, Budağ C, De Avila D, et al. LHRH Fusion Protein Immunization Alters Testicular Development, Ultrasonographic and Histological Appearance of Ram Testis. Reprod Domest Anim. 2009; 44:593-599. https://doi.org/10.1111/j.1439-0531.2007.01024.x
Kiyma Z, Adams TE, Hess BW, Riley ML, Murdoch WJ, Moss GE. Gonadal function, sexual behaviour, feedlot performance, and carcass traits of ram lambs actively immunized against GnRH. J Anim Sci. 2000; 78(9):2237-2243. https://doi.org/10.2527/2000.7892237x
Junco BJA, Reyes AO, Bover FEE, Fuentes AF, Pimentel VE, Basulto BR, et al. Pharmaceutical Composition Using Gonadotropin-Releasing Hormone (GNRH) Combined Variants as Immunogen. [Patent No. 9364524] International application published under the patent cooperation treaty (PCT). 2008. URL Available in: http://www.freepatentsonline.com/8999931.html
Fuentes F, Junco J, Calzada L, López Y, Pimentel E, Basulto Baker R, et al. Effect of a GnRH vaccine formulation on testosterone concentrations and reproduction in adult male rats. Biotecnol Apl. 2014; 31(3):222-227. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1027-28522014000300005&lng=es
Fuentes F, Junco JA, Bover E, Calzada L, López Y, Castro MD, Pimentel E, Basulto R, et al. Very Small Size Proteoliposomes (VSSP) and Montanide combination enhance the humoral immuno response in a GnRH based vaccine directed to prostate cancer. Vaccine. 2012; 30: 6595– 6599. https://doi.org/10.1016/j.vaccine.2012.08.020
Aguilar FF, Barranco JJ, Aguilera LC, Fuentes EB, Serradelo Leal JA, López EH, et al. The influence of different peptide combinations to increase the immunogenicity of the Gonadotrophin Releasing Hormone Vaccine for prostate cancer treatment. J Exp Ther Oncol. 2017; 12(2):87-94. https://europepmc.org/article/med/29161775
Rosenfield DA, Schilbach Pizzuto C. Wildlife population control – reproductive physiology under the influence of contraceptive methods in mammalian wildlife, with emphasis on immunocontraception: the best choice? A literature review. Braz J Vet Res Anim Sci. 2018; 55(1):1-16. https://doi.org/10.11606/issn.16784456.bjvras.2018.129431
Ransom JI, Powers JG, Garbe HM, Oehler MW, Nett TM, Baker DL. Behavior of feral horses in response to culling and GnRH immunocontraception. Appl Anim Behav Sci. 2014; 157:81–92. https://doi.org/10.1016/j.applanim.2014.05.002
Gupta S, Jain A, Chakraborty M, Sahni JK, Ali J, Dang S. Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv. 2013; 20(6):237-246. https://doi.org/10.3109/10717544.2013.819611
Hajam IA, Dar PA, Won G, Lee JH. Bacterial ghosts as adjuvants: mechanisms and potential. Vet Res. 2017; 48(1):37. https://doi.org/10.1186/s13567-017-0442-5
Varamini P, Rafiee A, Giddam AK, Mansfeld FM, Steyn F, Toth I. Development of New Gonadotropin-Releasing Hormone-Modified Dendrimer Platforms with Direct Antiproliferative and Gonadotropin Releasing Activity. J Med Chem. 2017. 60(20):8309-8320. https://doi.org/10.1021/acs.jmedchem.6b01771
Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem Sci. 2016; 7:2492–2500. https://doi.org/10.1039/C5SC04392A
Siel D, Vidal S, Carvallo F, Sevilla R, Lapierre L, Paredes R, et al. Effectiveness of an immunocastration vaccine formulation to reduce the gonadal function in female and male mice bTh1/Th2 immune response. Theriogenology. 2016; 86:1589-1598. http://dx.doi.org/10.1016/j.theriogenology.2016.05.019
Sharma S, McDonald I, Miller L, Hinds LA. Parenteral administration of GnRH constructs and adjuvants: Immune responses and effects on reproductive tissues of male mice. Vaccine. 2014; 32:5555–5563. http://dx.doi.org/10.1016/j.vaccine.2014.07.075
Schaut RG, Brewer MT, Hostetter JM, Mendoza K, Vela - Ramírez JE, Kelly SM et al. A single dose polyanhydride-based vaccine platform promotes and maintains anti-GnRH antibody titers. Vaccine. 2018; 36:1016–1023. https://doi.org/10.1016/j.vaccine.2017.12.050
Cross ML, Zheng T, Duckworth JA, Cowan PE. Could recombinant technology facilitate the realization of a fertility-control vaccine for possums?. New Zeal J Zool. 2011; 38(1):91-111, https://doi.org/10.1080/03014223.2010.541468
Hay BA, Li J, Guo M. Vectored gene delivery for lifetime animal contraception: Overview and hurdles to implementation. Theriogenology. 2018; 112:63-74. https://doi.org/10.1016/j.theriogenology.2017.11.003
dc.relation.bitstream.none.fl_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/download/e760/895
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2020 : RECIA 12(2):JULIO-DICIEMBRE 2020
dc.relation.citationendpage.none.fl_str_mv e760
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.none.fl_str_mv e760
dc.relation.citationvolume.spa.fl_str_mv 12
dc.relation.ispartofjournal.spa.fl_str_mv Revista Colombiana de Ciencia Animal - RECIA
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad de Sucre
dc.source.eng.fl_str_mv https://revistas.unisucre.edu.co/index.php/recia/article/view/e760
institution Universidad de Sucre
bitstream.url.fl_str_mv https://repositorio.unisucre.edu.co/bitstreams/e53fb784-eeaf-4c79-a58d-50b75be18a08/download
bitstream.checksum.fl_str_mv f65f2a855cd59cf26ae6908114ca675f
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional Universidad de Sucre
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808401154982281216
spelling Campal-Espinosa, Ana Cristinadc1b6e6a2b3ebe2140dfbe46d8e48a34300Junco-Barranco, Jesús Arturo870caf2c6e336b1775039c6c50816003300Fuentes-Aguilar, Franklin93d5912cc2dc03ad915602e1f78f495b300Calzada-Aguilera, Lesvia019c153996dffe29de1d8dc749e45623300Bover Campal, Ana Claudiadbc97ab8083dd390fd1ed221af86dfc33002020-07-01 00:00:002022-07-01T17:16:14Z2020-07-01 00:00:002022-07-01T17:16:14Z2020-07-01https://repositorio.unisucre.edu.co/handle/001/161510.24188/recia.v12.n2.2020.7602027-4297https://doi.org/10.24188/recia.v12.n2.2020.760application/pdfengUniversidad de Sucrehttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://revistas.unisucre.edu.co/index.php/recia/article/view/e760ContraceptionGnRHimmunocastrationspermatozoavaccineszona pellucidaAnticoncepciónGnRHinmunocastraciónespermatozoidesvacunaszona pelúcidaVacunas anticonceptivas y para inmunocastración. Su aplicación en la Medicina Veterinaria.Contraception and immunocastration vaccines. Use in veterinary medicineArtículo de revistaJournal articleinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_dcae04bchttp://purl.org/coar/resource_type/c_2df8fbb1Texthttp://purl.org/redcol/resource_type/ARTREVhttp://purl.org/coar/version/c_970fb48d4fbd8a85Needham T, Lambrechts H, Hoffman LC. Castration of male livestock and the potential of immunocastration to improve animal welfare and production traits: Invited Review. S Afr J Anim Sci. 2017; 47(6):731-742. https://dx.doi.org/10.4314/sajas.v47i6.1Rault JL, Lay DC Jr., Marchant-Forde JN. Castration induced pain in pigs and other livestock. Appl Anim Behav Sci. 2011; 135:214-225. https://dx.doi.org/10.1016/j.applanim.2011.10.017Mallory DA, Nash JM, Ellersieck MR, Smith MF, Patterson DJ. Comparison of long-term progestin-based protocols to synchronize estrus before fixed-time artificial insemination in beef heifers. Anim. Sci. 2011; 89:1358–1365. https://dx.doi.org/10.2527/jas.2010-3694Báez G, Grajales H. Anestro post parto en ganado bovino en el trópico. Rev MVZ Cordoba. 2009; 14(3):1867-1875 https://doi.org/10.21897/rmvz.347ACC&D. Contraception and fertility control in dogs and cats: A report of the alliance for contraception in dogs and cats. 5. Marketing overview and issues. Alliance for Contraception in Cats & Dogs - ACC&D. 2013. https://www.acc-d.org/docs/default-source/Resource-Library-Docs/accd-e-book.pdf?sfvrsn=0Candek–Potokar M, Skrlep M, Batorek Lukac N. Raising entire males or immunocastrates – outlook on meat quality. Procedia Food Sci. 2015; 5:30–33. https://doi.org/10.1016/j.profoo.2015.09.008European Commission. European declaration on alternatives to surgical castration of pigs. [Internet]. 2018. [access January 2019]. URL available at: https://ec.europa.eu/food/sites/food/files/animals/docs/aw_prac_farm_pigs_cast-alt_declaration_en.pdfPIGCAS. Report on recommendations for research and policy support. Deliverable D4.1 of the EU project PIGCAS: attitude, practices and state of the art regarding piglet castration in Europe. [Internet]. Institut National De La Recherche Agronomique: Francia; 2009. URL available at: https://cordis.europa.eu/project/id/43969/deHan X, Zhou Y, Zeng Y, Sui F, Liu Y, Tan Y, Cao X, Du X, Meng F, Zeng X. Effects of active immunization against GnRH versus surgical castration on hypothalamic-pituitary function in boars. Theriogenology. 2017; 97:89–97. https://doi.org/10.1016/j.theriogenology.2017.04.038Aluwé M, Vanhonacker F, Millet S, Tuyttens AM. Influence of hands-on experience on pig farmers’ attitude towards alternatives for surgical castration of male piglets. Res Vet Sci. 2015; 103:80-86. https://doi.org/10.1016/j.rvsc.2015.09.019De Roest K, Montanari C, Fowler T, Baltussen, W. Resource efficiency and economic implications of alternatives to surgical castration without anaesthesia. Animal. 2009; 3(11):1522-1531. https://doi.org/10.1017/S1751731109990516Meeusen ENT, Walker J, Peters A, Pastoret PP, Jungersen G. Current status of veterinary vaccines. Clin Microbiol Rev. 2007; 20(3):489–510. https://doi.org/10.1128/CMR.00005-07Gupta SK, Shrestha A, Minhas V. Milestones in contraceptive vaccines development and hurdles in their application. Hum Vaccin Immunother. 2014; 10(4):911-925. https://doi.org/10.4161/hv.27202Gupta SK, Bhandari B, Shrestha A, Biswal BK, Palaniappan C, Malhotra SS, Gupta N. Mammalian zona pellucida glycoproteins: structure and function during fertilization. Cell Tissue Res. 2012; 349:665-678. https://doi.org/10.1007/s00441-011-1319-yBechert US, Fraker MA. Twenty Years of SpayVac® Research: Potential Implications for Regulating Feral Horse and Burro Populations in the United States. HUM-WILDL INTERACT. 2018; 12(1):Article13. https://doi.org/10.26077/q4yh-6m43Roelle JE, Germanie SS, Kene AJ, Cade BS. Efficacy of SpayVac as a Contraceptive in Feral Horses. Wildl Soc Bull. 2017; 41(1):107–115. https://doi.org/10.1002/wsb.729Rutberg AT, Naugle RE, Turner JW, Fraker MA, Flanagan DR. Field testing of single-administration porcine zona pellucida contraceptive vaccines in white-tailed deer (Odocoileus virginianus). Wildl Res. 2013; 40(4):281-288. https://doi.org/10.1071/WR12117Rutberg AK, Grams JW, Turner Jr, Hopkins H. Contraceptive efficacy of priming and boosting doses of controlled-release PZP in wild horses. Wildl Res. 2017; 44(2):174–181. https://doi.org/10.1071/WR16123Joonè CJ, Schulman ML and Bertschinger HJ. Ovarian dysfunction associated with zona pellucida-based immunocontraceptive vaccines. Theriogenology. 2017; 89:329-337. https://doi.org/10.1016/j.theriogenology.2016.09.018Mohammad I, Khilwani B, Ansari AS, Lohiya NK. Contraceptive vaccines: Implications in male and female fertility regulation. In: SK Gupta, NK Lohiya (ed). Molecular Medicine: Bench to bedside and beyond. First Edition. Indian Society for Study of Reproduction and Fertility; 2018.Hampton JO, Hyndman TH, Barnes A, Collins T. Is Wildlife Fertility Control Always Humane? Animals. 2015; 5:1047-1071. https://doi.org/10.3390/ani5040398Goldberg E, Shelton JA. Immunologic properties of LDH-C4 for contraceptive vaccine development. In: Zatuchni GI, Goldsmith A, Sciarra JJ, Spieler J (eds). Male Contraception Advances and Future Prospects. Harper and Row: Philadelphia; 1986.Primakoff P, Lathrop W, Woolman L, Cowan A, Myles D. Fully effective contraception in male and female guinea pigs immunized with the sperm protein PH-20. Nature. 1988; 335:543-546. https://doi.org/10.1038/335543a0Naz RK, Alexander NJ, Isahakia M, Hamilton MD. Monoclonal antibody to a human sperm membrane glycoprotein that inhibits fertilization. Science. 1984; 225:342-344. https://doi.org/10.1126/science.6539947Cheema R, Vashishat N, Bansal A, Bakhri G, Gandotra V. Immuno-contraceptive potential of sperm specific LDHC4 and SPAM-1 (PH-20) sub units in dog. Open J Anim Sci. 2012; 2:265-280. https://doi.org/10.4236/ojas.2012.24037Cheema RS, Vashishat N, Bansal AK, Gandotra VK. Mutual interaction of dog sperm LDHC4, PH-20, actin and tubulin proteins and their immunocontraceptive potential in bitches. Indian J Anim Res. 2015; 49(4):461-469. https://doi.org/10.5958/0976-0555.2015.00040.0Tollner T, Overstreet J, Branciforte D, Primakoff P. Immunization of female cynomolgus macaques with a synthetic epitope of sperm‐specific lactate dehydrogenase results in high antibody titers but does not reduce fertility. Mol Reprod Dev. 2002; 62:257-264. https://doi.org/10.1002/mrd.10063Moudgal NR, Jeyakumar M, Krishnamurthy HN, Sridhar S, Krishnamurthy H, Martín F. Development of male contraceptive vaccine— a perspective. Hum Reprod Update. 1997; 3(4):335–346. https://doi.org/10.1093/humupd/3.4.335Cohoreau C, Klett D, Combarnous Y. Structure – function relationships of glycoproteins hormones and their subunits´ ancestors. Front Endocrinol (Lausanne). 2015; 6:26. https://doi.org/10.3389/fendo.2015.00026Kumar TR, Wang Y, Lu N, Matzuk MM. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nat Genet. 1997; 15:201–204. https://doi.org/10.1038/ng0297-201Yang L-H, Li J-T, Yan P, Liu H-L, Zeng S-Y, Wu Y-Z, et al. Follicle-stimulating hormone receptor (FSHR)-derived peptide vaccine induced infertility in mice without pathological effect on reproductive organs. Reprod Fertil Dev. 2011; 23:544-550. https://doi.org/10.1071/RD10142Maggi R. Physiology of gonadotropin-releasing hormone (GNRH): beyond the control of reproductive functions. MOJ Anat Physiol. 2016; 2(5):150‒154. https://doi.org/10.15406/mojap.2016.02.00063Talwar P. Immunobiology of gonadotropin-releasing hormone. J Steroid Biochem Mol Biol. 1985; 23(5):795-800. https://doi.org/10.1016/s0022-4731(85)80016-9Ferro VA, Stimson WH. Effects of adjuvant, dose and carrier pre-sensitization on the immunization efficacy of a GnRH analogue. Drug Des Discov. 1996; 14(3):179-195. https://www.ncbi.nlm.nih.gov/pubmed/9017362Giri DK, Jayaraman S, Neelaram GS, Jayashankar R, Talwar GP. Prostatic hypoplasia in bonnet monkeys following immunization with semi synthetic anti-LHRH vaccine. Exp Mol Pathol. 1991; 54(3):255–264. https://doi.org/10.1016/0014-4800(91)90035-vHoskinson RM, Rigby RDG, Mattner PE, Huynh VL, D’Occhio M, Neish A, et al. Vaxstrate; An anti-reproductive vaccine for cattle. Aust J Biotechnol. 1990; 4(3):166-170. http://hdl.handle.net/102.100.100/255038?index=1Zamaratskaia G, Krøyer Rasmussen M. Immunocastration of male pigs – situation today. International 58th Meat Industry Conference “Meat Safety and Quality: Where it goes?” Procedia Food Sci. 2015; 5:324–327. https://doi.org/10.1016/j.profoo.2015.09.064Hernández-García FI, Duarte JL, Pérez MA, Raboso C, del Rosario AI, Izquierdo M. Successful long-term pre-pubertal immunocastration of pure bred Iberian gilts reared in extensive systems. Acta Agric. Slov. 2013; (Suppl 4):123–126. http://aas.bf.uni-lj.si/zootehnika/supl/4-2013/PDF/4-2013-123-126.pdfDalmau A, Velarde A, Rodríguez P, Pedernera C, Lionch P, Fäbrega E, et al. Use of anti-GnRF vaccine to suppress estrus in cross - bred Iberian female pigs. Theriogenology. 2015; 84:342-347. https://doi.org/10.1016/j.theriogenology.2015.03.025Amatayakul - Chantler S, Hoe F, Jackson JA, Roca RO, Stegner JE, King V,et al. Effects on performance and carcass and meat quality attributes following immunocastration with the gonadotropin releasing factor vaccine Bopriva or surgical castration of Bos indicus bulls raised on pasture in Brazil. Meat Sci. 2013; 95(1):78–94. https://doi.org/10.1016/j.meatsci.2013.04.008Amatayakul - Chantler S, Jackson JA, Stegner JE, King V, Rubio LMS, Howard R, et al. Immunocastration of Bos indicus × Brown Swiss bulls in feedlot with gonadotropin-releasing hormone vaccine Bopriva provides improved performance and meat quality. J Anim Sci. 2012; 90:3718–3728. https://doi.org/10.2527/jas.2011-4826Miller, Lowell A.; Rhyan, Jack; and Killian, Gary, GonaCon TM, a Versatile GnRH Contraceptive for a Large Variety of Pest Animal Problems. USDA National Wildlife Research Center - Staff Publications. 2004. https://digitalcommons.unl.edu/icwdm_usdanwrc/371Ülker H, Yilmaz A, Karakuş F, Yörük, M, Budağ C, De Avila D, et al. LHRH Fusion Protein Immunization Alters Testicular Development, Ultrasonographic and Histological Appearance of Ram Testis. Reprod Domest Anim. 2009; 44:593-599. https://doi.org/10.1111/j.1439-0531.2007.01024.xKiyma Z, Adams TE, Hess BW, Riley ML, Murdoch WJ, Moss GE. Gonadal function, sexual behaviour, feedlot performance, and carcass traits of ram lambs actively immunized against GnRH. J Anim Sci. 2000; 78(9):2237-2243. https://doi.org/10.2527/2000.7892237xJunco BJA, Reyes AO, Bover FEE, Fuentes AF, Pimentel VE, Basulto BR, et al. Pharmaceutical Composition Using Gonadotropin-Releasing Hormone (GNRH) Combined Variants as Immunogen. [Patent No. 9364524] International application published under the patent cooperation treaty (PCT). 2008. URL Available in: http://www.freepatentsonline.com/8999931.htmlFuentes F, Junco J, Calzada L, López Y, Pimentel E, Basulto Baker R, et al. Effect of a GnRH vaccine formulation on testosterone concentrations and reproduction in adult male rats. Biotecnol Apl. 2014; 31(3):222-227. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1027-28522014000300005&lng=esFuentes F, Junco JA, Bover E, Calzada L, López Y, Castro MD, Pimentel E, Basulto R, et al. Very Small Size Proteoliposomes (VSSP) and Montanide combination enhance the humoral immuno response in a GnRH based vaccine directed to prostate cancer. Vaccine. 2012; 30: 6595– 6599. https://doi.org/10.1016/j.vaccine.2012.08.020Aguilar FF, Barranco JJ, Aguilera LC, Fuentes EB, Serradelo Leal JA, López EH, et al. The influence of different peptide combinations to increase the immunogenicity of the Gonadotrophin Releasing Hormone Vaccine for prostate cancer treatment. J Exp Ther Oncol. 2017; 12(2):87-94. https://europepmc.org/article/med/29161775Rosenfield DA, Schilbach Pizzuto C. Wildlife population control – reproductive physiology under the influence of contraceptive methods in mammalian wildlife, with emphasis on immunocontraception: the best choice? A literature review. Braz J Vet Res Anim Sci. 2018; 55(1):1-16. https://doi.org/10.11606/issn.16784456.bjvras.2018.129431Ransom JI, Powers JG, Garbe HM, Oehler MW, Nett TM, Baker DL. Behavior of feral horses in response to culling and GnRH immunocontraception. Appl Anim Behav Sci. 2014; 157:81–92. https://doi.org/10.1016/j.applanim.2014.05.002Gupta S, Jain A, Chakraborty M, Sahni JK, Ali J, Dang S. Oral delivery of therapeutic proteins and peptides: a review on recent developments. Drug Deliv. 2013; 20(6):237-246. https://doi.org/10.3109/10717544.2013.819611Hajam IA, Dar PA, Won G, Lee JH. Bacterial ghosts as adjuvants: mechanisms and potential. Vet Res. 2017; 48(1):37. https://doi.org/10.1186/s13567-017-0442-5Varamini P, Rafiee A, Giddam AK, Mansfeld FM, Steyn F, Toth I. Development of New Gonadotropin-Releasing Hormone-Modified Dendrimer Platforms with Direct Antiproliferative and Gonadotropin Releasing Activity. J Med Chem. 2017. 60(20):8309-8320. https://doi.org/10.1021/acs.jmedchem.6b01771Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem Sci. 2016; 7:2492–2500. https://doi.org/10.1039/C5SC04392ASiel D, Vidal S, Carvallo F, Sevilla R, Lapierre L, Paredes R, et al. Effectiveness of an immunocastration vaccine formulation to reduce the gonadal function in female and male mice bTh1/Th2 immune response. Theriogenology. 2016; 86:1589-1598. http://dx.doi.org/10.1016/j.theriogenology.2016.05.019Sharma S, McDonald I, Miller L, Hinds LA. Parenteral administration of GnRH constructs and adjuvants: Immune responses and effects on reproductive tissues of male mice. Vaccine. 2014; 32:5555–5563. http://dx.doi.org/10.1016/j.vaccine.2014.07.075Schaut RG, Brewer MT, Hostetter JM, Mendoza K, Vela - Ramírez JE, Kelly SM et al. A single dose polyanhydride-based vaccine platform promotes and maintains anti-GnRH antibody titers. Vaccine. 2018; 36:1016–1023. https://doi.org/10.1016/j.vaccine.2017.12.050Cross ML, Zheng T, Duckworth JA, Cowan PE. Could recombinant technology facilitate the realization of a fertility-control vaccine for possums?. New Zeal J Zool. 2011; 38(1):91-111, https://doi.org/10.1080/03014223.2010.541468Hay BA, Li J, Guo M. Vectored gene delivery for lifetime animal contraception: Overview and hurdles to implementation. Theriogenology. 2018; 112:63-74. https://doi.org/10.1016/j.theriogenology.2017.11.003https://revistas.unisucre.edu.co/index.php/recia/article/download/e760/895Núm. 2 , Año 2020 : RECIA 12(2):JULIO-DICIEMBRE 2020e7602e76012Revista Colombiana de Ciencia Animal - RECIAPublicationOREORE.xmltext/xml2801https://repositorio.unisucre.edu.co/bitstreams/e53fb784-eeaf-4c79-a58d-50b75be18a08/downloadf65f2a855cd59cf26ae6908114ca675fMD51001/1615oai:repositorio.unisucre.edu.co:001/16152024-04-17 16:30:30.844https://creativecommons.org/licenses/by-nc-sa/4.0/metadata.onlyhttps://repositorio.unisucre.edu.coRepositorio Institucional Universidad de Sucrebdigital@metabiblioteca.com