Prevención y control de la contaminación ambiental. Luffa Cylindrica Como Bioadsorbente De Aluminio Presente En El Drenaje Producto De La Minería Carbonífera
Según el Análisis Estadístico de la Energía Mundial de la compañía BP Global, Colombia es el octavo país exportador de carbón del mundo [11], después de China, Estados Unidos, Australia, India, Indonesia, Rusia y Sudáfrica. Con una producción de 90.51 millones de toneladas de carbón en el año 2016 [...
- Autores:
-
Carranza Gutiérrez, Sebastián Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Universidad Libre
- Repositorio:
- RIU - Repositorio Institucional UniLibre
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unilibre.edu.co:10901/11916
- Acceso en línea:
- https://hdl.handle.net/10901/11916
- Palabra clave:
- Contaminación ambiental
Bioadsorventes
Ingeniería ambiental
Dynamic flow filter
Static flow filter
coal extraction
Bioadsorbent
Ingeniería Ambiental
Saneamiento ambiental -- Colombia
Contaminación -- Colombia
Medio ambiente -- Colombia
Control Ambiental
Protección Del Medio Ambiente
Industria Minera
Carbón
Filtro de flujo dinámico
Filtro de flujo estático
extracción de carbón
Bioadsorbente
Lenguazaque
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
RULIBRE2_fa905f19cd24dcd92111b04c12d2524f |
---|---|
oai_identifier_str |
oai:repository.unilibre.edu.co:10901/11916 |
network_acronym_str |
RULIBRE2 |
network_name_str |
RIU - Repositorio Institucional UniLibre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Prevención y control de la contaminación ambiental. Luffa Cylindrica Como Bioadsorbente De Aluminio Presente En El Drenaje Producto De La Minería Carbonífera |
title |
Prevención y control de la contaminación ambiental. Luffa Cylindrica Como Bioadsorbente De Aluminio Presente En El Drenaje Producto De La Minería Carbonífera |
spellingShingle |
Prevención y control de la contaminación ambiental. Luffa Cylindrica Como Bioadsorbente De Aluminio Presente En El Drenaje Producto De La Minería Carbonífera Contaminación ambiental Bioadsorventes Ingeniería ambiental Dynamic flow filter Static flow filter coal extraction Bioadsorbent Ingeniería Ambiental Saneamiento ambiental -- Colombia Contaminación -- Colombia Medio ambiente -- Colombia Control Ambiental Protección Del Medio Ambiente Industria Minera Carbón Filtro de flujo dinámico Filtro de flujo estático extracción de carbón Bioadsorbente Lenguazaque |
title_short |
Prevención y control de la contaminación ambiental. Luffa Cylindrica Como Bioadsorbente De Aluminio Presente En El Drenaje Producto De La Minería Carbonífera |
title_full |
Prevención y control de la contaminación ambiental. Luffa Cylindrica Como Bioadsorbente De Aluminio Presente En El Drenaje Producto De La Minería Carbonífera |
title_fullStr |
Prevención y control de la contaminación ambiental. Luffa Cylindrica Como Bioadsorbente De Aluminio Presente En El Drenaje Producto De La Minería Carbonífera |
title_full_unstemmed |
Prevención y control de la contaminación ambiental. Luffa Cylindrica Como Bioadsorbente De Aluminio Presente En El Drenaje Producto De La Minería Carbonífera |
title_sort |
Prevención y control de la contaminación ambiental. Luffa Cylindrica Como Bioadsorbente De Aluminio Presente En El Drenaje Producto De La Minería Carbonífera |
dc.creator.fl_str_mv |
Carranza Gutiérrez, Sebastián Felipe |
dc.contributor.advisor.none.fl_str_mv |
Navarrete Rodríguez, Luisa Fernanda |
dc.contributor.author.none.fl_str_mv |
Carranza Gutiérrez, Sebastián Felipe |
dc.subject.spa.fl_str_mv |
Contaminación ambiental Bioadsorventes Ingeniería ambiental |
topic |
Contaminación ambiental Bioadsorventes Ingeniería ambiental Dynamic flow filter Static flow filter coal extraction Bioadsorbent Ingeniería Ambiental Saneamiento ambiental -- Colombia Contaminación -- Colombia Medio ambiente -- Colombia Control Ambiental Protección Del Medio Ambiente Industria Minera Carbón Filtro de flujo dinámico Filtro de flujo estático extracción de carbón Bioadsorbente Lenguazaque |
dc.subject.subjectenglish.spa.fl_str_mv |
Dynamic flow filter Static flow filter coal extraction Bioadsorbent |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería Ambiental Saneamiento ambiental -- Colombia Contaminación -- Colombia Medio ambiente -- Colombia Control Ambiental Protección Del Medio Ambiente Industria Minera Carbón |
dc.subject.proposal.spa.fl_str_mv |
Filtro de flujo dinámico Filtro de flujo estático extracción de carbón Bioadsorbente Lenguazaque |
description |
Según el Análisis Estadístico de la Energía Mundial de la compañía BP Global, Colombia es el octavo país exportador de carbón del mundo [11], después de China, Estados Unidos, Australia, India, Indonesia, Rusia y Sudáfrica. Con una producción de 90.51 millones de toneladas de carbón en el año 2016 [12], constituye uno de los productos con mayor aporte al PIB del país, con reservas medidas de carbón del orden de 5000 millones de toneladas [13]. Sin embargo, conforme al último censo minero realizado en el año 2011, cerca del 60% de la extracción de carbón del país no cuenta título minero [14], lo cual implica que los vertimientos generados no son regulados por ninguna entidad, como es el caso del drenaje ácido de las minas (DAM), originado por la interacción de agua y otros constituyentes del carbón [15], produciendo lodos con elevadas concentraciones de metales como Fe, Al, Ca, Mg, Mn, Zn, Cu, Cr, Pb y As [3]. Entre los elementos más abundantes del DAM producto de la minería de carbón está el aluminio [3], al cual se le atribuye el aumento de la mortalidad de peces como el salmón del Atlántico [16]. También, afecta el crecimiento de plantas y sus procesos intracelulares como la homeostasis de calcio y otros cationes, así como trastornos en la transducción de señales dentro de las células [17]. En la mitigación del efecto adverso que genera la presencia de iones metálicos en fuentes hídricas, se han aplicado métodos como precipitación química, intercambio iónico, osmosis inversa, evaporación y electrólisis [18], así como la electrocoagulación, electroflotación y electrodecantación[19], sin embargo, dichos métodos requieren del uso adicional de reactivos, los cuales junto con los metales en solución producen lodos que pueden llegar a ser más tóxicos que el drenaje mismo [20]. Actualmente, la bioadsorción se contempla como una tecnología rentable y respetuosa con el medio ambiente [5], basada en la aplicación de materiales naturales, biodegradables como la cáscara de nuez, hongos, helechos, cortezas, paja y algas [21], en efluentes de procesos industriales como curtiembres, extracción minera, metalurgia y galvanizado [22], para la retención de iones metálicos como cobre, zinc [23][24][25], magnesio [26], níquel [26][27] y metales pesados como cadmio [21] y plomo[7]. Una de las ventajas de emplear ésta técnica es la regeneración del material para ser reutilizado durante varios ciclos de adsorción-desorción [23] o recuperar los metales retenidos por pirolisis |
publishDate |
2018 |
dc.date.created.none.fl_str_mv |
2018-10 |
dc.date.accessioned.none.fl_str_mv |
2019-03-11T18:33:59Z |
dc.date.available.none.fl_str_mv |
2019-03-11T18:33:59Z |
dc.type.local.spa.fl_str_mv |
Tesis de Pregrado |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10901/11916 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Libre |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Libre |
url |
https://hdl.handle.net/10901/11916 |
identifier_str_mv |
instname:Universidad Libre reponame:Repositorio Institucional Universidad Libre |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Albis, A., Martínez, J., Severiche, M., & Garcia, J. (2016). Remoción de plomo de soluciones acuosas usando cáscara de yuca modificada con ácido cítrico. Avances: Investigación En Ingeniería, 13(1). https://doi.org/10.18041/1794-4953/avances.2.254 Feria Diaz, J., Escobar Aguado, A., & Martinez, J. (2014). Tratamiento de aguas residuales de origen químico mediante electrocoagulación. Avances: Investigación En Ingeniería, 11(1), 65-69. https://doi.org/10.18041/1794-4953/avances.1.332 I. C. López and C. R. Ward, “Composition and mode of occurrence of mineral matter in some Colombian coals,” Int. J. Coal Geol., vol. 73, no. 1, pp. 3–18, 2008. V. Masindi, M. W. Gitari, H. Tutu, and M. De Beer, “Fate of inorganic contaminants post treatment of acid mine drainage by cryptocrystalline magnesite: Complimenting experimental results with a geochemical model,” J. Environ. Chem. Eng., 2016. J. C. S. S. Menezes, R. A. Silva, I. S. Arce, and I. A. H. Schneider, “Production of a poly-alumino-iron sulphate coagulant by chemical precipitation of a coal mining acid drainage,” Miner. Eng., 2010. H. Lee, D. Kim, J. Kim, M.-K. Ji, Y.-S. Han, Y.-T. Park, H.-S. Yun, and J. Choi, “As(III) and As(V) removal from the aqueous phase via adsorption onto acid mine drainage sludge (AMDS) alginate beads and goethite alginate beads,” J. Hazard. Mater., vol. 292, pp. 146–154, 2015. M.-K. Ji, E.-D. Gee, H.-S. Yun, W.-R. Lee, Y.-T. Park, M. A. Khan, B.-H. Jeon, and J. Choi, “Inhibition of sulfide mineral oxidation by surface coating agents: Batch and field studies,” J. Hazard. Mater., vol. 229–230, pp. 298–306, 2012. P. J. Oberholster, J. G. Myburgh, P. J. Ashton, J. J. Coetzee, and A.-M. Botha, “Bioaccumulation of aluminium and iron in the food chain of Lake Loskop, South Africa,” Ecotoxicol. Environ. Saf., vol. 75, pp. 134–141, 2012. A. Matínez and S. García, “Remoción de plomo de soluciones acuosas usando cáscara de yuca modificada con ácido cítrico.,” Avances Investigación en Ingeniería., vol. Vol. 13, no. No. 1, pp. 1–11, 2016. A. (2011) Peláez, “En Boyacá, minería de carbón sofoca las aguas,” UN Periódico, Bogotá Colombia, p. Volumen 151., 2011. T. Kunito, I. Isomura, H. Sumi, H.-D. Park, H. Toda, S. Otsuka, K. Nagaoka, K. Saeki, and K. Senoo, “Aluminum and acidity suppress microbial activity and biomass in acidic forest soils,” Soil Biol. Biochem., vol. 97, pp. 23–30, 2016. P. Kraal, K. G. J. Nierop, J. Kaal, and A. Tietema, “Carbon respiration and nitrogen dynamics in Corsican pine litter amended with aluminium and tannins,” Soil Biol. Biochem., vol. 41, no. 11, pp. 2318–2327, 2009. B. Dudley, “BP Statistical Review of World Energy June 2017.,” BP Stat. Rev. World Energy, vol. 66th editi, p. pp 38, 2017. Ministerio de minas y energia, “Producción y exportaciones de cobre en Colombia,” Minist. Minas y Energía, 2015. ANM, “Producción Nacional de Minerales,” Agencia Nac. Minería, 2015. J. M. Lezcano, F. González, A. Ballester, M. L. Blázquez, J. A. Muñoz, and C. García-Balboa, “Sorption and desorption of Cd, Cu and Pb using biomass from an eutrophized habitat in monometallic and bimetallic systems,” J. Environ. Manage., vol. 92, no. 10, pp. 2666–2674, 2011. A. Adewuyi and F. V. Pereira, “Underutilized Luffa cylindrica sponge: A local bio-adsorbent for the removal of Pb(II) pollutant from water system,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 6, no. 2, pp. 118–126, Jun. 2017. Q. B. Meng, G.-S. Yang, and Y.-S. Lee, “Sulfonation of a hypercrosslinked polymer adsorbent for microwave-assisted desorption of adsorbed benzene,” J. Ind. Eng. Chem., vol. 20, no. 4, pp. 2484–2489, 2014. M. de Agricultura, “Decreto No. 1594,” República Colomb., vol. 1984. M. de ambiente y desarrollo Ambiente, Resolución 631 de 2015. Colombia, 2015, pp. 1–73. Ministerio de Ambiente y Desarrollo Sostenible and vivienda y desarrollo Territorial, Resolución 2115 de 2007. Colombia, 2007, pp. 1–23. G. Tortosa Muñoz and Germán, “Extracción de materia orgánica soluble de un compost de orujo de oliva de dos fases,” Sep. 2007. E. Álvarez, J. Carvakho, A. Martins, and D. . Álvarez, “Estudio del contenido y la calidad de la lignina mediante pirólisis analítica en madera de pinus caribaea. Maderas,” Cienc. y Tecnol. 9, vol. Volume 2, pp. 179–188, 2007. J. Maecha, “Estudio de la bioadsorción de fenoles totales provenientes de aguas residuales del beneficio húmedo del café sobre luffa cylindrica para la disminución de la dqo,” Universidad Santo Tomás, 2016. ICONTEC, “NTC-ISO5667-4 Guia ara el muestreo de lagos naturales y artificiales,” Gest. Ambient. Calid. agua., pp. 1–12, 1996. G. C. Valencia, J. S Catellar, “Predicción de las curvas de ruptura para la remoción de plomo (II) en disolución acuosa sobre carbón activado en una columna empacada,” Rev. Fac. Ing. Univ. Antioquia, vol. 66, pp. 141–158, 2013. Á. Castillo, “Adsorbentes naturales en la mitigación del impacto adverso causado por derrames de crudo en fuentes hídricas. Universidad Libre de Colombia,” vol. 1. Facultad de ingeniería, Bogotá, pp. 1–70, 2016. J. E. Rodríguez-Páez, C. Villaquirán, and J. Cobo, “Estudio de la Formacion de los Complejos Intermedios Durante la Sintesis de Alumina,” Mater. Res., vol. 4, no. 4, pp. 255–264, 2001. G. Ortega, B. Arrieta, J. Guerrero, and J. Taboada, “Adsorción por lote y en una columna de lecho fijo del colorante B39 sobre carbón activado granular,” Prospect, vol. Vol. 11, pp. 66–75, 2013 |
dc.relation.references.Spa.fl_str_mv |
M. de minas y Energía, “Colombia minera desarrollo responsable, censo minero departamental 2010-2011,” República Colomb., p. pp.12–14, 2012. D. B. Johnson and K. B. Hallberg, “Acid mine drainage remediation options: a review,” Sci. Total Environ., vol. 338, no. 1, pp. 3–14, 2005. C. A. Pessot, Å. Åtland, H. Liltved, M. G. Lobos, and T. Kristensen, “Water treatment with crushed marble or sodium silicate mitigates combined copper and aluminium toxicity for the early life stages of Atlantic salmon (Salmo salar L.),” Aquac. Eng., vol. 60, pp. 77–83, 2014. S. Singh, D. K. Tripathi, S. Singh, S. Sharma, N. K. Dubey, D. K. Chauhan, and M. Vaculík, “Toxicity of aluminium on various levels of plant cells and organism: a review,” Environ. Exp. Bot., 2017. O. Abdelwahab and N. K. Amin, “Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: Kinetics, isotherm and thermodynamic studies,” Egypt. J. Aquat. Res., vol. 39, pp. 215–223, 2013. J. Feria, A. Escobar, and J. Martinez, “Tratamiento de aguas residuales de origen químico mediante electrocoagulación.,” Avances. Investigación en Ingeniería., vol. Vol. 11, no. No. 1, pp. 65–69, 2014. E. Monroy, M. Orozco, C. Perico, and A. . Rodríaguez, “Así es la minería. En Colección ‘Nuestra Colombia Minera,’” Colomb. Minist. minas y energía, p. pp 1-15, 2009. F. B. C. Correa, “Adsorción de agua en materiales compuestos y en zeolita,” Universidad Nacional de Colombia, 2009. |
dc.relation.references.Eng.fl_str_mv |
E. Da’na, “Adsorption of heavy metals on functionalized-mesoporous silica: A review,” Microporous Mesoporous Mater., vol. 247, pp. 145–157, 2017. S. Lutts, P. Qin, and R.-M. Han, “Salinity influences biosorption of heavy metals by the roots of the halophyte plant species Kosteletzkya pentacarpos,” Ecol. Eng., vol. 95, pp. 682–689, 2016. K. Vijayaraghavan and R. Balasubramanian, “Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state- of-the-art of biosorption processes and future directions,” J. Environ. Manage., vol. 160, pp. 283–296, 2015. M. Iqbal and R. G. J. Edyvean, “Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium,” in Minerals Engineering, 2004. Y. Laidani, S. Hanini, and G. Henini, “Use of fiber Luffa cylindrica for waters traitement charged in copper. Study of the possibility of its regeneration by desorption chemical,” in Energy Procedia, 2011, vol. 6, pp. 381–388. D. M. Veneu, M. L. Torem, and G. A. H. Pino, “Fundamental aspects of copper and zinc removal from aqueous solutions usin V. K. Gupta, S. Agarwal, P. Singh, and D. Pathania, “Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions,” Carbohydr. Polym., vol. 98, no. 1, pp. 1214–1221, 2013. N. P. Raval, P. U. Shah, and N. K. Shah, “Adsorptive removal of nickel(II) ions from aqueous environment: A review,” J. Environ. Manage., vol. 179, pp. 1– 20, 2016. Z. Han, Z. Guo, Y. Zhang, X. Xiao, Z. Xu, and Y. Sun, “Adsorption-pyrolysis technology for recovering heavy metals in solution using contaminated biomass phytoremediation,” Resour. Conserv. Recycl., vol. 129, pp. 20–26, 2018. I. B. Franco and S. Ali, “Decentralization, corporate community development and resource governance: A comparative analysis of two mining regions in Colombia,” Extr. Ind. Soc., vol. 4, no. 1, pp. 111–119, 2017. K. Caballero-Gallardo, A. Guerrero-Castilla, B. Johnson-Restrepo, J. de la Rosa, and J. Olivero-Verbel, “Chemical and toxicological characterization of sediments along a Colombian shoreline impacted by coal export terminals,” Chemosphere, vol. 138, pp. 837–846, 2015. A. Cardoso, “Behind the life cycle of coal: Socio-environmental liabilities of coal mining in Cesar, Colombia,” Ecol. Econ., vol. 120, pp. 71–82, 2015. A. N. Shabalala, S. O. Ekolu, S. Diop, and F. Solomon, “Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − column study,” J. Hazard. Mater., vol. 323, pp. 641–653, 2017. N. Abrosimova, O. Gaskova, A. Loshkareva, A. Edelev, and S. Bortnikova, “Assessment of the acid mine drainage potential of waste rocks at the Ak-Sug porphyry Cu–Mo deposit,” J. Geochemical Explor., vol. 157, pp. 1–14, 2015. P. A. Raymond and N.-H. Oh, “Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: Insights on the impact of coal mining on regional and global carbon and sulfur budgets,” Earth Planet. Sci. Lett., vol. 284, no. 1, pp. 50–56, 2009. K. K. Kefeni, T. A. M. Msagati, T. T. I. Nkambule, and B. B. Mamba, “Synthesis and application of hematite nanoparticles for acid mine drainage treatment,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 1865–1874, 2018. X. Domenéch, “Environmental Chemistry.,” España Reverté, S.A., vol. España: Re, 2001. C. Falagán, I. Yusta, J. Sánchez-España, and D. B. Johnson, “Biologically- induced precipitation of aluminium in synthetic acid mine water,” Miner. Eng., vol. 106, pp. 79–85, 2017. M. Mold, D. Umar, A. King, and C. Exley, “Aluminium in brain tissue in autism,”J. Trace Elem. Med. Biol., vol. 46, pp. 76–82, 2018. A. Mirza, A. King, C. Troakes, and C. Exley, “Aluminium in brain tissue in familial Alzheimer’s disease,” J. Trace Elem. Med. Biol., vol. 40, pp. 30–36, 2017. H. Xu, M. Ding, K. Shen, J. Cui, and W. Chen, “Removal of aluminum from drinking water treatment sludge using vacuum electrokinetic technology,” Chemosphere, vol. 173, pp. 404–410, 2017. T. Okuda, W. Nishijima, M. Sugimoto, N. Saka, S. Nakai, K. Tanabe, J. Ito, K. Takenaka, and M. Okada, “Removal of coagulant aluminum from water treatment residuals by acid,” Water Res., vol. 60, pp. 75–81, 2014. M. Urík, M. Bujdoš, B. Milová-Žiaková, P. Mikušová, M. Slovák, and P. Matúš, “Aluminium leaching from red mud by filamentous fungi,” J. Inorg. Biochem., vol. 152, pp. 154–159, 2015. J. Zuziak and M. Jakubowska, “Voltammetric determination of aluminum- Alizarin S complex by renewable silver amalgam electrode in river and waste waters,” J. Electroanal. Chem., vol. 794, pp. 49–57, 2017. J. Zuziak and M. Jakubowska, “Voltammetric determination of aluminum- Alizarin S complex by renewable silver amalgam electrode in river and waste waters,” J. Electroanal. Chem., vol. 794, pp. 49–57, 2017. M. A. Badawi, N. A. Negm, M. T. H. A. Kana, H. H. Hefni, and M. M. A. Moneem, “Adsorption of aluminum and lead from wastewater by chitosan- tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism,” Int. J. Biol. Macromol., vol. 99, pp. 465–476, 2017. T. R. Moro, F. R. Henrique, L. C. Malucelli, C. M. R. de Oliveira, M. A. da Silva Carvalho Filho, and E. C. de Vasconcelos, “Adsorption of pharmaceuticals in water through lignocellulosic fibers synergism,” Chemosphere, vol. 171, pp. 57–65, 2017. K. Mohammed and O. Sahu, “Bioadsorption and membrane technology for reduction and recovery of chromium from tannery industry wastewater,” Environ. Technol. Innov., vol. 4, pp. 150–158, 2015. K. Ooi, Y. Makita, A. Sonoda, R. Chitrakar, Y. Tasaki-Handa, and T. Nakazato, “Modelling of column lithium desorption from Li+-loaded adsorbent obtained by adsorption from salt brine,” Hydrometallurgy, vol. 169, pp. 31–40, 2017. J. Lemaire, L. Svecova, F. Lagallarde, R. Laucournet, and P.-X. Thivel, “Lithium recovery from aqueous solution by sorption/desorption,” Hydrometallurgy, vol. 143, pp. 1–11, 2014. C. Ye, N. Hu, and Z. Wang, “Experimental investigation of Luffa cylindrica as a natural sorbent material for the removal of a cationic surfactant,” J. Taiwan Inst. Chem. Eng., vol. 44, no. 1, pp. 74–80, 2013. T. Chen, Z. Zhou, R. Han, R. Meng, H. Wang, and W. Lu, “Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism,” Chemosphere, vol. 134, pp. 286–293, 2015. G. Wang, X. Su, Y. Hua, S. Ma, J. Wang, X. Xue, Q. Tao, and S. Komarneni, “Kinetics and thermodynamic analysis of the adsorption of hydroxy-Al cations by montmorillonite,” Appl. Clay Sci., vol. 129, pp. 79–87, 2016. F. E. Arias Arias, A. Beneduci, F. Chidichimo, E. Furia, and S. Straface, “Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions,” Chemosphere, vol. 180, pp. 11–23, 2017. F. E. Arias Arias, A. Beneduci, F. Chidichimo, E. Furia, and S. Straface, “Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions,” Chemosphere, vol. 180, pp. 11–23, 2017. E. P. Agency, “EPA Secondary Maximum Contaminant Levels: A Strategy for Drinking Water Quality and Consumer Acceptability,” U.S.A Water Res. Found., 2015. (Code of Federal regulations) CFR, “PART 434—Coal mining point source category BPT, BAT, BCT limitations and new source performance standards,” Ofice, U.S. Goverment Publ., 2015. O. Abdelwahab and N. K. Amin, “Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: Kinetics, isotherm and thermodynamic studies,” Egypt. J. Aquat. Res., vol. 39, no. 4, pp. 215–223, Jan. 2013. E. H. Hayakawa and H. Matsuoka, “Detailed methodology for high resolution scanning electron microscopy (SEM) of murine malaria parasitizederythrocytes,” Parasitol. Int., vol. 65, no. 5, Part B, pp. 539–544, 2016. T. Petit and L. Puskar, “FTIR spectroscopy of nanodiamonds: Methods and interpretation,” Diam. Relat. Mater., vol. 89, pp. 52–66, 2018. S. V. Stefanovsky, O. I. Stefanovsky, and M. I. Kadyko, “FTIR and Raman spectroscopic study of sodium aluminophosphate and sodium aluminum-iron phosphate glasses containing uranium oxides,” J. Non. Cryst. Solids, vol. 443, pp. 192–198, Jul. 2016. B. Browning, “Methods of wood chemistry,” Intersci. Publ. New York, USA., 1967. B. de Caprariis, P. De Filippis, A. D. Hernandez, E. Petrucci, A. Petrullo, M. Scarsella, and M. Turchi, “Pyrolysis wastewater treatment by adsorption on biochars produced by poplar biomass,” J. Environ. Manage., vol. 197, pp. 231–238, 2017. A. P. H. Association, A. W. W. Association, and others, Standard methods for the examination of water and wastewater. American public health association, 1989. O. Abdelwahab, “Assessment of raw luffa as a natural hollow oleophilic fibrous sorbent for oil spill cleanup,” Alexandria Eng. J., vol. 53, no. 1, pp. 213–218, Mar. 2014. R. Kuehl, “Diseño de experimentos,” Thomson Learn. Mex., 2001. A. Adewuyi and F. V. Pereira, “Isolation and surface modification of cellulose from underutilized Luffa cylindrica sponge: A potential feed stock for local polymer industry in Africa,” J. Assoc. Arab Univ. Basic Appl. Sci., vol. 24, pp. 39–45, Oct. 2017. M. B. Arriaza, “Guia práctica de análisis de datos,” Junta Andalucía. Cons. Innovación, Cienc. y Empres. Instuto Investig. y Form. Agrar. y Pesq., vol. Volumen 1, 2006. X. Lin, Q. Huang, G. Qi, L. Xiong, C. Huang, X. Chen, H. Li, and X. Chen, “Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies,” Chemosphere, vol. 171, pp. 231–239, 2017. O. Callery, M. G. Healy, F. Rognard, L. Barthelemy, and R. B. Brennan, “Evaluating the long-term performance of low-cost adsorbents using smallscale adsorption column experiments,” Water Res., vol. 101, pp. 429–440, 2016. S. Su, Q. Liu, J. Liu, H. Zhang, R. Li, X. Jing, and J. Wang, “Polyethyleneiminefunctionalized Luffa cylindrica for efficient uranium extraction,” J. Colloid Interface Sci., Mar. 2018. Q. Kong, X. He, L. Shu, and M. Miao, “Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and thermodynamic analyses,” Process Saf. Environ. Prot., vol. 112, pp. 254–264, Nov. 2017. V. K. Gupta, D. Pathania, S. Agarwal, and S. Sharma, “Amputation of congo red dye from waste water using microwave induced grafted Luffa cylindrica cellulosic fiber,” Carbohydr. Polym., vol. 111, pp. 556–566, Oct. 2014. D. Pathania, A. Sharma, and V. sethi, “Microwave induced graft copolymerization of binary monomers onto luffa cylindrica fiber: removal of congo red,” Procedia Eng., vol. 200, pp. 408–415, Jan. 2017. M. K. Bin Bakri, E. Jayamani, and S. Hamdan, “Processing and Characterization of Banana Fiber/Epoxy Composites: Effect of Alkaline Treatment,” Mater. Today Proc., vol. 4, no. 2, pp. 2871–2878, Jan. 2017. S. D.V., L. Kumar R., and S. J., “Immobilized fungi on Luffa cylindrica: An effective biosorbent for the removal of lead,” J. Taiwan Inst. Chem. Eng., vol. 80, pp. 589–595, Nov. 2017. K. K. Kefeni, T. A. M. Msagati, and B. B. Mamba, “Acid mine drainage: Prevention, treatment options, and resource recovery: A review,” J. Clean. Prod., vol. 151, pp. 475–493, May 2017. Q. Liu, B. Chen, S. Haderlein, G. Gopalakrishnan, and Y. Zhou, “Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China,” Ecotoxicol. Environ. Saf., vol. 155, pp. 50–58, Jul. 2018. M. Ramasamy, C. Power, and M. Mkandawire, “Numerical prediction of the long-term evolution of acid mine drainage at a waste rock pile site remediated with a HDPE-lined cover system,” J. Contam. Hydrol., Jul. 2018. |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.license.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
PDF |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Bogotá |
institution |
Universidad Libre |
bitstream.url.fl_str_mv |
http://repository.unilibre.edu.co/bitstream/10901/11916/3/Luffa%20cylindrica%20COMO%20BIOADSORBENTE%20DE%20ALUMINIO%20PRESENTE%20EN%20EL%20DRENAJE%20PRODUCTO%20DE%20LA%20MINER%c3%8dA%20CAR.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/11916/1/Luffa%20cylindrica%20COMO%20BIOADSORBENTE%20DE%20ALUMINIO%20PRESENTE%20EN%20EL%20DRENAJE%20PRODUCTO%20DE%20LA%20MINER%c3%8dA%20CAR.pdf http://repository.unilibre.edu.co/bitstream/10901/11916/2/license.txt |
bitstream.checksum.fl_str_mv |
96bba644e3fb34faa8f085825d7f0fd7 31916e458451aaad44bfe455c4120f6d 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Unilibre |
repository.mail.fl_str_mv |
repositorio@unilibrebog.edu.co |
_version_ |
1814090432242515968 |
spelling |
Navarrete Rodríguez, Luisa FernandaCarranza Gutiérrez, Sebastián FelipeBogotá2019-03-11T18:33:59Z2019-03-11T18:33:59Z2018-10https://hdl.handle.net/10901/11916instname:Universidad Librereponame:Repositorio Institucional Universidad LibreSegún el Análisis Estadístico de la Energía Mundial de la compañía BP Global, Colombia es el octavo país exportador de carbón del mundo [11], después de China, Estados Unidos, Australia, India, Indonesia, Rusia y Sudáfrica. Con una producción de 90.51 millones de toneladas de carbón en el año 2016 [12], constituye uno de los productos con mayor aporte al PIB del país, con reservas medidas de carbón del orden de 5000 millones de toneladas [13]. Sin embargo, conforme al último censo minero realizado en el año 2011, cerca del 60% de la extracción de carbón del país no cuenta título minero [14], lo cual implica que los vertimientos generados no son regulados por ninguna entidad, como es el caso del drenaje ácido de las minas (DAM), originado por la interacción de agua y otros constituyentes del carbón [15], produciendo lodos con elevadas concentraciones de metales como Fe, Al, Ca, Mg, Mn, Zn, Cu, Cr, Pb y As [3]. Entre los elementos más abundantes del DAM producto de la minería de carbón está el aluminio [3], al cual se le atribuye el aumento de la mortalidad de peces como el salmón del Atlántico [16]. También, afecta el crecimiento de plantas y sus procesos intracelulares como la homeostasis de calcio y otros cationes, así como trastornos en la transducción de señales dentro de las células [17]. En la mitigación del efecto adverso que genera la presencia de iones metálicos en fuentes hídricas, se han aplicado métodos como precipitación química, intercambio iónico, osmosis inversa, evaporación y electrólisis [18], así como la electrocoagulación, electroflotación y electrodecantación[19], sin embargo, dichos métodos requieren del uso adicional de reactivos, los cuales junto con los metales en solución producen lodos que pueden llegar a ser más tóxicos que el drenaje mismo [20]. Actualmente, la bioadsorción se contempla como una tecnología rentable y respetuosa con el medio ambiente [5], basada en la aplicación de materiales naturales, biodegradables como la cáscara de nuez, hongos, helechos, cortezas, paja y algas [21], en efluentes de procesos industriales como curtiembres, extracción minera, metalurgia y galvanizado [22], para la retención de iones metálicos como cobre, zinc [23][24][25], magnesio [26], níquel [26][27] y metales pesados como cadmio [21] y plomo[7]. Una de las ventajas de emplear ésta técnica es la regeneración del material para ser reutilizado durante varios ciclos de adsorción-desorción [23] o recuperar los metales retenidos por pirolisisPDFapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Contaminación ambientalBioadsorventesIngeniería ambientalDynamic flow filterStatic flow filtercoal extractionBioadsorbentIngeniería AmbientalSaneamiento ambiental -- ColombiaContaminación -- ColombiaMedio ambiente -- ColombiaControl AmbientalProtección Del Medio AmbienteIndustria MineraCarbónFiltro de flujo dinámicoFiltro de flujo estáticoextracción de carbónBioadsorbenteLenguazaquePrevención y control de la contaminación ambiental. Luffa Cylindrica Como Bioadsorbente De Aluminio Presente En El Drenaje Producto De La Minería CarboníferaTesis de Pregradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisAlbis, A., Martínez, J., Severiche, M., & Garcia, J. (2016). Remoción de plomo de soluciones acuosas usando cáscara de yuca modificada con ácido cítrico. Avances: Investigación En Ingeniería, 13(1). https://doi.org/10.18041/1794-4953/avances.2.254Feria Diaz, J., Escobar Aguado, A., & Martinez, J. (2014). Tratamiento de aguas residuales de origen químico mediante electrocoagulación. Avances: Investigación En Ingeniería, 11(1), 65-69. https://doi.org/10.18041/1794-4953/avances.1.332I. C. López and C. R. Ward, “Composition and mode of occurrence of mineral matter in some Colombian coals,” Int. J. Coal Geol., vol. 73, no. 1, pp. 3–18, 2008.V. Masindi, M. W. Gitari, H. Tutu, and M. De Beer, “Fate of inorganic contaminants post treatment of acid mine drainage by cryptocrystalline magnesite: Complimenting experimental results with a geochemical model,” J. Environ. Chem. Eng., 2016.J. C. S. S. Menezes, R. A. Silva, I. S. Arce, and I. A. H. Schneider, “Production of a poly-alumino-iron sulphate coagulant by chemical precipitation of a coal mining acid drainage,” Miner. Eng., 2010.H. Lee, D. Kim, J. Kim, M.-K. Ji, Y.-S. Han, Y.-T. Park, H.-S. Yun, and J. Choi, “As(III) and As(V) removal from the aqueous phase via adsorption onto acid mine drainage sludge (AMDS) alginate beads and goethite alginate beads,” J. Hazard. Mater., vol. 292, pp. 146–154, 2015.M.-K. Ji, E.-D. Gee, H.-S. Yun, W.-R. Lee, Y.-T. Park, M. A. Khan, B.-H. Jeon, and J. Choi, “Inhibition of sulfide mineral oxidation by surface coating agents: Batch and field studies,” J. Hazard. Mater., vol. 229–230, pp. 298–306, 2012.P. J. Oberholster, J. G. Myburgh, P. J. Ashton, J. J. Coetzee, and A.-M. Botha, “Bioaccumulation of aluminium and iron in the food chain of Lake Loskop, South Africa,” Ecotoxicol. Environ. Saf., vol. 75, pp. 134–141, 2012.A. Matínez and S. García, “Remoción de plomo de soluciones acuosas usando cáscara de yuca modificada con ácido cítrico.,” Avances Investigación en Ingeniería., vol. Vol. 13, no. No. 1, pp. 1–11, 2016.A. (2011) Peláez, “En Boyacá, minería de carbón sofoca las aguas,” UN Periódico, Bogotá Colombia, p. Volumen 151., 2011.T. Kunito, I. Isomura, H. Sumi, H.-D. Park, H. Toda, S. Otsuka, K. Nagaoka, K. Saeki, and K. Senoo, “Aluminum and acidity suppress microbial activity and biomass in acidic forest soils,” Soil Biol. Biochem., vol. 97, pp. 23–30, 2016.P. Kraal, K. G. J. Nierop, J. Kaal, and A. Tietema, “Carbon respiration and nitrogen dynamics in Corsican pine litter amended with aluminium and tannins,” Soil Biol. Biochem., vol. 41, no. 11, pp. 2318–2327, 2009.B. Dudley, “BP Statistical Review of World Energy June 2017.,” BP Stat. Rev. World Energy, vol. 66th editi, p. pp 38, 2017.Ministerio de minas y energia, “Producción y exportaciones de cobre en Colombia,” Minist. Minas y Energía, 2015.ANM, “Producción Nacional de Minerales,” Agencia Nac. Minería, 2015.J. M. Lezcano, F. González, A. Ballester, M. L. Blázquez, J. A. Muñoz, and C. García-Balboa, “Sorption and desorption of Cd, Cu and Pb using biomass from an eutrophized habitat in monometallic and bimetallic systems,” J. Environ. Manage., vol. 92, no. 10, pp. 2666–2674, 2011.A. Adewuyi and F. V. Pereira, “Underutilized Luffa cylindrica sponge: A local bio-adsorbent for the removal of Pb(II) pollutant from water system,” Beni-Suef Univ. J. Basic Appl. Sci., vol. 6, no. 2, pp. 118–126, Jun. 2017.Q. B. Meng, G.-S. Yang, and Y.-S. Lee, “Sulfonation of a hypercrosslinked polymer adsorbent for microwave-assisted desorption of adsorbed benzene,” J. Ind. Eng. Chem., vol. 20, no. 4, pp. 2484–2489, 2014.M. de Agricultura, “Decreto No. 1594,” República Colomb., vol. 1984.M. de ambiente y desarrollo Ambiente, Resolución 631 de 2015. Colombia, 2015, pp. 1–73.Ministerio de Ambiente y Desarrollo Sostenible and vivienda y desarrollo Territorial, Resolución 2115 de 2007. Colombia, 2007, pp. 1–23.G. Tortosa Muñoz and Germán, “Extracción de materia orgánica soluble de un compost de orujo de oliva de dos fases,” Sep. 2007.E. Álvarez, J. Carvakho, A. Martins, and D. . Álvarez, “Estudio del contenido y la calidad de la lignina mediante pirólisis analítica en madera de pinus caribaea. Maderas,” Cienc. y Tecnol. 9, vol. Volume 2, pp. 179–188, 2007.J. Maecha, “Estudio de la bioadsorción de fenoles totales provenientes de aguas residuales del beneficio húmedo del café sobre luffa cylindrica para la disminución de la dqo,” Universidad Santo Tomás, 2016.ICONTEC, “NTC-ISO5667-4 Guia ara el muestreo de lagos naturales y artificiales,” Gest. Ambient. Calid. agua., pp. 1–12, 1996.G. C. Valencia, J. S Catellar, “Predicción de las curvas de ruptura para la remoción de plomo (II) en disolución acuosa sobre carbón activado en una columna empacada,” Rev. Fac. Ing. Univ. Antioquia, vol. 66, pp. 141–158, 2013.Á. Castillo, “Adsorbentes naturales en la mitigación del impacto adverso causado por derrames de crudo en fuentes hídricas. Universidad Libre de Colombia,” vol. 1. Facultad de ingeniería, Bogotá, pp. 1–70, 2016.J. E. Rodríguez-Páez, C. Villaquirán, and J. Cobo, “Estudio de la Formacion de los Complejos Intermedios Durante la Sintesis de Alumina,” Mater. Res., vol. 4, no. 4, pp. 255–264, 2001.G. Ortega, B. Arrieta, J. Guerrero, and J. Taboada, “Adsorción por lote y en una columna de lecho fijo del colorante B39 sobre carbón activado granular,” Prospect, vol. Vol. 11, pp. 66–75, 2013M. de minas y Energía, “Colombia minera desarrollo responsable, censo minero departamental 2010-2011,” República Colomb., p. pp.12–14, 2012.D. B. Johnson and K. B. Hallberg, “Acid mine drainage remediation options: a review,” Sci. Total Environ., vol. 338, no. 1, pp. 3–14, 2005.C. A. Pessot, Å. Åtland, H. Liltved, M. G. Lobos, and T. Kristensen, “Water treatment with crushed marble or sodium silicate mitigates combined copper and aluminium toxicity for the early life stages of Atlantic salmon (Salmo salar L.),” Aquac. Eng., vol. 60, pp. 77–83, 2014.S. Singh, D. K. Tripathi, S. Singh, S. Sharma, N. K. Dubey, D. K. Chauhan, and M. Vaculík, “Toxicity of aluminium on various levels of plant cells and organism: a review,” Environ. Exp. Bot., 2017.O. Abdelwahab and N. K. Amin, “Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: Kinetics, isotherm and thermodynamic studies,” Egypt. J. Aquat. Res., vol. 39, pp. 215–223, 2013.J. Feria, A. Escobar, and J. Martinez, “Tratamiento de aguas residuales de origen químico mediante electrocoagulación.,” Avances. Investigación en Ingeniería., vol. Vol. 11, no. No. 1, pp. 65–69, 2014.E. Monroy, M. Orozco, C. Perico, and A. . Rodríaguez, “Así es la minería. En Colección ‘Nuestra Colombia Minera,’” Colomb. Minist. minas y energía, p. pp 1-15, 2009.F. B. C. Correa, “Adsorción de agua en materiales compuestos y en zeolita,” Universidad Nacional de Colombia, 2009.E. Da’na, “Adsorption of heavy metals on functionalized-mesoporous silica: A review,” Microporous Mesoporous Mater., vol. 247, pp. 145–157, 2017.S. Lutts, P. Qin, and R.-M. Han, “Salinity influences biosorption of heavy metals by the roots of the halophyte plant species Kosteletzkya pentacarpos,” Ecol. Eng., vol. 95, pp. 682–689, 2016.K. Vijayaraghavan and R. Balasubramanian, “Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state- of-the-art of biosorption processes and future directions,” J. Environ. Manage., vol. 160, pp. 283–296, 2015.M. Iqbal and R. G. J. Edyvean, “Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium,” in Minerals Engineering, 2004.Y. Laidani, S. Hanini, and G. Henini, “Use of fiber Luffa cylindrica for waters traitement charged in copper. Study of the possibility of its regeneration by desorption chemical,” in Energy Procedia, 2011, vol. 6, pp. 381–388.D. M. Veneu, M. L. Torem, and G. A. H. Pino, “Fundamental aspects of copper and zinc removal from aqueous solutions usinV. K. Gupta, S. Agarwal, P. Singh, and D. Pathania, “Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions,” Carbohydr. Polym., vol. 98, no. 1, pp. 1214–1221, 2013.N. P. Raval, P. U. Shah, and N. K. Shah, “Adsorptive removal of nickel(II) ions from aqueous environment: A review,” J. Environ. Manage., vol. 179, pp. 1– 20, 2016.Z. Han, Z. Guo, Y. Zhang, X. Xiao, Z. Xu, and Y. Sun, “Adsorption-pyrolysis technology for recovering heavy metals in solution using contaminated biomass phytoremediation,” Resour. Conserv. Recycl., vol. 129, pp. 20–26, 2018.I. B. Franco and S. Ali, “Decentralization, corporate community development and resource governance: A comparative analysis of two mining regions in Colombia,” Extr. Ind. Soc., vol. 4, no. 1, pp. 111–119, 2017.K. Caballero-Gallardo, A. Guerrero-Castilla, B. Johnson-Restrepo, J. de la Rosa, and J. Olivero-Verbel, “Chemical and toxicological characterization of sediments along a Colombian shoreline impacted by coal export terminals,” Chemosphere, vol. 138, pp. 837–846, 2015.A. Cardoso, “Behind the life cycle of coal: Socio-environmental liabilities of coal mining in Cesar, Colombia,” Ecol. Econ., vol. 120, pp. 71–82, 2015.A. N. Shabalala, S. O. Ekolu, S. Diop, and F. Solomon, “Pervious concrete reactive barrier for removal of heavy metals from acid mine drainage − column study,” J. Hazard. Mater., vol. 323, pp. 641–653, 2017.N. Abrosimova, O. Gaskova, A. Loshkareva, A. Edelev, and S. Bortnikova, “Assessment of the acid mine drainage potential of waste rocks at the Ak-Sug porphyry Cu–Mo deposit,” J. Geochemical Explor., vol. 157, pp. 1–14, 2015.P. A. Raymond and N.-H. Oh, “Long term changes of chemical weathering products in rivers heavily impacted from acid mine drainage: Insights on the impact of coal mining on regional and global carbon and sulfur budgets,” Earth Planet. Sci. Lett., vol. 284, no. 1, pp. 50–56, 2009.K. K. Kefeni, T. A. M. Msagati, T. T. I. Nkambule, and B. B. Mamba, “Synthesis and application of hematite nanoparticles for acid mine drainage treatment,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 1865–1874, 2018.X. Domenéch, “Environmental Chemistry.,” España Reverté, S.A., vol. España: Re, 2001.C. Falagán, I. Yusta, J. Sánchez-España, and D. B. Johnson, “Biologically- induced precipitation of aluminium in synthetic acid mine water,” Miner. Eng., vol. 106, pp. 79–85, 2017.M. Mold, D. Umar, A. King, and C. Exley, “Aluminium in brain tissue in autism,”J. Trace Elem. Med. Biol., vol. 46, pp. 76–82, 2018.A. Mirza, A. King, C. Troakes, and C. Exley, “Aluminium in brain tissue in familial Alzheimer’s disease,” J. Trace Elem. Med. Biol., vol. 40, pp. 30–36, 2017.H. Xu, M. Ding, K. Shen, J. Cui, and W. Chen, “Removal of aluminum from drinking water treatment sludge using vacuum electrokinetic technology,” Chemosphere, vol. 173, pp. 404–410, 2017.T. Okuda, W. Nishijima, M. Sugimoto, N. Saka, S. Nakai, K. Tanabe, J. Ito, K. Takenaka, and M. Okada, “Removal of coagulant aluminum from water treatment residuals by acid,” Water Res., vol. 60, pp. 75–81, 2014.M. Urík, M. Bujdoš, B. Milová-Žiaková, P. Mikušová, M. Slovák, and P. Matúš, “Aluminium leaching from red mud by filamentous fungi,” J. Inorg. Biochem., vol. 152, pp. 154–159, 2015.J. Zuziak and M. Jakubowska, “Voltammetric determination of aluminum- Alizarin S complex by renewable silver amalgam electrode in river and waste waters,” J. Electroanal. Chem., vol. 794, pp. 49–57, 2017.J. Zuziak and M. Jakubowska, “Voltammetric determination of aluminum- Alizarin S complex by renewable silver amalgam electrode in river and waste waters,” J. Electroanal. Chem., vol. 794, pp. 49–57, 2017.M. A. Badawi, N. A. Negm, M. T. H. A. Kana, H. H. Hefni, and M. M. A. Moneem, “Adsorption of aluminum and lead from wastewater by chitosan- tannic acid modified biopolymers: Isotherms, kinetics, thermodynamics and process mechanism,” Int. J. Biol. Macromol., vol. 99, pp. 465–476, 2017.T. R. Moro, F. R. Henrique, L. C. Malucelli, C. M. R. de Oliveira, M. A. da Silva Carvalho Filho, and E. C. de Vasconcelos, “Adsorption of pharmaceuticals in water through lignocellulosic fibers synergism,” Chemosphere, vol. 171, pp. 57–65, 2017.K. Mohammed and O. Sahu, “Bioadsorption and membrane technology for reduction and recovery of chromium from tannery industry wastewater,” Environ. Technol. Innov., vol. 4, pp. 150–158, 2015.K. Ooi, Y. Makita, A. Sonoda, R. Chitrakar, Y. Tasaki-Handa, and T. Nakazato, “Modelling of column lithium desorption from Li+-loaded adsorbent obtained by adsorption from salt brine,” Hydrometallurgy, vol. 169, pp. 31–40, 2017.J. Lemaire, L. Svecova, F. Lagallarde, R. Laucournet, and P.-X. Thivel, “Lithium recovery from aqueous solution by sorption/desorption,” Hydrometallurgy, vol. 143, pp. 1–11, 2014.C. Ye, N. Hu, and Z. Wang, “Experimental investigation of Luffa cylindrica as a natural sorbent material for the removal of a cationic surfactant,” J. Taiwan Inst. Chem. Eng., vol. 44, no. 1, pp. 74–80, 2013.T. Chen, Z. Zhou, R. Han, R. Meng, H. Wang, and W. Lu, “Adsorption of cadmium by biochar derived from municipal sewage sludge: Impact factors and adsorption mechanism,” Chemosphere, vol. 134, pp. 286–293, 2015.G. Wang, X. Su, Y. Hua, S. Ma, J. Wang, X. Xue, Q. Tao, and S. Komarneni, “Kinetics and thermodynamic analysis of the adsorption of hydroxy-Al cations by montmorillonite,” Appl. Clay Sci., vol. 129, pp. 79–87, 2016.F. E. Arias Arias, A. Beneduci, F. Chidichimo, E. Furia, and S. Straface, “Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions,” Chemosphere, vol. 180, pp. 11–23, 2017.F. E. Arias Arias, A. Beneduci, F. Chidichimo, E. Furia, and S. Straface, “Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions,” Chemosphere, vol. 180, pp. 11–23, 2017.E. P. Agency, “EPA Secondary Maximum Contaminant Levels: A Strategy for Drinking Water Quality and Consumer Acceptability,” U.S.A Water Res. Found., 2015.(Code of Federal regulations) CFR, “PART 434—Coal mining point source category BPT, BAT, BCT limitations and new source performance standards,” Ofice, U.S. Goverment Publ., 2015.O. Abdelwahab and N. K. Amin, “Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: Kinetics, isotherm and thermodynamic studies,” Egypt. J. Aquat. Res., vol. 39, no. 4, pp. 215–223, Jan. 2013.E. H. Hayakawa and H. Matsuoka, “Detailed methodology for high resolution scanning electron microscopy (SEM) of murine malaria parasitizederythrocytes,” Parasitol. Int., vol. 65, no. 5, Part B, pp. 539–544, 2016.T. Petit and L. Puskar, “FTIR spectroscopy of nanodiamonds: Methods and interpretation,” Diam. Relat. Mater., vol. 89, pp. 52–66, 2018.S. V. Stefanovsky, O. I. Stefanovsky, and M. I. Kadyko, “FTIR and Raman spectroscopic study of sodium aluminophosphate and sodium aluminum-iron phosphate glasses containing uranium oxides,” J. Non. Cryst. Solids, vol. 443, pp. 192–198, Jul. 2016.B. Browning, “Methods of wood chemistry,” Intersci. Publ. New York, USA., 1967.B. de Caprariis, P. De Filippis, A. D. Hernandez, E. Petrucci, A. Petrullo, M. Scarsella, and M. Turchi, “Pyrolysis wastewater treatment by adsorption on biochars produced by poplar biomass,” J. Environ. Manage., vol. 197, pp. 231–238, 2017.A. P. H. Association, A. W. W. Association, and others, Standard methods for the examination of water and wastewater. American public health association, 1989.O. Abdelwahab, “Assessment of raw luffa as a natural hollow oleophilic fibrous sorbent for oil spill cleanup,” Alexandria Eng. J., vol. 53, no. 1, pp. 213–218, Mar. 2014.R. Kuehl, “Diseño de experimentos,” Thomson Learn. Mex., 2001.A. Adewuyi and F. V. Pereira, “Isolation and surface modification of cellulose from underutilized Luffa cylindrica sponge: A potential feed stock for local polymer industry in Africa,” J. Assoc. Arab Univ. Basic Appl. Sci., vol. 24, pp. 39–45, Oct. 2017.M. B. Arriaza, “Guia práctica de análisis de datos,” Junta Andalucía. Cons. Innovación, Cienc. y Empres. Instuto Investig. y Form. Agrar. y Pesq., vol. Volumen 1, 2006.X. Lin, Q. Huang, G. Qi, L. Xiong, C. Huang, X. Chen, H. Li, and X. Chen, “Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution: Equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies,” Chemosphere, vol. 171, pp. 231–239, 2017.O. Callery, M. G. Healy, F. Rognard, L. Barthelemy, and R. B. Brennan, “Evaluating the long-term performance of low-cost adsorbents using smallscale adsorption column experiments,” Water Res., vol. 101, pp. 429–440, 2016.S. Su, Q. Liu, J. Liu, H. Zhang, R. Li, X. Jing, and J. Wang, “Polyethyleneiminefunctionalized Luffa cylindrica for efficient uranium extraction,” J. Colloid Interface Sci., Mar. 2018.Q. Kong, X. He, L. Shu, and M. Miao, “Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and thermodynamic analyses,” Process Saf. Environ. Prot., vol. 112, pp. 254–264, Nov. 2017.V. K. Gupta, D. Pathania, S. Agarwal, and S. Sharma, “Amputation of congo red dye from waste water using microwave induced grafted Luffa cylindrica cellulosic fiber,” Carbohydr. Polym., vol. 111, pp. 556–566, Oct. 2014.D. Pathania, A. Sharma, and V. sethi, “Microwave induced graft copolymerization of binary monomers onto luffa cylindrica fiber: removal of congo red,” Procedia Eng., vol. 200, pp. 408–415, Jan. 2017.M. K. Bin Bakri, E. Jayamani, and S. Hamdan, “Processing and Characterization of Banana Fiber/Epoxy Composites: Effect of Alkaline Treatment,” Mater. Today Proc., vol. 4, no. 2, pp. 2871–2878, Jan. 2017.S. D.V., L. Kumar R., and S. J., “Immobilized fungi on Luffa cylindrica: An effective biosorbent for the removal of lead,” J. Taiwan Inst. Chem. Eng., vol. 80, pp. 589–595, Nov. 2017.K. K. Kefeni, T. A. M. Msagati, and B. B. Mamba, “Acid mine drainage: Prevention, treatment options, and resource recovery: A review,” J. Clean. Prod., vol. 151, pp. 475–493, May 2017.Q. Liu, B. Chen, S. Haderlein, G. Gopalakrishnan, and Y. Zhou, “Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China,” Ecotoxicol. Environ. Saf., vol. 155, pp. 50–58, Jul. 2018.M. Ramasamy, C. Power, and M. Mkandawire, “Numerical prediction of the long-term evolution of acid mine drainage at a waste rock pile site remediated with a HDPE-lined cover system,” J. Contam. Hydrol., Jul. 2018.THUMBNAILLuffa cylindrica COMO BIOADSORBENTE DE ALUMINIO PRESENTE EN EL DRENAJE PRODUCTO DE LA MINERÍA CAR.pdf.jpgLuffa cylindrica COMO BIOADSORBENTE DE ALUMINIO PRESENTE EN EL DRENAJE PRODUCTO DE LA MINERÍA CAR.pdf.jpgimage/png52546http://repository.unilibre.edu.co/bitstream/10901/11916/3/Luffa%20cylindrica%20COMO%20BIOADSORBENTE%20DE%20ALUMINIO%20PRESENTE%20EN%20EL%20DRENAJE%20PRODUCTO%20DE%20LA%20MINER%c3%8dA%20CAR.pdf.jpg96bba644e3fb34faa8f085825d7f0fd7MD53ORIGINALLuffa cylindrica COMO BIOADSORBENTE DE ALUMINIO PRESENTE EN EL DRENAJE PRODUCTO DE LA MINERÍA CAR.pdfLuffa cylindrica COMO BIOADSORBENTE DE ALUMINIO PRESENTE EN EL DRENAJE PRODUCTO DE LA MINERÍA CAR.pdfTesisapplication/pdf881024http://repository.unilibre.edu.co/bitstream/10901/11916/1/Luffa%20cylindrica%20COMO%20BIOADSORBENTE%20DE%20ALUMINIO%20PRESENTE%20EN%20EL%20DRENAJE%20PRODUCTO%20DE%20LA%20MINER%c3%8dA%20CAR.pdf31916e458451aaad44bfe455c4120f6dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/11916/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5210901/11916oai:repository.unilibre.edu.co:10901/119162024-08-30 11:47:22.218Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |