Diseño de una cadena de suministro de biocombustible integrando decisiones estratégicas y tácticas

CD-T 662.88 V58; 75 p

Autores:
Vera Jaramillo, Yazmín Andrea
Marín Arcila, Cristhian Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad Libre
Repositorio:
RIU - Repositorio Institucional UniLibre
Idioma:
spa
OAI Identifier:
oai:repository.unilibre.edu.co:10901/17158
Acceso en línea:
https://hdl.handle.net/10901/17158
Palabra clave:
Energía biomásica
Bioetanol
Cadena de suministro
Cultivos energéticos
Productos de residuos como combustibles
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
id RULIBRE2_ea0b33f7d667cf2e4c962c5d00bceb8a
oai_identifier_str oai:repository.unilibre.edu.co:10901/17158
network_acronym_str RULIBRE2
network_name_str RIU - Repositorio Institucional UniLibre
repository_id_str
dc.title.es_CO.fl_str_mv Diseño de una cadena de suministro de biocombustible integrando decisiones estratégicas y tácticas
title Diseño de una cadena de suministro de biocombustible integrando decisiones estratégicas y tácticas
spellingShingle Diseño de una cadena de suministro de biocombustible integrando decisiones estratégicas y tácticas
Energía biomásica
Bioetanol
Cadena de suministro
Cultivos energéticos
Productos de residuos como combustibles
title_short Diseño de una cadena de suministro de biocombustible integrando decisiones estratégicas y tácticas
title_full Diseño de una cadena de suministro de biocombustible integrando decisiones estratégicas y tácticas
title_fullStr Diseño de una cadena de suministro de biocombustible integrando decisiones estratégicas y tácticas
title_full_unstemmed Diseño de una cadena de suministro de biocombustible integrando decisiones estratégicas y tácticas
title_sort Diseño de una cadena de suministro de biocombustible integrando decisiones estratégicas y tácticas
dc.creator.fl_str_mv Vera Jaramillo, Yazmín Andrea
Marín Arcila, Cristhian Felipe
dc.contributor.author.none.fl_str_mv Vera Jaramillo, Yazmín Andrea
Marín Arcila, Cristhian Felipe
dc.subject.proposal.es_CO.fl_str_mv Energía biomásica
Bioetanol
Cadena de suministro
Cultivos energéticos
Productos de residuos como combustibles
topic Energía biomásica
Bioetanol
Cadena de suministro
Cultivos energéticos
Productos de residuos como combustibles
description CD-T 662.88 V58; 75 p
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-04-10
dc.date.accessioned.none.fl_str_mv 2019-04-10T13:49:29Z
2019-10-04T15:33:37Z
dc.date.available.none.fl_str_mv 2019-04-10T13:49:29Z
2019-10-04T15:33:37Z
dc.type.local.spa.fl_str_mv Tesis de Pregrado
dc.type.coar.SPA.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.citation.es_CO.fl_str_mv Tesis Ingeniería Comercial
dc.identifier.other.none.fl_str_mv CD6100
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10901/17158
identifier_str_mv Tesis Ingeniería Comercial
CD6100
url https://hdl.handle.net/10901/17158
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv CD-T 662.88 V58;75 p
dc.relation.references.ENG.fl_str_mv Ahmadi-Javid, A., & Seddighi, A. H. (2012). A location-routing-inventory model for designing multisource distribution networks. Engineering Optimization, 44(6), 637–656. https://doi.org/10.1080/0305215X.2011.600756
Ahmadzadeh, E., & Vahdani, B. (2017). A location-inventory-pricing model in a closed loop supply chain network with correlated demands and shortages under a periodic review system. Computers & Chemical Engineering, 101, 148–166. https://doi.org/10.1016/j.compchemeng.2017.02.027
Akgul, O., Shah, N., & Papageorgiou, L. G. (2012). Economic optimisation of a UK advanced biofuel supply chain. Biomass and Bioenergy, 41, 57–72. https://doi.org/10.1016/j.biombioe.2012.01.040
Bairamzadeh, S., Pishvaee, M. S., & Saidi-Mehrabad, M. (2016). Multiobjective Robust Possibilistic Programming Approach to Sustainable Bioethanol Supply Chain Design under Multiple Uncertainties. Industrial and Engineering Chemistry Research, 55(1). https://doi.org/10.1021/acs.iecr.5b02875
Barbosa-Póvoa, A. P. (2012). Progresses and challenges in process industry supply chains optimization. Current Opinion in Chemical Engineering, 1(4), 446–452. https://doi.org/10.1016/j.coche.2012.09.006
Biajoli, F. L., Chaves, A. A., Antonio, L., & Lorena, N. (2019). A biased random-key genetic algorithm for the two-stage capacitated facility location problem, 115, 418–426. https://doi.org/10.1016/j.eswa.2018.08.024
Boloori Arabani, A., & Farahani, R. Z. (2012). Facility location dynamics: An overview of classifications and applications. Computers and Industrial Engineering, 62(1), 408–420. https://doi.org/10.1016/j.cie.2011.09.018
Cavallaro, C. M., Pearce, J. M., & Sidortsov, R. (2018). Decarbonizing the boardroom? Aligning electric utility executive compensation with climate change incentives. Energy Research and Social Science, 37(September 2017), 153–162. https://doi.org/10.1016/j.erss.2017.09.036
Cenicafé. (2016). Manejo de Subproductos. Recuperado a partir de https://www.cenicafe.org/es/index.php/cultivemos_cafe/manejo_de_subproductos
Chen, C. W., & Fan, Y. (2012). Bioethanol supply chain system planning under supply and demand uncertainties. Transportation Research Part E: Logistics and Transportation Review, 48(1), 150– 164. https://doi.org/10.1016/j.tre.2011.08.004
Chen, L., Olhager, J., & Tang, O. (2014). Manufacturing facility location and sustainability: A literature review and research agenda. International Journal of Production Economics, 149, 154–163. https://doi.org/10.1016/j.ijpe.2013.05.013
Choi, I. S., Wi, S. G., Kim, S. B., & Bae, H. J. (2012). Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresource Technology, 125, 132–137. https://doi.org/10.1016/j.biortech.2012.08.080
Darvish, M., & Coelho, L. C. (2018). Sequential versus integrated optimization: Production, location, inventory control, and distribution. European Journal of Operational Research, 268(1), 203– 214. https://doi.org/10.1016/j.ejor.2018.01.028
Deng, S., Li, Y., Guo, H., & Liu, B. (2016). Solving a Closed-Loop Location-Inventory-Routing Problem with Mixed Quality Defects Returns in E-Commerce by Hybrid Ant Colony Optimization Algorithm. Discrete Dynamics in Nature and Society, 2016. https://doi.org/10.1155/2016/6467812
Diabat, A., Battaïa, O., & Nazzal, D. (2015). An improved Lagrangian relaxation-based heuristic for a joint location-inventory problem. Computers and Operations Research, 61, 170–178. https://doi.org/10.1016/j.cor.2014.03.006
Duan, L., & Ventura, J. A. (2018). A Dynamic Supplier Selection and Inventory Management Model for a Serial Supply Chain with a Novel Supplier Price Break Scheme and Flexible Time Periods. European Journal of Operational Research, 272(3), 979–998. https://doi.org/10.1016/j.ejor.2018.07.031
Ekşioğlu, S. D., Acharya, A., Leightley, L. E., & Arora, S. (2009). Analyzing the design and management of biomass-to-biorefinery supply chain. Computers & Industrial Engineering, 57(4), 1342–1352. https://doi.org/10.1016/j.cie.2009.07.003
Feng, X., Moon, I., & Ryu, K. (2017). Warehouse capacity sharing via transshipment for an integrated two-echelon supply chain. Transportation Research Part E: Logistics and Transportation Review, 104, 17–35. https://doi.org/10.1016/j.tre.2017.04.014
Fernandes, D. R. M., Rocha, C., Aloise, D., Ribeiro, G. M., Santos, E. M., & Silva, A. (2014). A simple and effective genetic algorithm for the two-stage capacitated facility location problem. Computers and Industrial Engineering, 75(1), 200–208. https://doi.org/10.1016/j.cie.2014.05.023
Garcia, D. J., & You, F. (2015). Supply chain design and optimization: Challenges and opportunities. Computers and Chemical Engineering, 81, 153–170. https://doi.org/10.1016/j.compchemeng.2015.03.015
Ghahremani-Nahr, J., Kian, R., & Sabet, E. (2019). A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm. Expert Systems with Applications, 116, 454–471. 61 https://doi.org/https://doi.org/10.1016/j.eswa.2018.09.027
Ghorbani, A., & Akbari Jokar, M. R. (2016). A hybrid imperialist competitive-simulated annealing algorithm for a multisource multi-product location-routing-inventory problem. Computers and Industrial Engineering, 101, 116–127. https://doi.org/10.1016/j.cie.2016.08.027
González-González, L. M., Correa, D. F., Ryan, S., Jensen, P. D., Pratt, S., & Schenk, P. M. (2018). Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling. Renewable and Sustainable Energy Reviews, 82(September 2017), 1137–1148. https://doi.org/10.1016/j.rser.2017.09.091
Guerrero, W. J., Prodhon, C., Velasco, N., & Amaya, C. A. (2015). A relax-and-price heuristic for the inventory-location-routing problem. International Transactions in Operational Research, 22(1), 129–148. https://doi.org/10.1111/itor.12091
Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance measurement. International Journal of Production Economics, 87(3), 333–347. https://doi.org/10.1016/j.ijpe.2003.08.003
Hammami, R., Frein, Y., & Bahli, B. (2017). Supply chain design to guarantee quoted lead time and inventory replenishment: model and insights. International Journal of Production Research, 55(12). https://doi.org/10.1080/00207543.2016.1242799
He-Lambert, L., English, B. C., Lambert, D. M., Shylo, O., Larson, J. A., Yu, T. E., & Wilson, B. (2018). Determining a geographic high resolution supply chain network for a large scale biofuel industry. Applied Energy, 218(February), 266–281. https://doi.org/https://doi.org/10.1016/j.apenergy.2018.02.162
Hiassat, A., Diabat, A., & Rahwan, I. (2017). A genetic algorithm approach for location-inventoryrouting problem with perishable products. Journal of Manufacturing Systems, 42, 93–103. https://doi.org/10.1016/j.jmsy.2016.10.004
Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem., 6(25), 4497–4559. https://doi.org/10.1039/C5PY00263J
Jerbia, R., Boujelben, M. K., Sehli, M. A., & Jemai, Z. (2018). A stochastic closed-loop supply chain network design problem with multiple recovery options. Computers & Industrial Engineering, 118(June 2017), 23–32. https://doi.org/10.1016/j.cie.2018.02.011
Kim, H. M., Choi, Y. S., Lee, D. S., Kim, Y. H., & Bae, H. J. (2017). Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment. Bioresource Technology, 236, 194–201. https://doi.org/10.1016/j.biortech.2017.03.143
Lerhlaly, S., Lebbar, M., Allaoui, H., Afifi, S., & Ouazar, D. (2017). An inventory location routing model with environmental considerations. MATEC Web of Conferences, 00002, 0–3. https://doi.org/10.1051/matecconf/201710500002
Lin, T., Rodríguez, L. F., Shastri, Y. N., Hansen, A. C., & Ting, K. C. (2014). Integrated strategic and tactical biomass-biofuel supply chain optimization. Bioresource Technology, 156, 256–266. 62 https://doi.org/10.1016/j.biortech.2013.12.121
Liu, B., Chen, H., Li, Y., & Liu, X. (2015). A pseudo-parallel genetic algorithm integrating simulated annealing for stochastic location-inventory-routing problem with consideration of returns in ecommerce. Discrete Dynamics in Nature and Society, 2015. https://doi.org/10.1155/2015/586581
Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management - A review. European Journal of Operational Research, 196(2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007
Mirhashemi, M. S., Mohseni, S., Hasanzadeh, M., & Pishvaee, M. S. (2018). Moringa oleifera biomass-to-biodiesel supply chain design: An opportunity to combat desertification in Iran. Journal of Cleaner Production, 203, 313–327. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.08.257
Moradi Nasab, N., & Amin-Naseri, M. R. (2016). Designing an integrated model for a multi-period, multi-echelon and multi-product petroleum supply chain. Energy, 114, 708–733. https://doi.org/10.1016/j.energy.2016.07.140
Morales-Chávez, M. M., Sarache, W., & Costa, Y. (2018). Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues. Transportation Research Part E: Logistics and Transportation Review, 116(June), 136–162. https://doi.org/10.1016/j.tre.2018.06.001
Nekooghadirli, N., Tavakkoli-Moghaddam, R., Ghezavati, V. R., & Javanmard, S. (2014). Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-heuristics. Computers & Industrial Engineering, 76(1), 204–221. https://doi.org/10.1016/j.cie.2014.08.004
Ng, R. T. L., Kurniawan, D., Wang, H., Mariska, B., Wu, W., & Maravelias, C. T. (2018). Integrated framework for designing spatially explicit biofuel supply chains. Applied Energy, 216(January), 116–131. https://doi.org/10.1016/j.apenergy.2018.02.077
Ng, R. T. L., & Maravelias, C. T. (2016). Design of Cellulosic Ethanol Supply Chains with Regional Depots. Industrial and Engineering Chemistry Research, 55(12). https://doi.org/10.1021/acs.iecr.5b03677
Nguyen, Q. A., Yang, J., & Bae, H. J. (2017). Bioethanol production from individual and mixed agricultural biomass residues. Industrial Crops and Products, 95, 718–725. https://doi.org/10.1016/j.indcrop.2016.11.040
Persson, T., Garcia y Garcia, A., Paz, J., Jones, J., & Hoogenboom, G. (2009). Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices. Agricultural Systems, 100(1–3), 11–21. https://doi.org/10.1016/j.agsy.2008.11.004
Pourhejazy, P., & Kwon, O. (2016). The New Generation of Operations Research Methods in Supply Chain Optimization: A Review. Sustainability, 8(10), 1033. https://doi.org/10.3390/su8101033
Quddus, M. A., Chowdhury, S., Marufuzzaman, M., Yu, F., & Bian, L. (2018). A two-stage chanceconstrained stochastic programming model for a bio-fuel supply chain network. International Journal of Production Economics, 195(September 2017), 27–44. https://doi.org/10.1016/j.ijpe.2017.09.019
Rahimi, V., Karimi, K., Shafiei, M., Naghavi, R., Khoshnevisan, B., Ghanavati, H., … Tabatabaei, M. (2018). Well-to-wheel life cycle assessment of Eruca Sativa-based biorefinery. Renewable Energy, 117, 135–149. https://doi.org/10.1016/j.renene.2017.10.035
ReVelle, D. O. (2005). Recent advances in bolide entry modeling: A bolide potpourri. Earth, Moon and Planets, 97(1–2), 1–35. https://doi.org/10.1016/j.ejor.2003.11.032
Ross, A., Khajehnezhad, M., Otieno, W., & Aydas, O. (2017). Integrated location-inventory modelling under forward and reverse product flows in the used merchandise retail sector: A multiechelon formulation. European Journal of Operational Research, 259(2), 664–676. https://doi.org/10.1016/j.ejor.2016.10.036
Russell, R. A. (2017). Mathematical programming heuristics for the production routing problem. International Journal of Production Economics, 193(December 2016), 40–49. https://doi.org/10.1016/j.ijpe.2017.06.033
Shariff, S. S. R., Omar, M., & Moin, N. H. (2016). Location routing inventory problem with transshipment points using p-center. ICIMSA 2016 - 2016 3rd International Conference on Industrial Engineering, Management Science and Applications. https://doi.org/10.1109/ICIMSA.2016.7504016
Shen, M. S. D. R. C.-J. M. (2002). An Inventory-Location Model : Formulation , Solution. Annals of Operations Research, 83–106. Recuperado a partir de https://link-springercom.ezproxy.unal.edu.co/article/10.1023%2FA%3A1020763400324
Tang, J., Ji, S., & Jiang, L. (2016). The design of a sustainable location-routing-inventory model considering consumer environmental behavior. Sustainability (Switzerland), 8(3). https://doi.org/10.3390/su8030211
Toogood, H. S., & Scrutton, N. S. (2018). Retooling microorganisms for the fermentative production of alcohols. Current Opinion in Biotechnology, 50, 1–10. https://doi.org/10.1016/j.copbio.2017.08.010
Vahdani, B., Soltani, M., Yazdani, M., & Meysam Mousavi, S. (2017). A three level joint locationinventory problem with correlated demand, shortages and periodic review system: Robust meta-heuristics. Computers & Industrial Engineering, 109, 113–129. https://doi.org/10.1016/j.cie.2017.04.041
Vanajakumari, M., Kumar, S., & Gupta, S. (2016). An integrated logistic model for predictable disasters. Production and Operations Management, 25(5), 791–811. https://doi.org/10.1111/poms.12533
Xu, K., Lv, B., Huo, Y. X., & Li, C. (2018). Toward the lowest energy consumption and emission in biofuel production: combination of ideal reactors and robust hosts. Current Opinion in Biotechnology, 50, 19–24. https://doi.org/10.1016/j.copbio.2017.08.011
You, F., Tao, L., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input-output analysis. AIChE Journal, 58(4). https://doi.org/10.1002/aic.12637
Yuchi, Q., He, Z., Yang, Z., & Wang, N. (2016). A Location-Inventory-Routing Problem in Forward and Reverse Logistics Network Design. Discrete Dynamics in Nature and Society, 2016. https://doi.org/10.1155/2016/3475369
Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 89, 182–214. https://doi.org/10.1016/j.tre.2016.02.011
dc.relation.references.SPA.fl_str_mv B. Field, C., R. Barros, V., Jon Dokken, D., J. Mach, K., & D. Mastrandrea, M. (2014). Cambio Climático 2014. Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Recuperado a partir de https://www.ipcc.ch/pdf/assessmentreport/ar5/wg2/ar5_wgII_spm_es.pdf
Castillo Duarte, A. (2017). Análisis Técnico Y Económico Para El Diseño Preliminar De 3 Plantas De Producción De Biocombustibles A Partir De Residuos De Café.
FNC. (2018a). Café y Medio Ambiente. Recuperado a partir de http://www.cafedecolombia.com/particulares/es/sobre_el_cafe/mucho_mas_que_una_bebid a/cafe_y_medio_ambiente/
FNC. (2018b). Nuestras Regiones cafeteras. Recuperado a partir de http://www.cafedecolombia.com/particulares/es/la_tierra_del_cafe/regiones_cafeteras/
ICO. (2018). Informe del mercado de café - mayo, 3. Recuperado a partir de http://www.ico.org/documents/cy2017-18/cmr-0518-c.pdf
Rodríguez Valencia, N., & Zambrano Franco, D. (2010). Los subproductos del café: fuente de energía renovable. Avances Técnicos Cenicafé, (3), 8. https://doi.org/ISSN-0120-0178
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.license.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Pereira
dc.publisher.es_CO.fl_str_mv Universidad Libre Seccional Pereira
institution Universidad Libre
bitstream.url.fl_str_mv http://repository.unilibre.edu.co/bitstream/10901/17158/4/DISE%c3%91O%20DE%20UNA%20CADENA%20DE%20SUMINISTRO%20DE%20BIOCOMBUSTIBLE.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/17158/3/DISE%c3%91O%20DE%20UNA%20CADENA%20DE%20SUMINISTRO%20DE%20BIOCOMBUSTIBLE.pdf.txt
http://repository.unilibre.edu.co/bitstream/10901/17158/2/license_rdf
http://repository.unilibre.edu.co/bitstream/10901/17158/1/DISE%c3%91O%20DE%20UNA%20CADENA%20DE%20SUMINISTRO%20DE%20BIOCOMBUSTIBLE.pdf
bitstream.checksum.fl_str_mv a8ffb1204dc41b9d8db105ce6e46b349
3e7a5da476874c6281d8d61da387dc80
bb87e2fb4674c76d0d2e9ed07fbb9c86
f3382441bddaecbd9dc6eed8f0e374db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Unilibre
repository.mail.fl_str_mv repositorio@unilibrebog.edu.co
_version_ 1814090458109837312
spelling Vera Jaramillo, Yazmín AndreaMarín Arcila, Cristhian FelipePereira2019-04-10T13:49:29Z2019-10-04T15:33:37Z2019-04-10T13:49:29Z2019-10-04T15:33:37Z2018-04-10Tesis Ingeniería ComercialCD6100https://hdl.handle.net/10901/17158CD-T 662.88 V58; 75 pEl objetivo de esta investigación es el diseño de una cadena de suministro de biocombustible, que integre decisiones de instalaciones e inventario, en busca de la maximización del valor presente neto (VPN) del sistema. Un modelo de Programación Linea Entera Mixta (PLEM) determina la capacidad y ubicación de centros de acopio y biorefinerías, además de los flujos a lo largo de la cadena.Universidad Libre Seccional Pereiraapplication/pdfspaUniversidad Libre Seccional PereiraCD-T 662.88 V58;75 pAhmadi-Javid, A., & Seddighi, A. H. (2012). A location-routing-inventory model for designing multisource distribution networks. Engineering Optimization, 44(6), 637–656. https://doi.org/10.1080/0305215X.2011.600756Ahmadzadeh, E., & Vahdani, B. (2017). A location-inventory-pricing model in a closed loop supply chain network with correlated demands and shortages under a periodic review system. Computers & Chemical Engineering, 101, 148–166. https://doi.org/10.1016/j.compchemeng.2017.02.027Akgul, O., Shah, N., & Papageorgiou, L. G. (2012). Economic optimisation of a UK advanced biofuel supply chain. Biomass and Bioenergy, 41, 57–72. https://doi.org/10.1016/j.biombioe.2012.01.040Bairamzadeh, S., Pishvaee, M. S., & Saidi-Mehrabad, M. (2016). Multiobjective Robust Possibilistic Programming Approach to Sustainable Bioethanol Supply Chain Design under Multiple Uncertainties. Industrial and Engineering Chemistry Research, 55(1). https://doi.org/10.1021/acs.iecr.5b02875Barbosa-Póvoa, A. P. (2012). Progresses and challenges in process industry supply chains optimization. Current Opinion in Chemical Engineering, 1(4), 446–452. https://doi.org/10.1016/j.coche.2012.09.006Biajoli, F. L., Chaves, A. A., Antonio, L., & Lorena, N. (2019). A biased random-key genetic algorithm for the two-stage capacitated facility location problem, 115, 418–426. https://doi.org/10.1016/j.eswa.2018.08.024Boloori Arabani, A., & Farahani, R. Z. (2012). Facility location dynamics: An overview of classifications and applications. Computers and Industrial Engineering, 62(1), 408–420. https://doi.org/10.1016/j.cie.2011.09.018Cavallaro, C. M., Pearce, J. M., & Sidortsov, R. (2018). Decarbonizing the boardroom? Aligning electric utility executive compensation with climate change incentives. Energy Research and Social Science, 37(September 2017), 153–162. https://doi.org/10.1016/j.erss.2017.09.036Cenicafé. (2016). Manejo de Subproductos. Recuperado a partir de https://www.cenicafe.org/es/index.php/cultivemos_cafe/manejo_de_subproductosChen, C. W., & Fan, Y. (2012). Bioethanol supply chain system planning under supply and demand uncertainties. Transportation Research Part E: Logistics and Transportation Review, 48(1), 150– 164. https://doi.org/10.1016/j.tre.2011.08.004Chen, L., Olhager, J., & Tang, O. (2014). Manufacturing facility location and sustainability: A literature review and research agenda. International Journal of Production Economics, 149, 154–163. https://doi.org/10.1016/j.ijpe.2013.05.013Choi, I. S., Wi, S. G., Kim, S. B., & Bae, H. J. (2012). Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresource Technology, 125, 132–137. https://doi.org/10.1016/j.biortech.2012.08.080Darvish, M., & Coelho, L. C. (2018). Sequential versus integrated optimization: Production, location, inventory control, and distribution. European Journal of Operational Research, 268(1), 203– 214. https://doi.org/10.1016/j.ejor.2018.01.028Deng, S., Li, Y., Guo, H., & Liu, B. (2016). Solving a Closed-Loop Location-Inventory-Routing Problem with Mixed Quality Defects Returns in E-Commerce by Hybrid Ant Colony Optimization Algorithm. Discrete Dynamics in Nature and Society, 2016. https://doi.org/10.1155/2016/6467812Diabat, A., Battaïa, O., & Nazzal, D. (2015). An improved Lagrangian relaxation-based heuristic for a joint location-inventory problem. Computers and Operations Research, 61, 170–178. https://doi.org/10.1016/j.cor.2014.03.006Duan, L., & Ventura, J. A. (2018). A Dynamic Supplier Selection and Inventory Management Model for a Serial Supply Chain with a Novel Supplier Price Break Scheme and Flexible Time Periods. European Journal of Operational Research, 272(3), 979–998. https://doi.org/10.1016/j.ejor.2018.07.031Ekşioğlu, S. D., Acharya, A., Leightley, L. E., & Arora, S. (2009). Analyzing the design and management of biomass-to-biorefinery supply chain. Computers & Industrial Engineering, 57(4), 1342–1352. https://doi.org/10.1016/j.cie.2009.07.003Feng, X., Moon, I., & Ryu, K. (2017). Warehouse capacity sharing via transshipment for an integrated two-echelon supply chain. Transportation Research Part E: Logistics and Transportation Review, 104, 17–35. https://doi.org/10.1016/j.tre.2017.04.014Fernandes, D. R. M., Rocha, C., Aloise, D., Ribeiro, G. M., Santos, E. M., & Silva, A. (2014). A simple and effective genetic algorithm for the two-stage capacitated facility location problem. Computers and Industrial Engineering, 75(1), 200–208. https://doi.org/10.1016/j.cie.2014.05.023Garcia, D. J., & You, F. (2015). Supply chain design and optimization: Challenges and opportunities. Computers and Chemical Engineering, 81, 153–170. https://doi.org/10.1016/j.compchemeng.2015.03.015Ghahremani-Nahr, J., Kian, R., & Sabet, E. (2019). A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm. Expert Systems with Applications, 116, 454–471. 61 https://doi.org/https://doi.org/10.1016/j.eswa.2018.09.027Ghorbani, A., & Akbari Jokar, M. R. (2016). A hybrid imperialist competitive-simulated annealing algorithm for a multisource multi-product location-routing-inventory problem. Computers and Industrial Engineering, 101, 116–127. https://doi.org/10.1016/j.cie.2016.08.027González-González, L. M., Correa, D. F., Ryan, S., Jensen, P. D., Pratt, S., & Schenk, P. M. (2018). Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling. Renewable and Sustainable Energy Reviews, 82(September 2017), 1137–1148. https://doi.org/10.1016/j.rser.2017.09.091Guerrero, W. J., Prodhon, C., Velasco, N., & Amaya, C. A. (2015). A relax-and-price heuristic for the inventory-location-routing problem. International Transactions in Operational Research, 22(1), 129–148. https://doi.org/10.1111/itor.12091Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance measurement. International Journal of Production Economics, 87(3), 333–347. https://doi.org/10.1016/j.ijpe.2003.08.003Hammami, R., Frein, Y., & Bahli, B. (2017). Supply chain design to guarantee quoted lead time and inventory replenishment: model and insights. International Journal of Production Research, 55(12). https://doi.org/10.1080/00207543.2016.1242799He-Lambert, L., English, B. C., Lambert, D. M., Shylo, O., Larson, J. A., Yu, T. E., & Wilson, B. (2018). Determining a geographic high resolution supply chain network for a large scale biofuel industry. Applied Energy, 218(February), 266–281. https://doi.org/https://doi.org/10.1016/j.apenergy.2018.02.162Hiassat, A., Diabat, A., & Rahwan, I. (2017). A genetic algorithm approach for location-inventoryrouting problem with perishable products. Journal of Manufacturing Systems, 42, 93–103. https://doi.org/10.1016/j.jmsy.2016.10.004Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem., 6(25), 4497–4559. https://doi.org/10.1039/C5PY00263JJerbia, R., Boujelben, M. K., Sehli, M. A., & Jemai, Z. (2018). A stochastic closed-loop supply chain network design problem with multiple recovery options. Computers & Industrial Engineering, 118(June 2017), 23–32. https://doi.org/10.1016/j.cie.2018.02.011Kim, H. M., Choi, Y. S., Lee, D. S., Kim, Y. H., & Bae, H. J. (2017). Production of bio-sugar and bioethanol from coffee residue (CR) by acid-chlorite pretreatment. Bioresource Technology, 236, 194–201. https://doi.org/10.1016/j.biortech.2017.03.143Lerhlaly, S., Lebbar, M., Allaoui, H., Afifi, S., & Ouazar, D. (2017). An inventory location routing model with environmental considerations. MATEC Web of Conferences, 00002, 0–3. https://doi.org/10.1051/matecconf/201710500002Lin, T., Rodríguez, L. F., Shastri, Y. N., Hansen, A. C., & Ting, K. C. (2014). Integrated strategic and tactical biomass-biofuel supply chain optimization. Bioresource Technology, 156, 256–266. 62 https://doi.org/10.1016/j.biortech.2013.12.121Liu, B., Chen, H., Li, Y., & Liu, X. (2015). A pseudo-parallel genetic algorithm integrating simulated annealing for stochastic location-inventory-routing problem with consideration of returns in ecommerce. Discrete Dynamics in Nature and Society, 2015. https://doi.org/10.1155/2015/586581Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management - A review. European Journal of Operational Research, 196(2), 401–412. https://doi.org/10.1016/j.ejor.2008.05.007Mirhashemi, M. S., Mohseni, S., Hasanzadeh, M., & Pishvaee, M. S. (2018). Moringa oleifera biomass-to-biodiesel supply chain design: An opportunity to combat desertification in Iran. Journal of Cleaner Production, 203, 313–327. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.08.257Moradi Nasab, N., & Amin-Naseri, M. R. (2016). Designing an integrated model for a multi-period, multi-echelon and multi-product petroleum supply chain. Energy, 114, 708–733. https://doi.org/10.1016/j.energy.2016.07.140Morales-Chávez, M. M., Sarache, W., & Costa, Y. (2018). Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues. Transportation Research Part E: Logistics and Transportation Review, 116(June), 136–162. https://doi.org/10.1016/j.tre.2018.06.001Nekooghadirli, N., Tavakkoli-Moghaddam, R., Ghezavati, V. R., & Javanmard, S. (2014). Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-heuristics. Computers & Industrial Engineering, 76(1), 204–221. https://doi.org/10.1016/j.cie.2014.08.004Ng, R. T. L., Kurniawan, D., Wang, H., Mariska, B., Wu, W., & Maravelias, C. T. (2018). Integrated framework for designing spatially explicit biofuel supply chains. Applied Energy, 216(January), 116–131. https://doi.org/10.1016/j.apenergy.2018.02.077Ng, R. T. L., & Maravelias, C. T. (2016). Design of Cellulosic Ethanol Supply Chains with Regional Depots. Industrial and Engineering Chemistry Research, 55(12). https://doi.org/10.1021/acs.iecr.5b03677Nguyen, Q. A., Yang, J., & Bae, H. J. (2017). Bioethanol production from individual and mixed agricultural biomass residues. Industrial Crops and Products, 95, 718–725. https://doi.org/10.1016/j.indcrop.2016.11.040Persson, T., Garcia y Garcia, A., Paz, J., Jones, J., & Hoogenboom, G. (2009). Maize ethanol feedstock production and net energy value as affected by climate variability and crop management practices. Agricultural Systems, 100(1–3), 11–21. https://doi.org/10.1016/j.agsy.2008.11.004Pourhejazy, P., & Kwon, O. (2016). The New Generation of Operations Research Methods in Supply Chain Optimization: A Review. Sustainability, 8(10), 1033. https://doi.org/10.3390/su8101033Quddus, M. A., Chowdhury, S., Marufuzzaman, M., Yu, F., & Bian, L. (2018). A two-stage chanceconstrained stochastic programming model for a bio-fuel supply chain network. International Journal of Production Economics, 195(September 2017), 27–44. https://doi.org/10.1016/j.ijpe.2017.09.019Rahimi, V., Karimi, K., Shafiei, M., Naghavi, R., Khoshnevisan, B., Ghanavati, H., … Tabatabaei, M. (2018). Well-to-wheel life cycle assessment of Eruca Sativa-based biorefinery. Renewable Energy, 117, 135–149. https://doi.org/10.1016/j.renene.2017.10.035ReVelle, D. O. (2005). Recent advances in bolide entry modeling: A bolide potpourri. Earth, Moon and Planets, 97(1–2), 1–35. https://doi.org/10.1016/j.ejor.2003.11.032Ross, A., Khajehnezhad, M., Otieno, W., & Aydas, O. (2017). Integrated location-inventory modelling under forward and reverse product flows in the used merchandise retail sector: A multiechelon formulation. European Journal of Operational Research, 259(2), 664–676. https://doi.org/10.1016/j.ejor.2016.10.036Russell, R. A. (2017). Mathematical programming heuristics for the production routing problem. International Journal of Production Economics, 193(December 2016), 40–49. https://doi.org/10.1016/j.ijpe.2017.06.033Shariff, S. S. R., Omar, M., & Moin, N. H. (2016). Location routing inventory problem with transshipment points using p-center. ICIMSA 2016 - 2016 3rd International Conference on Industrial Engineering, Management Science and Applications. https://doi.org/10.1109/ICIMSA.2016.7504016Shen, M. S. D. R. C.-J. M. (2002). An Inventory-Location Model : Formulation , Solution. Annals of Operations Research, 83–106. Recuperado a partir de https://link-springercom.ezproxy.unal.edu.co/article/10.1023%2FA%3A1020763400324Tang, J., Ji, S., & Jiang, L. (2016). The design of a sustainable location-routing-inventory model considering consumer environmental behavior. Sustainability (Switzerland), 8(3). https://doi.org/10.3390/su8030211Toogood, H. S., & Scrutton, N. S. (2018). Retooling microorganisms for the fermentative production of alcohols. Current Opinion in Biotechnology, 50, 1–10. https://doi.org/10.1016/j.copbio.2017.08.010Vahdani, B., Soltani, M., Yazdani, M., & Meysam Mousavi, S. (2017). A three level joint locationinventory problem with correlated demand, shortages and periodic review system: Robust meta-heuristics. Computers & Industrial Engineering, 109, 113–129. https://doi.org/10.1016/j.cie.2017.04.041Vanajakumari, M., Kumar, S., & Gupta, S. (2016). An integrated logistic model for predictable disasters. Production and Operations Management, 25(5), 791–811. https://doi.org/10.1111/poms.12533Xu, K., Lv, B., Huo, Y. X., & Li, C. (2018). Toward the lowest energy consumption and emission in biofuel production: combination of ideal reactors and robust hosts. Current Opinion in Biotechnology, 50, 19–24. https://doi.org/10.1016/j.copbio.2017.08.011You, F., Tao, L., Graziano, D. J., & Snyder, S. W. (2012). Optimal design of sustainable cellulosic biofuel supply chains: Multiobjective optimization coupled with life cycle assessment and input-output analysis. AIChE Journal, 58(4). https://doi.org/10.1002/aic.12637Yuchi, Q., He, Z., Yang, Z., & Wang, N. (2016). A Location-Inventory-Routing Problem in Forward and Reverse Logistics Network Design. Discrete Dynamics in Nature and Society, 2016. https://doi.org/10.1155/2016/3475369Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation Research Part E: Logistics and Transportation Review, 89, 182–214. https://doi.org/10.1016/j.tre.2016.02.011B. Field, C., R. Barros, V., Jon Dokken, D., J. Mach, K., & D. Mastrandrea, M. (2014). Cambio Climático 2014. Quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. Recuperado a partir de https://www.ipcc.ch/pdf/assessmentreport/ar5/wg2/ar5_wgII_spm_es.pdfCastillo Duarte, A. (2017). Análisis Técnico Y Económico Para El Diseño Preliminar De 3 Plantas De Producción De Biocombustibles A Partir De Residuos De Café.FNC. (2018a). Café y Medio Ambiente. Recuperado a partir de http://www.cafedecolombia.com/particulares/es/sobre_el_cafe/mucho_mas_que_una_bebid a/cafe_y_medio_ambiente/FNC. (2018b). Nuestras Regiones cafeteras. Recuperado a partir de http://www.cafedecolombia.com/particulares/es/la_tierra_del_cafe/regiones_cafeteras/ICO. (2018). Informe del mercado de café - mayo, 3. Recuperado a partir de http://www.ico.org/documents/cy2017-18/cmr-0518-c.pdfRodríguez Valencia, N., & Zambrano Franco, D. (2010). Los subproductos del café: fuente de energía renovable. Avances Técnicos Cenicafé, (3), 8. https://doi.org/ISSN-0120-0178Atribución-NoComercial-SinDerivadas 3.0 Estados Unidos de Américahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Diseño de una cadena de suministro de biocombustible integrando decisiones estratégicas y tácticasTesis de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisEnergía biomásicaBioetanolCadena de suministroCultivos energéticosProductos de residuos como combustiblesTHUMBNAILDISEÑO DE UNA CADENA DE SUMINISTRO DE BIOCOMBUSTIBLE.pdf.jpgThumbnailimage/jpeg4710http://repository.unilibre.edu.co/bitstream/10901/17158/4/DISE%c3%91O%20DE%20UNA%20CADENA%20DE%20SUMINISTRO%20DE%20BIOCOMBUSTIBLE.pdf.jpga8ffb1204dc41b9d8db105ce6e46b349MD54TEXTDISEÑO DE UNA CADENA DE SUMINISTRO DE BIOCOMBUSTIBLE.pdf.txtExtracted texttext/plain101537http://repository.unilibre.edu.co/bitstream/10901/17158/3/DISE%c3%91O%20DE%20UNA%20CADENA%20DE%20SUMINISTRO%20DE%20BIOCOMBUSTIBLE.pdf.txt3e7a5da476874c6281d8d61da387dc80MD53CC-LICENSElicense_rdfapplication/octet-stream1232http://repository.unilibre.edu.co/bitstream/10901/17158/2/license_rdfbb87e2fb4674c76d0d2e9ed07fbb9c86MD52ORIGINALDISEÑO DE UNA CADENA DE SUMINISTRO DE BIOCOMBUSTIBLE.pdfCD-T 662.88 V58; 75 papplication/pdf1374561http://repository.unilibre.edu.co/bitstream/10901/17158/1/DISE%c3%91O%20DE%20UNA%20CADENA%20DE%20SUMINISTRO%20DE%20BIOCOMBUSTIBLE.pdff3382441bddaecbd9dc6eed8f0e374dbMD5110901/17158oai:repository.unilibre.edu.co:10901/171582022-10-11 12:57:45.038Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.co