caracterización de actividad promotora de crecimiento vegetal en bacterias aisladas de la compostera de la Universidad Libre seccional Pereira

El cultivo de hortalizas es altamente promisorio en Colombia, pero se requiere mayor conocimiento de su manejo agronómico y de los microorganismos que crecen asociados a su rizosfera, de los cuales dependen estas plantas para su nutrición y crecimiento. En este trabajo se aislaron e identificaron de...

Full description

Autores:
Rosero Realpe, Mateo
Giraldo Parra, Natalia
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Libre
Repositorio:
RIU - Repositorio Institucional UniLibre
Idioma:
OAI Identifier:
oai:repository.unilibre.edu.co:10901/28097
Acceso en línea:
https://hdl.handle.net/10901/28097
Palabra clave:
rhizobacterias
consorcios microbianos
BPVC
micronutrientes
hortalizas
compost
fertilidad del suelo
macronutrientes
agricultura sostenible
impacto ambiental
agroquímicos
actividad promotora
compatibilidad microbiana
rhizobacteria
microbial consortia
PGPB
micronutrients
vegetables
compost
soil fertility
macronutrients
sustainable agriculture
environmental impact
agrochemicals
promoting activity
microbial compatibility
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id RULIBRE2_848f96cab0542f4916753015f23d2594
oai_identifier_str oai:repository.unilibre.edu.co:10901/28097
network_acronym_str RULIBRE2
network_name_str RIU - Repositorio Institucional UniLibre
repository_id_str
dc.title.spa.fl_str_mv caracterización de actividad promotora de crecimiento vegetal en bacterias aisladas de la compostera de la Universidad Libre seccional Pereira
dc.title.alternative.spa.fl_str_mv Characterization of plant growth promoting activity in bacteria isolated from the compost bin of the Universidad Libre Seccional Pereira
title caracterización de actividad promotora de crecimiento vegetal en bacterias aisladas de la compostera de la Universidad Libre seccional Pereira
spellingShingle caracterización de actividad promotora de crecimiento vegetal en bacterias aisladas de la compostera de la Universidad Libre seccional Pereira
rhizobacterias
consorcios microbianos
BPVC
micronutrientes
hortalizas
compost
fertilidad del suelo
macronutrientes
agricultura sostenible
impacto ambiental
agroquímicos
actividad promotora
compatibilidad microbiana
rhizobacteria
microbial consortia
PGPB
micronutrients
vegetables
compost
soil fertility
macronutrients
sustainable agriculture
environmental impact
agrochemicals
promoting activity
microbial compatibility
title_short caracterización de actividad promotora de crecimiento vegetal en bacterias aisladas de la compostera de la Universidad Libre seccional Pereira
title_full caracterización de actividad promotora de crecimiento vegetal en bacterias aisladas de la compostera de la Universidad Libre seccional Pereira
title_fullStr caracterización de actividad promotora de crecimiento vegetal en bacterias aisladas de la compostera de la Universidad Libre seccional Pereira
title_full_unstemmed caracterización de actividad promotora de crecimiento vegetal en bacterias aisladas de la compostera de la Universidad Libre seccional Pereira
title_sort caracterización de actividad promotora de crecimiento vegetal en bacterias aisladas de la compostera de la Universidad Libre seccional Pereira
dc.creator.fl_str_mv Rosero Realpe, Mateo
Giraldo Parra, Natalia
dc.contributor.advisor.none.fl_str_mv Arias Gaviria, Duverney
dc.contributor.author.none.fl_str_mv Rosero Realpe, Mateo
Giraldo Parra, Natalia
dc.subject.spa.fl_str_mv rhizobacterias
consorcios microbianos
BPVC
micronutrientes
hortalizas
compost
fertilidad del suelo
macronutrientes
agricultura sostenible
impacto ambiental
agroquímicos
actividad promotora
compatibilidad microbiana
topic rhizobacterias
consorcios microbianos
BPVC
micronutrientes
hortalizas
compost
fertilidad del suelo
macronutrientes
agricultura sostenible
impacto ambiental
agroquímicos
actividad promotora
compatibilidad microbiana
rhizobacteria
microbial consortia
PGPB
micronutrients
vegetables
compost
soil fertility
macronutrients
sustainable agriculture
environmental impact
agrochemicals
promoting activity
microbial compatibility
dc.subject.subjectenglish.spa.fl_str_mv rhizobacteria
microbial consortia
PGPB
micronutrients
vegetables
compost
soil fertility
macronutrients
sustainable agriculture
environmental impact
agrochemicals
promoting activity
microbial compatibility
description El cultivo de hortalizas es altamente promisorio en Colombia, pero se requiere mayor conocimiento de su manejo agronómico y de los microorganismos que crecen asociados a su rizosfera, de los cuales dependen estas plantas para su nutrición y crecimiento. En este trabajo se aislaron e identificaron de un compost de la Universidad Libre de Pereira las bacterias promotoras de crecimiento como fijación de nitrógeno, solubilización de fosfato y potasio por medio de unos agares que indican la presencia de esta actividad en cada una de ellas, seleccionando las de mejor actividad; posteriormente se llevó a cabo las compatibilidades para evaluar que bacterias se llevan bien con las otras para el trabajo en equipo, eligiéndose solo las que no generan inhibición. Para establecer cuál es el grupo adecuado se formuló cinco insumos con las bacterias seleccionadas según su crecimiento y su trabajo en equipo, ensayándose en una plántula de frijol para así establecer los cambios que se presentaron en su crecimiento y desarrollo.
publishDate 2023
dc.date.created.none.fl_str_mv 2023-12-04
dc.date.accessioned.none.fl_str_mv 2024-01-24T21:29:24Z
dc.date.available.none.fl_str_mv 2024-01-24T21:29:24Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis de Pregrado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10901/28097
url https://hdl.handle.net/10901/28097
dc.relation.references.spa.fl_str_mv 1. Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front Microbiol. 2018 Mar 29;9:1606.
2. Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ. Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Front Sustain Food Syst. 2021 Feb 19;5:29.
3. Koide RT, Mosse B. A history of research on arbuscular mycorrhiza. Mycorrhiza [Internet]. 2004 Apr 16 [cited 2023 May 13];14(3):145–63. Available from: https://link.springer.com/article/10.1007/s00572-004-0307-4.
4. Malusà E, Pinzari F, Canfora L. Efficacy of biofertilizers: Challenges to improve crop production. Microbial Inoculants in Sustainable Agricultural Productivity: Vol 2: Functional Applications [Internet]. 2016 Jan 1 [cited 2023 May 13];17–40.
5. Jose R, Rodriguez N. "Evaluación de etapas del proceso productivo de un bioinsumo dirigido a la degradación de materiales orgánicos y regulación sanitaria de cultivos ".
6. Rocío A, Pabón M, Alexánder H, Quiñonez S. PRODUCTION OF BIOFERTILIZANTES. A DIAGNOSIS FROM THE TECHNOLOGICAL SURVEILLANCE PRODUCCIÓN DE BIOFERTILIZANTES: UN DIAGNÓSTICO DESDE LA VIGILANCIA TECNOLÓGICA [Internet]. Available from: www.bdigital.unal.edu.co/8282/1/
7. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species--opportunistic, avirulent plant symbionts. Nat Rev Microbiol [Internet]. 2004 Jan [cited 2023 Feb 4];2(1):43–56. Available from: https://pubmed.ncbi.nlm.nih.gov/15035008/
8. Eskew DL, Focht DD, Ting IP. Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmented Spirillum lipoferum. Appl Environ Microbiol [Internet]. 1977 [cited 2023 Apr 15];34(5):582–5. Available from: https://pubmed.ncbi.nlm.nih.gov/22311/
9. Mehnaz S, Lazarovits G. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol [Internet]. 2006 Apr 6 [cited 2023 Apr 15];51(3):326–35. Available from: https://link.springer.com/article/10.1007/s00248-006-9039-7
10. Sadigov R. Rapid Growth of the World Population and Its Socioeconomic Results. The Scientific World Journal [Internet]. 2022 Mar 23 [cited 2023 May 13];2022. Available from: /pmc/articles/PMC8967589/
11. Worldometer. Worldometer. [cited 2023 May 13]. Population > World. Available from: https://www.worldometers.info/population/world/
12. El mundo alcanza los 8 mil millones de habitantes, de los cuales 662 millones viven en América Latina y el Caribe. Cepal [Internet]. 2022; Available from: https://www.cepal.org/es/noticias/mundo-alcanza-8-mil-millones-habitantes-cuales-662-millones-viven-america-latina-caribe
13. Golay C. The Food Crisis and Food Security: Towards a New World Food Order? OpenEditionJournals [Internet]. 2010 Mar 1 [cited 2023 May 13];(1):215–32. Available from: http://journals.openedition.org/poldev/145
14. FAO IGS and E. State of knowledge of soil biodiversity - Status, challenges and potentialities. State of knowledge of soil biodiversity - Status, challenges and potentialities. 2020 Dec 4;
15. Ramírez-Pinzón H. La cebolla de Rama (Allium fistulosum) y su cultivo [Internet]. Corpoica. Humberto L, editor. Bogotá; 2004 [cited 2023 Feb 4]. Available from: https://repository.agrosavia.co/bitstream/handle/20.500.12324/2121/41284_27373.pdf?sequence=1&isAllowed=y
16. Figuerola ELM, Guerrero LD, Türkowsky D, Wall LG, Erijman L. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale. Environ Microbiol [Internet]. 2015 Mar 1 [cited 2023 May 13];17(3):678–88. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.12497
17. Galloway JN, Leach AM, Erisman JW, Bleeker A, Galloway JN, Leach AM, et al. Nitrogen: the historical progression from ignorance to knowledge, with a view to future solutions. Soil Research [Internet]. 2017 Aug 7 [cited 2023 Apr 15];55(6):417–24. Available from: https://www.publish.csiro.au/sr/SR16334
18. Pereira A. Plant abiotic stress challenges from the changing environment. Front Plant Sci. 2016 Jul 27;7(JULY2016):1123.
19. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytologist [Internet]. 2014 Jul 1 [cited 2023 May 13];203(1):32–43. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/nph.12797
20. Srivastav AL. Chemical fertilizers and pesticides: role in groundwater contamination. Agrochemicals Detection, Treatment and Remediation. 2020 Jan 1;143–59.
21. Russeell W. Water as an equalizer: the science and management of south african reservoir lakes and the implications for social and economic development . ResearchGate [Internet]. 2015 Jul [cited 2023 Jan 1]; Available from: https://www.researchgate.net/publication/280008728_WATER_AS_AN_EQUALIZER_THE_SCIENCE_AND_MANAGEMENT_OF_SOUTH_AFRICAN_RESERVOIR_LAKES_AND_THE_IMPLICATIONS_FOR_SOCIAL_AND_ECONOMIC_DEVELOPMENT
22. Fernández J. Afectación a disponibilidad de agroquímicos a nivel mundial - CropLife Latin America. CropLife [Internet]. 2021 [cited 2023 Apr 15]; Available from: https://www.croplifela.org/es/actualidad/noticias/afectacion-a-disponibilidad-de-agroquimicos-a-nivel-mundial
23. Singh AP, Narayanan K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environ Dev Sustain [Internet]. 2015 Dec 1 [cited 2023 Apr 15];17(6):1509–25. Available from: https://link.springer.com/article/10.1007/s10668-015-9618-1
24. Global situation of pesticide management in agriculture and public health Report of a 2018 WHO-FAO survey. World Health Organization [Internet]. 2018 [cited 2023 Apr 15]; Available from: https://apps.who.int/iris/bitstream/handle/10665/329971/9789241516884-eng.pdf?sequence=1&isAllowed=y
25. Mandal A, Sarkar B, Mandal S, Vithanage M, Patra AK, Manna MC. Impact of agrochemicals on soil health. Agrochemicals Detection, Treatment and Remediation: Pesticides and Chemical Fertilizers. 2020 Jan 1;161–87.
26. Maggi F, Tang FHM, la Cecilia D, McBratney A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Scientific Data 2019 6:1 [Internet]. 2019 Sep 12 [cited 2023 Apr 15];6(1):1–20. Available from: https://www.nature.com/articles/s41597-019-0169-4
27. Pérez Lavalle L, Bolívar Anillo HJ, Díaz Pérez A. Biofertilizantes en Colombia. Productos de confitería nutracéutica. 2017 Mar 10;179–222.
28. Luna Martínez L, Peniche RAM, Iturriaga H, Medrano SMA, Pacheco Aguilar JR. Characterization of rhizobacteria isolated from tomato and their effect on tomato and bell pepper growth. Artículo Científico Rev Fitotec Mex. 2013;36(1):63–9.
29. Min. Agricultura. Cadena de las Hortalizas. Dirección de Cadenas Agrícolas y Fortestales . 2020;
30. Penagos ÁM, Parra MA, Granados S. La biodiversidad y el desarrollo agropecuario en Colombia: propuesta para avanzar hacia una transformación desde la perspectiva del desarrollo sostenible. Naturaleza y Sociedad Desafíos Medioambientales [Internet]. 2022 May 1 [cited 2023 May 14];(2):51–67. Available from: https://revistas.uniandes.edu.co/index.php/nys/article/view/4732/4331
31. ICA. Instituto Colombiano Agropecuario . [cited 2023 May 14]. Fertilizantes y Bioinsumos. Available from: https://www.ica.gov.co/getdoc/a5c149c5-8ec8-4fed-9c22-62f31a68ae49/fertilizantes-y-bio-insumos-agricolas.aspx
32. Instituto Colombiano Agropecuario. Resolución Bioinsumos 068370 del 27 de mayo de 2020 [Internet]. Bogotá: Congreso de la República; May 27, 2020. Available from: https://www.ica.gov.co/getattachment/Areas/Agricola/Servicios/Fertilizantes-y-Bio-insumos-Agricolas/Resolucion-068370-del-27-de-mayo-de-2020.pdf.aspx?lang=es-CO
33. Instituto Colombiano Agropecuario. RESOLUCIÓN No. 00150- Reglamento Técnico de Fertilizantes y Acondicionadores de Suelos para Colombia. Bogotá: Congreso de la República; Jan 21, 2003.
34. ICA. Guia para la entrega de material de referencia en el laboratorio nacional de insumos agrícolas para el registro de productos bioinsumos. Bogotá;
35. Ilangumaran G, Lamont JR, Smith DL. The role of the phytomicrobiome in maintaining biofuel crop production in a changing climate . Microbes for Climate Resilient Agriculture [Internet]. 2018 Feb 23 [cited 2023 May 14];1–24. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/9781119276050.ch1
36. Lal R. Soil conservation and ecosystem services. International soil and water conservation research. 2014;2(3):36–47.
37. Jia P, Liang J liang, Yang S xiang, Zhang S chang, Liu J, Liang Z wei, et al. Plant diversity enhances the reclamation of degraded lands by stimulating plant–soil feedbacks. Journal of Applied Ecology [Internet]. 2020 Jul 1 [cited 2023 May 14];57(7):1258–70. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2664.13625
38. Hoffland E, Kuyper TW, Comans RNJ, Creamer RE. Eco-functionality of organic matter in soils. Plant and Soil 2020 455:1 [Internet]. 2020 Aug 17 [cited 2023 Apr 18];455(1):1–22. Available from: https://link.springer.com/article/10.1007/s11104-020-04651-9
39. Totsche KU, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, Knief C, et al. Microaggregates in soils. Journal of Plant Nutrition and Soil Science [Internet]. 2018 Feb 1 [cited 2023 Apr 18];181(1):104–36. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jpln.201600451
40. Sahu D, Priyadarshani I, Rath * B. CYANOBACTERIA - as potential biofertilizer. Online) An Online International Journal Available at [Internet]. 2012 [cited 2023 Apr 18];1(3):20–6. Available from: http://www.cibtech.org/cjm.htm
42. Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, et al. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecol Eng. 2017 Oct 1;107:8–32.
43. Shivakumar S, Bhaktavatchalu S. Role of Plant Growth-Promoting Rhizobacteria (PGPR) in the Improvement of Vegetable Crop Production Under Stress Conditions. In: Microbial Strategies for Vegetable Production. Cham: Springer International Publishing; 2017. p. 81–97.
44. Dilnashin H, Birla H, Hoat TX, Singh HB, Singh SP, Keswani C. Applications of agriculturally important microorganisms for sustainable crop production. Molecular Aspects of Plant Beneficial Microbes in Agriculture. 2020 Jan 1;403–15.
45. Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci. 2014 Jan 1;26(1):1–20.
46. M A, M.S K. Influence of Selective Herbicides on Plant Growth Promoting Traits of Phosphate Solubilizing Enterobacter asburiae Strain PS2. Res J Microbiol [Internet]. 2010 [cited 2023 Apr 16];05:849–57. Available from: https://docsdrive.com/pdfs/scienceinternational/jm/2010/849-857.pdf
47. da Silva MSR de A, dos Santos B de MS, da Silva CSR de A, da Silva CSR de A, Antunes LF de S, dos Santos RM, et al. Humic Substances in Combination With Plant Growth-Promoting Bacteria as an Alternative for Sustainable Agriculture. Front Microbiol. 2021 Oct 29;12:3025.
48. Saavedra-Díaz J, Galeano-Olaya PE, Canal D. NA. Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de Ciencias Agrícolas [Internet]. 2017 Jun 12 [cited 2023 Feb 10];34(1):17–31. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-01352017000100002&lng=en&nrm=iso&tlng=es
49. Camelo-Rusinque M, Moreno-Galván A, Romero-Perdomo F, Bonilla-Buitrago R. Desarrollo de un sistema de fermentación líquida y de enquistamiento para una bacteria fijadora de nitrógeno con potencial como biofertilizante. Rev Argent Microbiol. 2017 Jul 1;49(3):289–96.
50. Alka S, Shahir S, Ibrahim N, Chai TT, Mohd Bahari Z, Abd Manan F. The role of plant growth promoting bacteria on arsenic removal: A review of existing perspectives. Environ Technol Innov. 2020 Feb 1;17:100602.
41. Kumar S, Diksha, Sindhu SS, Kumar R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microb Sci. 2022 Jan 1;3:100094.
51. Li J, Wang C, Liang W, Liu S. Rhizosphere Microbiome: The Emerging Barrier in Plant-Pathogen Interactions. Front Microbiol. 2021 Oct 29;12:3381.
52. Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012 Aug 1;17(8):478–86.
53. Lopes LD, Pereira e Silva M de C, Andreote FD. Bacterial abilities and adaptation toward the rhizosphere colonization. Front Microbiol. 2016 Aug 25;7(AUG):1341.
54. Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 2018 Feb 9;9:112.
55. Korenblum E, Massalha H, Aharoni A. Plant–microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell [Internet]. 2022 Aug 25 [cited 2023 May 14];34(9):3168–82. Available from: https://academic.oup.com/plcell/article/34/9/3168/6604757
56. Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol [Internet]. 2020 Jun 1 [cited 2023 May 14];128(6):1583–94. Available from: https://academic.oup.com/jambio/article/128/6/1583/6718525
57. Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. The Plant Journal [Internet]. 2021 Jan 1 [cited 2023 May 14];105(2):518–41. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/tpj.15135
58. Keohane CE, Steele AD, Wuest WM. Synpacts Syn lett The Rhizosphere Microbiome: A Playground for Natural Product Chemists. 2015;26:2739–44.
59. Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol [Internet]. 2017 Nov 1 [cited 2023 May 14];33(11):197. Available from: /pmc/articles/PMC5686270/
60. Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci. 2014 Jan 1;26(1):1–20.
61. Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. http://www.editorialmanager.com/cogentagri [Internet]. 2016 [cited 2023 May 14];2(1). Available from: https://www.tandfonline.com/doi/abs/10.1080/23311932.2015.1127500
62. Perdomo C, Barbazán M. Nitrógeno . [Montevideo]: Universidad de la republica ;
63. Berthrong ST, Yeager CM, Gallegos-Graves L, Steven B, Eichorst SA, Jackson RB, et al. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Appl Environ Microbiol [Internet]. 2014 [cited 2023 Jan 3];80(10):3103–12. Available from: https://journals.asm.org/doi/10.1128/AEM.04034-13
64. Wagner S. Nature Education Knowledge. 2011 [cited 2023 Jan 3]. Biological Nitrogen Fixation . Available from: https://www.nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419/
65. Fulthorpe R, MacIvor JS, Jia P, Yasui SLE. The green roof microbiome: Improving plant survival for ecosystem service delivery. Front Ecol Evol. 2018 Feb 2;6(FEB):5.
66. Adesemoye AO, Torbert HA, Kloepper JW. Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Applied Soil Ecology. 2010 Sep 1;46(1):54–8.
67. de la fe Perez Y, Díaz A, Restrepo G, Baldani V. Diversidad de bacterias diazotróficas asociativas potencialmente eficientes en cultivos de importancia económica. ResearchGate [Internet]. 2019 Feb [cited 2023 Jan 5]; Available from: https://www.researchgate.net/publication/331071516_Diversidad_de_bacterias_diazotroficas_asociativas_potencialmente_eficientes_en_cultivos_de_importancia_economica
68. Dixon R, Kahn D. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology 2004 2:8 [Internet]. 2004 Aug [cited 2023 Jan 7];2(8):621–31. Available from: https://www.nature.com/articles/nrmicro954
69. Vitousek PM, Menge DNL, Reed SC, Cleveland CC. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences [Internet]. 2013 Jul 5 [cited 2023 Jan 7];368(1621). Available from: https://royalsocietypublishing.org/doi/10.1098/rstb.2013.0119
70. Rubio LM, Ludden PW. Maturation of nitrogenase: A biochemical puzzle. J Bacteriol [Internet]. 2005 [cited 2023 Jan 7];187(2):405–14. Available from: https://journals.asm.org/doi/10.1128/JB.187.2.405-414.2005
71. Pankievicz VCS, Irving TB, Maia LGS, Ané JM. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biology 2019 17:1 [Internet]. 2019 Dec 3 [cited 2023 Jan 7];17(1):1–17. Available from: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-019-0710-0
72. Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 2011 28:4 [Internet]. 2011 Dec 24 [cited 2023 May 14];28(4):1327–50. Available from: https://link.springer.com/article/10.1007/s11274-011-0979-9
73. Mpanga IK, Gomez-Genao N, Moradtalab N, Wanke D, Chrobaczek V, Ahmed A, et al. The role of N form supply for PGPM-host plant interactions in maize. Journal of Plant Nutrition and Soil Science [Internet]. 2019 Dec 1 [cited 2023 May 14];182(6):908–20. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jpln.201900133
74. Singh P, Sinhu S. (PDF) Potassium solubilization by rhizosphere bacteria: Influence of nutritional and environmental conditions. ResearchGate [Internet]. 2013 [cited 2023 Feb 10]; Available from: https://www.researchgate.net/publication/273318859_Potassium_solubilization_by_rhizosphere_bacteria_Influence_of_nutritional_and_environmental_conditions
75. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv. 2014 Mar 1;32(2):429–48.
76. Álvaro GJ. Fertibox. 2019 [cited 2022 May 28]. El potasio y su importancia en el crecimiento vegetal. Available from: https://www.fertibox.net/single-post/potasio-agricultura
77. Zörb C, Senbayram M, Peiter E. Potassium in agriculture – Status and perspectives. J Plant Physiol. 2014 May 15;171(9):656–69.
78. Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. J Plant Physiol. 2014 May 15;171(9):696–707.
79. Shanware AS, Kalkar SA, Trivedi MM. Potassium Solublisers: Occurrence, Mechanism and Their Role as Competent Biofertilizers. IntJCurrMicrobiolAppSci [Internet]. 2014 [cited 2023 Feb 10];3(9):622–9. Available from: http://www.ijcmas.com
80. Emsley J. Lenntech . 2001 [cited 2022 Apr 30]. Potasio (K) Propiedades químicas y efectos sobre la salud y el medio ambiente. Available from: https://www.lenntech.es/periodica/elementos/k.htm
81. Abou-el-Seoud II, Abdel-Megeed A. Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions. Saudi J Biol Sci. 2012 Jan 1;19(1):55–63.
82. Ramakrishna W, Yadav R, Li K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology. 2019 Jun;138:10–8.
83. Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A. Rhizosphere microbes: Potassium solubilization and crop productivity – present and future aspects. Potassium Solubilizing Microorganisms for Sustainable Agriculture. 2016 Jan 1;315–25.
84. Asif R, Yasmin R, Mustafa M, Ambreen A, Mazhar M, Rehman A, et al. Phytohormones as Plant Growth Regulators and Safe Protectors against Biotic and Abiotic Stress. Plant Hormones - Recent Advances, New Perspectives and Applications [Internet]. 2022 Mar 30 [cited 2023 May 14]; Available from: https://www.intechopen.com/chapters/81026
85. Poveda J, González-Andrés F. Bacillus as a source of phytohormones for use in agriculture. Appl Microbiol Biotechnol [Internet]. 2021 Dec 1 [cited 2023 May 14];105(23):8629–45. Available from: https://link.springer.com/article/10.1007/s00253-021-11492-8
86. Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev [Internet]. 2007 Jul 1 [cited 2023 May 14];31(4):425–48. Available from: https://academic.oup.com/femsre/article/31/4/425/2399113
87. Dilworth LL, Riley CK, Stennett DK. Plant Constituents: Carbohydrates, Oils, Resins, Balsams, and Plant Hormones. Pharmacognosy: Fundamentals, Applications and Strategy. 2017 Jan 1;61–80.
88. Woodward AW, Bartel B. Auxin: Regulation, Action, and Interaction. Ann Bot [Internet]. 2005 Apr 1 [cited 2023 May 14];95(5):707–35. Available from: https://academic.oup.com/aob/article/95/5/707/201283
89. Zazimalova E, Napier RM. Points of regulation for auxin action. Plant Cell Rep [Internet]. 2003 Mar 1 [cited 2023 May 14];21(7):625–34. Available from: https://link.springer.com/article/10.1007/s00299-002-0562-9
90. Gao X, Zhang Y, He Z, Fu X. Gibberellins. Hormone Metabolism and Signaling in Plants. 2017 Jan 1;107–60.
91. Weiss D, Ori N. Mechanisms of Cross Talk between Gibberellin and Other Hormones. Plant Physiol [Internet]. 2007 Jul 5 [cited 2023 May 14];144(3):1240–6. Available from: https://academic.oup.com/plphys/article/144/3/1240/6106698
92. Muharram M, Satria Bayu A, Prijo Rahardjo T, - al, Wang X, Liang D, et al. Gibberellin And IAA Production by Rhizobacteria From Various Private Forest. IOP Conf Ser Earth Environ Sci [Internet]. 2019 May 1 [cited 2023 May 14];270(1):012018. Available from: https://iopscience.iop.org/article/10.1088/1755-1315/270/1/012018
93. Schmlling T. Cytokinin. Encyclopedia of Biological Chemistry: Second Edition. 2013 Jan 1;627–31.
94. He X, Chen H, Niu B, Wang J. Root Growth Optimizer with Self-Similar Propagation. Math Probl Eng. 2015;2015.
95. de Garcia Salamone IE, Hynes RK, Nelson LM. Role of Cytokinins in Plant Growth Promotion by Rhizosphere Bacteria. In: PGPR: Biocontrol and Biofertilization. Dordrecht: Springer Netherlands; 2005. p. 173–95.
96. Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci. 2017 Apr 4;8:475.
97. Vaseva II, Qudeimat E, Potuschak T, Du Y, Genschik P, Vandenbussche F, et al. The plant hormone ethylene restricts Arabidopsis growth via the epidermis. Proc Natl Acad Sci U S A [Internet]. 2018 Apr 24 [cited 2023 May 14];115(17):E4130–9. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.1717649115
98. Chang C. Q and A: How do plants respond to ethylene and what is its importance? BMC Biol [Internet]. 2016 Jan 27 [cited 2023 May 14];14(1):1–7. Available from: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0230-0
99. Ravanbakhsh M, Sasidharan R, Voesenek LACJ, Kowalchuk GA, Jousset A. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome [Internet]. 2018 Mar 21 [cited 2023 May 14];6(1):52. Available from: https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0436-1
100. Tamariz-Angeles C, Huamán GD, Palacios-Robles E, Olivera-Gonzales P, Castañeda-Barreto A. Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejón de Huaylas (Ancash, Perú). Microbiol Res. 2021 Sep 1;250:126811.
Microbiol Res. 2021 Sep 1;250:126811. 101. Connolly EL, Guerinot M Lou. Iron stress in plants. Genome Biology 2002 3:8 [Internet]. 2002 Jul 30 [cited 2023 May 14];3(8):1–4. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/gb-2002-3-8-reviews1024
102. Sinha D, Mukherjee S, Mahapatra D. Multifaceted Potential of Plant Growth Promoting Rhizobacteria (PGPR). 2021 Apr 12;205–68.
103. Jha Y, Dehury B, Kumar SPJ, Chaurasia A, Singh UB, Yadav MK, et al. Delineation of molecular interactions of plant growth promoting bacteria induced β-1,3-glucanases and guanosine triphosphate ligand for antifungal response in rice: a molecular dynamics approach. Mol Biol Rep [Internet]. 2022 Apr 1 [cited 2023 May 14];49(4):2579. Available from: /pmc/articles/PMC8924079/
104. Galeano Vanegas NF, Marulanda Moreno SM, Padilla Hurtado BE, Mantilla Afanador JG, Ceballos Aguirre N, Restrepo Franco GM. Antagonism of plant growth promoting rhizobacteria against the causal agent of the vascular wilting of tomato. Rev Colomb Biotecnol [Internet]. 2020 [cited 2023 May 14];22. Available from: https://www.redalyc.org/journal/776/77666754004/77666754004.pdf
105. Shi P, Zhang J, Li X, Zhou L, Luo H, Wang L, et al. Multiple Metabolic Phenotypes as Screening Criteria Are Correlated With the Plant Growth-Promoting Ability of Rhizobacterial Isolates. Front Microbiol [Internet]. 2022 Jan 5 [cited 2023 May 14];12. Available from: /pmc/articles/PMC8767003/
106. Mayz-Figueroa J. Fijación biológica de nitrógeno. Revista Científica UDO Agrícola, ISSN-e 1317-9152, Vol 4, No 1, 2004, págs 1-20 [Internet]. 2004 [cited 2023 May 14];4(1):1–20. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=2221548&info=resumen&idioma=SPA
107. Baldani JI, Reis VM, Videira SS, Boddey LH, Baldani VLD. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil [Internet]. 2014 Oct 25 [cited 2023 May 14];384(1–2):413–31. Available from: https://link.springer.com/article/10.1007/s11104-014-2186-6
108. Juan Esteban D, Rodolfo L. Evaluación preliminar para aislamiento e identificación bioquímica de Streptomyces sp.
109. Acevedo E, Galindo-Castañeda T, Prada F, Navia M, Romero HM. Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia. Applied Soil Ecology. 2014 Aug 1;80:26–33.
110. Haq IU, Ali S, Iqbal J. Direct production of citric acid from raw starch by Aspergillus niger. Process Biochemistry. 2003 Jan 31;38(6):921–4.
111. Zahir ZA, Arshad M, Frankenberger WT. Plant Growth Promoting Rhizobacteria: Applications and Perspectives In Agriculture. Advances in Agronomy. 2003 Jan 1;81:97–168.
112. Archana G, Buch A, Kumar GN. Pivotal role of organic acid secretion by rhizobacteria in plant growth promotion. Microorganisms in Sustainable Agriculture and Biotechnology [Internet]. 2013 Oct 1 [cited 2023 May 14];35–53. Available from: https://link.springer.com/chapter/10.1007/978-94-007-2214-9_3
113. Etesami H, Emami S, Alikhani HA. Potassium solubilizing bacteria (KSB):: Mechanisms, promotion of plant growth, and future prospects ¬ A review. J Soil Sci Plant Nutr [Internet]. 2017 Dec 1 [cited 2023 May 14];17(4):897–911. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162017000400005&lng=es&nrm=iso&tlng=en
114. Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett [Internet]. 1999 Jan 1 [cited 2023 May 14];170(1):265–70. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1574-6968.1999.tb13383.x
115. Bello-Akinosho M, Makofane R, Adeleke R, Thantsha M, Pillay M, Chirima GJ. Potential of Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Isolates to Contribute to Soil Fertility. Biomed Res Int [Internet]. 2016 [cited 2023 May 14];2016. Available from: https://www.researchgate.net/publication/308915662_Potential_of_Polycyclic_Aromatic_Hydrocarbon-Degrading_Bacterial_Isolates_to_Contribute_to_Soil_Fertility
116. Rocío A, Pabón M, Alexánder H, Quiñonez S. PRODUCCIÓN DE BIOFERTILIZANTES: UN DIAGNÓSTICO DESDE LA VIGILANCIA TECNOLÓGICA. Revista Agropecuaria y Agroindustrial La Angostura [Internet]. 2017 [cited 2023 May 14];4. Available from: https://revistas.sena.edu.co/index.php/raaa/article/view/4723
117. Pérez Sánchez A, Sing S, Pérez Sánchez EJ, Segura Silva RM. Evaluación técnico-económica y diseño conceptual de una planta de biofertilizantes líquidos. Rev Colomb Biotecnol. 2018 Jul 1;20(2):6–18.
118. Arenas MN. Desarrollo, estabilidad y eficacia de biofertilizantes para la mejora del cultivo de plantas de tomate y maíz. [Barcelona ]: Universidad de Barcelona; 2021.
119. Estela González de Bashan L, Moreno Legorreta M, Pablo Hernández J, Alberto Mendoza Labrador J. Métodos de aplicación de biofertilizantes bacterianos 7.
120. Vílchez JI, Navas A, González-López J, Arcos SC, Manzanera M. Biosafety Test for Plant Growth-Promoting Bacteria: Proposed Environmental and Human Safety Index (EHSI) Protocol. Front Microbiol [Internet]. 2015 [cited 2023 May 14];6(JAN):1514. Available from: /pmc/articles/PMC4703995/
121. Shekhawat K, Fröhlich K, García-Ramírez GX, Trapp MA, Hirt H. Ethylene: A Master Regulator of Plant–Microbe Interactions under Abiotic Stresses. Cells 2023, Vol 12, Page 31 [Internet]. 2022 Dec 21 [cited 2023 May 14];12(1):31. Available from: https://www.mdpi.com/2073-4409/12/1/31/htm
122. Cardona JMH, Álvarez JV, Henao LMÁ. Propiedades fisicoquímicas como base para la caracterización de suelos, cultivados en mora (Rubus glaucus, Benth) en el departamento de Risaralda, Colombia / hysico-chemical properties as a basis characterization of soils farming at blackberry crop (Rubus glaucus, Benth) in Risaralda department, Colombia. Brazilian Journal of Animal and Environmental Research. 2021 Dec 9;4(4):6144–63.
123. Ríos Gallego G, Muñoz Valencia CI, Franco G, Rodríguez Martínez JL. Caracterización del sistema de producción de mora en los municipios de Quinchía, Guática (Risaralda) y Riosucio (Caldas). [cited 2023 May 13]; Available from: https://repository.agrosavia.co/handle/20.500.12324/21109
124. Fajardo Puerta NF. Influencia de las propiedades físicas y químicas en la profundidad del horizonte A de tres suelos de la zona cafetera colombiana. [Internet]. Universidad Nacional de Colombia ; 1979 [cited 2023 May 13]. Available from: https://repository.agrosavia.co/handle/20.500.12324/22891
125. Sach´a J. EL CULTIVO DE LAS HORTALIZAS .
126. Fao. Producción de hortalizas. 2011;
127. Rozano V, Quiróz C, Carlos J, Pulido A, Adrián L, Ayaquica P, et al. HORTALIZAS, LAS LLAVES DE LA ENERGÍA. 2004;
128. Correa É. AGRONEGOCIOS. 2011 [cited 2022 Mar 11]. La hora de las hortalizas. Available from: https://www.agronegocios.co/analisis/ender-correa-2982797/la-hora-de-las-hortalizas-2982626
129. Karthick R, Rajalingam G V, Praneetha S, Sujatha KB, Arumugam T. Effect of micronutrients on growth , flowering and yield of bitter gourd ( Momordica charantia ) cv . CO 1. 2018;6(1):845–8.
130. Naeem M, Aslam Z, Khaliq A, Ahmed JN, Nawaz A, Hussain M. Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat. Brazilian Journal of Microbiology. 2018 Nov 1;49:9–14.
131. González X. AGRONEGOCIOS . 2020 [cited 2022 Mar 11]. Nutrición foliar en las plantas es fundamental para el uso eficiente de fertilizantes. Available from: https://www.agronegocios.co/agricultura/nutricion-foliar-en-las-plantas-es-fundamental-para-el-uso-eficiente-de-fertilizantes-3019052
132. Traxco. Suelos de cultivo - Características, clasificación y textura [Internet]. 2014 [cited 2022 Mar 11]. Available from: https://www.traxco.es/blog/tecnologia-del-riego/suelos-de-cultivo
133. Texas A&M University System. Key Factors in Vegetable Production - Vegetable Resources [Internet]. [cited 2022 Mar 10]. Available from: https://aggie-horticulture.tamu.edu/vegetable/guides/organic-vegetable-production-guide/key-factors-in-vegetable-production/
134. Smith AC, Hussy MA. Gram Stain Protocols. American Society for Microbiology [Internet]. 2005 Sep 30 [cited 2023 May 13]; Available from: www.asmscience.org
135. Taylor SN, Dicarlo RP, Martin DH. Comparison of methylene blue/gentian violet stain to gram’s stain for the rapid diagnosis of gonococcal urethritis in men. Sex Transm Dis. 2011 Nov;38(11):995–6.
136. García SC. Bacterias simbióticas fijadoras de nitrógeno. Vol. 3, CT. 2011.
137. Eleonora M, Pineda B. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Vol. 15, Corpoica Cienc. Tecnol. Agropecu. 2014.
138. Bhardwaj P, Chauhan A, Ranjan A, Mandzhieva SS, Minkina T, Mina U, et al. Assessing Growth-Promoting Activity of Bacteria Isolated from Municipal Waste Compost on Solanum lycopersicum L. Horticulturae. 2023 Feb 1;9(2).
139. Restrepo-Franco GM, Marulanda-Moren S, de la Fe-Pérez Y, Díaz-de la Osa A, Lucia-Baldani V, Hernández-Rodríguez A. Bacterias solubilizadoras de fosfato y sus potencialidades de uso en la promoción del crecimiento de cultivos de importancia económica. CENIC [Internet]. 2014 Sep 10 [cited 2023 May 20];46. Available from: https://www.redalyc.org/pdf/1812/181238817006.pdf
140. Alotaibi MO, Alotibi MM, Eissa MA, Ghoneim AM. Compost and plant growth-promoting bacteria enhanced steviol glycoside synthesis in stevia (Stevia rebaudiana Bertoni) plants by improving soil quality and regulating nitrogen uptake. South African Journal of Botany. 2022 Dec 1;151:306–14.
141. Pikovskayas Agar. Mumbai; 2015.
142. Castellanos-Rozo J. Manual de prácticas de Microbiología Ambiental. 2016.
143. Collection S. Ashby ’ s Mannitol Agar.
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv PDF
dc.coverage.spatial.spa.fl_str_mv Pereira
institution Universidad Libre
bitstream.url.fl_str_mv http://repository.unilibre.edu.co/bitstream/10901/28097/6/Esc%c3%a1ner%201.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/28097/7/CARACTERIZACI%c3%93N%20DE%20ACTIVIDAD%20PROMOTORA%20DE%20CRECIMIENTO%20VEGETAL%20EN%20BACTERIAS%20AISLADAS%20DE%20LA%20COMPOSTERA%20DE%20LA%20UNIVERSIDAD%20LIBRE%20SECCIONAL%20PEREIRA.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/28097/5/license.txt
http://repository.unilibre.edu.co/bitstream/10901/28097/1/Esc%c3%a1ner%201.pdf
http://repository.unilibre.edu.co/bitstream/10901/28097/4/CARACTERIZACI%c3%93N%20DE%20ACTIVIDAD%20PROMOTORA%20DE%20CRECIMIENTO%20VEGETAL%20EN%20BACTERIAS%20AISLADAS%20DE%20LA%20COMPOSTERA%20DE%20LA%20UNIVERSIDAD%20LIBRE%20SECCIONAL%20PEREIRA.pdf
bitstream.checksum.fl_str_mv 21f4aa67cf9f92b62754c1d27414d6be
b4afc1eb8cbcc410d399e439f94c1bc3
8a4605be74aa9ea9d79846c1fba20a33
89ac46c67fbef6fbba0f108c28aa793e
56bead207a8fcbcc8ec76666d0258137
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Unilibre
repository.mail.fl_str_mv repositorio@unilibrebog.edu.co
_version_ 1807060626032295936
spelling Arias Gaviria, DuverneyRosero Realpe, MateoGiraldo Parra, NataliaPereira2024-01-24T21:29:24Z2024-01-24T21:29:24Z2023-12-04https://hdl.handle.net/10901/28097El cultivo de hortalizas es altamente promisorio en Colombia, pero se requiere mayor conocimiento de su manejo agronómico y de los microorganismos que crecen asociados a su rizosfera, de los cuales dependen estas plantas para su nutrición y crecimiento. En este trabajo se aislaron e identificaron de un compost de la Universidad Libre de Pereira las bacterias promotoras de crecimiento como fijación de nitrógeno, solubilización de fosfato y potasio por medio de unos agares que indican la presencia de esta actividad en cada una de ellas, seleccionando las de mejor actividad; posteriormente se llevó a cabo las compatibilidades para evaluar que bacterias se llevan bien con las otras para el trabajo en equipo, eligiéndose solo las que no generan inhibición. Para establecer cuál es el grupo adecuado se formuló cinco insumos con las bacterias seleccionadas según su crecimiento y su trabajo en equipo, ensayándose en una plántula de frijol para así establecer los cambios que se presentaron en su crecimiento y desarrollo.Universidad Libre Seccional Pereira -- Facultad de Ciencias de la Salud, Exactas y Naturales -- MicrobiologíaThe cultivation of vegetables is highly promising in Colombia, but more knowledge is required of their agronomic management and of the microorganisms that grow associated with their rhizosphere, on which these plants depend for their nutrition and growth. In this work, growth-promoting bacteria such as nitrogen fixation, phosphate and potassium solubilization were isolated and identified from a compost from the Universidad Libre de Pereira by means of agars that indicate the presence of this activity in each of them, selecting those with the best activity; Subsequently, the compatibilities were carried out to evaluate which bacteria get along with the others for teamwork, choosing only those that do not generate inhibition. To establish which is the appropriate group, five inputs were formulated with the bacteria selected according to their growth and their teamwork, being tested on a bean seedling in order to establish the changes that occurred in their growth and development.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2rhizobacteriasconsorcios microbianosBPVCmicronutrienteshortalizascompostfertilidad del suelomacronutrientesagricultura sostenibleimpacto ambientalagroquímicosactividad promotoracompatibilidad microbianarhizobacteriamicrobial consortiaPGPBmicronutrientsvegetablescompostsoil fertilitymacronutrientssustainable agricultureenvironmental impactagrochemicalspromoting activitymicrobial compatibilitycaracterización de actividad promotora de crecimiento vegetal en bacterias aisladas de la compostera de la Universidad Libre seccional PereiraCharacterization of plant growth promoting activity in bacteria isolated from the compost bin of the Universidad Libre Seccional PereiraTesis de Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1f1. Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front Microbiol. 2018 Mar 29;9:1606.2. Mitter EK, Tosi M, Obregón D, Dunfield KE, Germida JJ. Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Front Sustain Food Syst. 2021 Feb 19;5:29.3. Koide RT, Mosse B. A history of research on arbuscular mycorrhiza. Mycorrhiza [Internet]. 2004 Apr 16 [cited 2023 May 13];14(3):145–63. Available from: https://link.springer.com/article/10.1007/s00572-004-0307-4.4. Malusà E, Pinzari F, Canfora L. Efficacy of biofertilizers: Challenges to improve crop production. Microbial Inoculants in Sustainable Agricultural Productivity: Vol 2: Functional Applications [Internet]. 2016 Jan 1 [cited 2023 May 13];17–40.5. Jose R, Rodriguez N. "Evaluación de etapas del proceso productivo de un bioinsumo dirigido a la degradación de materiales orgánicos y regulación sanitaria de cultivos ".6. Rocío A, Pabón M, Alexánder H, Quiñonez S. PRODUCTION OF BIOFERTILIZANTES. A DIAGNOSIS FROM THE TECHNOLOGICAL SURVEILLANCE PRODUCCIÓN DE BIOFERTILIZANTES: UN DIAGNÓSTICO DESDE LA VIGILANCIA TECNOLÓGICA [Internet]. Available from: www.bdigital.unal.edu.co/8282/1/7. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species--opportunistic, avirulent plant symbionts. Nat Rev Microbiol [Internet]. 2004 Jan [cited 2023 Feb 4];2(1):43–56. Available from: https://pubmed.ncbi.nlm.nih.gov/15035008/8. Eskew DL, Focht DD, Ting IP. Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmented Spirillum lipoferum. Appl Environ Microbiol [Internet]. 1977 [cited 2023 Apr 15];34(5):582–5. Available from: https://pubmed.ncbi.nlm.nih.gov/22311/9. Mehnaz S, Lazarovits G. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol [Internet]. 2006 Apr 6 [cited 2023 Apr 15];51(3):326–35. Available from: https://link.springer.com/article/10.1007/s00248-006-9039-710. Sadigov R. Rapid Growth of the World Population and Its Socioeconomic Results. The Scientific World Journal [Internet]. 2022 Mar 23 [cited 2023 May 13];2022. Available from: /pmc/articles/PMC8967589/11. Worldometer. Worldometer. [cited 2023 May 13]. Population > World. Available from: https://www.worldometers.info/population/world/12. El mundo alcanza los 8 mil millones de habitantes, de los cuales 662 millones viven en América Latina y el Caribe. Cepal [Internet]. 2022; Available from: https://www.cepal.org/es/noticias/mundo-alcanza-8-mil-millones-habitantes-cuales-662-millones-viven-america-latina-caribe13. Golay C. The Food Crisis and Food Security: Towards a New World Food Order? OpenEditionJournals [Internet]. 2010 Mar 1 [cited 2023 May 13];(1):215–32. Available from: http://journals.openedition.org/poldev/14514. FAO IGS and E. State of knowledge of soil biodiversity - Status, challenges and potentialities. State of knowledge of soil biodiversity - Status, challenges and potentialities. 2020 Dec 4;15. Ramírez-Pinzón H. La cebolla de Rama (Allium fistulosum) y su cultivo [Internet]. Corpoica. Humberto L, editor. Bogotá; 2004 [cited 2023 Feb 4]. Available from: https://repository.agrosavia.co/bitstream/handle/20.500.12324/2121/41284_27373.pdf?sequence=1&isAllowed=y16. Figuerola ELM, Guerrero LD, Türkowsky D, Wall LG, Erijman L. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale. Environ Microbiol [Internet]. 2015 Mar 1 [cited 2023 May 13];17(3):678–88. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/1462-2920.1249717. Galloway JN, Leach AM, Erisman JW, Bleeker A, Galloway JN, Leach AM, et al. Nitrogen: the historical progression from ignorance to knowledge, with a view to future solutions. Soil Research [Internet]. 2017 Aug 7 [cited 2023 Apr 15];55(6):417–24. Available from: https://www.publish.csiro.au/sr/SR1633418. Pereira A. Plant abiotic stress challenges from the changing environment. Front Plant Sci. 2016 Jul 27;7(JULY2016):1123.19. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytologist [Internet]. 2014 Jul 1 [cited 2023 May 13];203(1):32–43. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/nph.1279720. Srivastav AL. Chemical fertilizers and pesticides: role in groundwater contamination. Agrochemicals Detection, Treatment and Remediation. 2020 Jan 1;143–59.21. Russeell W. Water as an equalizer: the science and management of south african reservoir lakes and the implications for social and economic development . ResearchGate [Internet]. 2015 Jul [cited 2023 Jan 1]; Available from: https://www.researchgate.net/publication/280008728_WATER_AS_AN_EQUALIZER_THE_SCIENCE_AND_MANAGEMENT_OF_SOUTH_AFRICAN_RESERVOIR_LAKES_AND_THE_IMPLICATIONS_FOR_SOCIAL_AND_ECONOMIC_DEVELOPMENT22. Fernández J. Afectación a disponibilidad de agroquímicos a nivel mundial - CropLife Latin America. CropLife [Internet]. 2021 [cited 2023 Apr 15]; Available from: https://www.croplifela.org/es/actualidad/noticias/afectacion-a-disponibilidad-de-agroquimicos-a-nivel-mundial23. Singh AP, Narayanan K. Impact of economic growth and population on agrochemical use: evidence from post-liberalization India. Environ Dev Sustain [Internet]. 2015 Dec 1 [cited 2023 Apr 15];17(6):1509–25. Available from: https://link.springer.com/article/10.1007/s10668-015-9618-124. Global situation of pesticide management in agriculture and public health Report of a 2018 WHO-FAO survey. World Health Organization [Internet]. 2018 [cited 2023 Apr 15]; Available from: https://apps.who.int/iris/bitstream/handle/10665/329971/9789241516884-eng.pdf?sequence=1&isAllowed=y25. Mandal A, Sarkar B, Mandal S, Vithanage M, Patra AK, Manna MC. Impact of agrochemicals on soil health. Agrochemicals Detection, Treatment and Remediation: Pesticides and Chemical Fertilizers. 2020 Jan 1;161–87.26. Maggi F, Tang FHM, la Cecilia D, McBratney A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Scientific Data 2019 6:1 [Internet]. 2019 Sep 12 [cited 2023 Apr 15];6(1):1–20. Available from: https://www.nature.com/articles/s41597-019-0169-427. Pérez Lavalle L, Bolívar Anillo HJ, Díaz Pérez A. Biofertilizantes en Colombia. Productos de confitería nutracéutica. 2017 Mar 10;179–222.28. Luna Martínez L, Peniche RAM, Iturriaga H, Medrano SMA, Pacheco Aguilar JR. Characterization of rhizobacteria isolated from tomato and their effect on tomato and bell pepper growth. Artículo Científico Rev Fitotec Mex. 2013;36(1):63–9.29. Min. Agricultura. Cadena de las Hortalizas. Dirección de Cadenas Agrícolas y Fortestales . 2020;30. Penagos ÁM, Parra MA, Granados S. La biodiversidad y el desarrollo agropecuario en Colombia: propuesta para avanzar hacia una transformación desde la perspectiva del desarrollo sostenible. Naturaleza y Sociedad Desafíos Medioambientales [Internet]. 2022 May 1 [cited 2023 May 14];(2):51–67. Available from: https://revistas.uniandes.edu.co/index.php/nys/article/view/4732/433131. ICA. Instituto Colombiano Agropecuario . [cited 2023 May 14]. Fertilizantes y Bioinsumos. Available from: https://www.ica.gov.co/getdoc/a5c149c5-8ec8-4fed-9c22-62f31a68ae49/fertilizantes-y-bio-insumos-agricolas.aspx32. Instituto Colombiano Agropecuario. Resolución Bioinsumos 068370 del 27 de mayo de 2020 [Internet]. Bogotá: Congreso de la República; May 27, 2020. Available from: https://www.ica.gov.co/getattachment/Areas/Agricola/Servicios/Fertilizantes-y-Bio-insumos-Agricolas/Resolucion-068370-del-27-de-mayo-de-2020.pdf.aspx?lang=es-CO33. Instituto Colombiano Agropecuario. RESOLUCIÓN No. 00150- Reglamento Técnico de Fertilizantes y Acondicionadores de Suelos para Colombia. Bogotá: Congreso de la República; Jan 21, 2003.34. ICA. Guia para la entrega de material de referencia en el laboratorio nacional de insumos agrícolas para el registro de productos bioinsumos. Bogotá;35. Ilangumaran G, Lamont JR, Smith DL. The role of the phytomicrobiome in maintaining biofuel crop production in a changing climate . Microbes for Climate Resilient Agriculture [Internet]. 2018 Feb 23 [cited 2023 May 14];1–24. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/9781119276050.ch136. Lal R. Soil conservation and ecosystem services. International soil and water conservation research. 2014;2(3):36–47.37. Jia P, Liang J liang, Yang S xiang, Zhang S chang, Liu J, Liang Z wei, et al. Plant diversity enhances the reclamation of degraded lands by stimulating plant–soil feedbacks. Journal of Applied Ecology [Internet]. 2020 Jul 1 [cited 2023 May 14];57(7):1258–70. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/1365-2664.1362538. Hoffland E, Kuyper TW, Comans RNJ, Creamer RE. Eco-functionality of organic matter in soils. Plant and Soil 2020 455:1 [Internet]. 2020 Aug 17 [cited 2023 Apr 18];455(1):1–22. Available from: https://link.springer.com/article/10.1007/s11104-020-04651-939. Totsche KU, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, Knief C, et al. Microaggregates in soils. Journal of Plant Nutrition and Soil Science [Internet]. 2018 Feb 1 [cited 2023 Apr 18];181(1):104–36. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jpln.20160045140. Sahu D, Priyadarshani I, Rath * B. CYANOBACTERIA - as potential biofertilizer. Online) An Online International Journal Available at [Internet]. 2012 [cited 2023 Apr 18];1(3):20–6. Available from: http://www.cibtech.org/cjm.htm42. Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, et al. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecol Eng. 2017 Oct 1;107:8–32.43. Shivakumar S, Bhaktavatchalu S. Role of Plant Growth-Promoting Rhizobacteria (PGPR) in the Improvement of Vegetable Crop Production Under Stress Conditions. In: Microbial Strategies for Vegetable Production. Cham: Springer International Publishing; 2017. p. 81–97.44. Dilnashin H, Birla H, Hoat TX, Singh HB, Singh SP, Keswani C. Applications of agriculturally important microorganisms for sustainable crop production. Molecular Aspects of Plant Beneficial Microbes in Agriculture. 2020 Jan 1;403–15.45. Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci. 2014 Jan 1;26(1):1–20.46. M A, M.S K. Influence of Selective Herbicides on Plant Growth Promoting Traits of Phosphate Solubilizing Enterobacter asburiae Strain PS2. Res J Microbiol [Internet]. 2010 [cited 2023 Apr 16];05:849–57. Available from: https://docsdrive.com/pdfs/scienceinternational/jm/2010/849-857.pdf47. da Silva MSR de A, dos Santos B de MS, da Silva CSR de A, da Silva CSR de A, Antunes LF de S, dos Santos RM, et al. Humic Substances in Combination With Plant Growth-Promoting Bacteria as an Alternative for Sustainable Agriculture. Front Microbiol. 2021 Oct 29;12:3025.48. Saavedra-Díaz J, Galeano-Olaya PE, Canal D. NA. Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de Ciencias Agrícolas [Internet]. 2017 Jun 12 [cited 2023 Feb 10];34(1):17–31. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-01352017000100002&lng=en&nrm=iso&tlng=es49. Camelo-Rusinque M, Moreno-Galván A, Romero-Perdomo F, Bonilla-Buitrago R. Desarrollo de un sistema de fermentación líquida y de enquistamiento para una bacteria fijadora de nitrógeno con potencial como biofertilizante. Rev Argent Microbiol. 2017 Jul 1;49(3):289–96.50. Alka S, Shahir S, Ibrahim N, Chai TT, Mohd Bahari Z, Abd Manan F. The role of plant growth promoting bacteria on arsenic removal: A review of existing perspectives. Environ Technol Innov. 2020 Feb 1;17:100602.41. Kumar S, Diksha, Sindhu SS, Kumar R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microb Sci. 2022 Jan 1;3:100094.51. Li J, Wang C, Liang W, Liu S. Rhizosphere Microbiome: The Emerging Barrier in Plant-Pathogen Interactions. Front Microbiol. 2021 Oct 29;12:3381.52. Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012 Aug 1;17(8):478–86.53. Lopes LD, Pereira e Silva M de C, Andreote FD. Bacterial abilities and adaptation toward the rhizosphere colonization. Front Microbiol. 2016 Aug 25;7(AUG):1341.54. Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 2018 Feb 9;9:112.55. Korenblum E, Massalha H, Aharoni A. Plant–microbe interactions in the rhizosphere via a circular metabolic economy. Plant Cell [Internet]. 2022 Aug 25 [cited 2023 May 14];34(9):3168–82. Available from: https://academic.oup.com/plcell/article/34/9/3168/660475756. Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ. Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol [Internet]. 2020 Jun 1 [cited 2023 May 14];128(6):1583–94. Available from: https://academic.oup.com/jambio/article/128/6/1583/671852557. Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. The Plant Journal [Internet]. 2021 Jan 1 [cited 2023 May 14];105(2):518–41. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/tpj.1513558. Keohane CE, Steele AD, Wuest WM. Synpacts Syn lett The Rhizosphere Microbiome: A Playground for Natural Product Chemists. 2015;26:2739–44.59. Olanrewaju OS, Glick BR, Babalola OO. Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol [Internet]. 2017 Nov 1 [cited 2023 May 14];33(11):197. Available from: /pmc/articles/PMC5686270/60. Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci. 2014 Jan 1;26(1):1–20.61. Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. http://www.editorialmanager.com/cogentagri [Internet]. 2016 [cited 2023 May 14];2(1). Available from: https://www.tandfonline.com/doi/abs/10.1080/23311932.2015.112750062. Perdomo C, Barbazán M. Nitrógeno . [Montevideo]: Universidad de la republica ;63. Berthrong ST, Yeager CM, Gallegos-Graves L, Steven B, Eichorst SA, Jackson RB, et al. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Appl Environ Microbiol [Internet]. 2014 [cited 2023 Jan 3];80(10):3103–12. Available from: https://journals.asm.org/doi/10.1128/AEM.04034-1364. Wagner S. Nature Education Knowledge. 2011 [cited 2023 Jan 3]. Biological Nitrogen Fixation . Available from: https://www.nature.com/scitable/knowledge/library/biological-nitrogen-fixation-23570419/65. Fulthorpe R, MacIvor JS, Jia P, Yasui SLE. The green roof microbiome: Improving plant survival for ecosystem service delivery. Front Ecol Evol. 2018 Feb 2;6(FEB):5.66. Adesemoye AO, Torbert HA, Kloepper JW. Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Applied Soil Ecology. 2010 Sep 1;46(1):54–8.67. de la fe Perez Y, Díaz A, Restrepo G, Baldani V. Diversidad de bacterias diazotróficas asociativas potencialmente eficientes en cultivos de importancia económica. ResearchGate [Internet]. 2019 Feb [cited 2023 Jan 5]; Available from: https://www.researchgate.net/publication/331071516_Diversidad_de_bacterias_diazotroficas_asociativas_potencialmente_eficientes_en_cultivos_de_importancia_economica68. Dixon R, Kahn D. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology 2004 2:8 [Internet]. 2004 Aug [cited 2023 Jan 7];2(8):621–31. Available from: https://www.nature.com/articles/nrmicro95469. Vitousek PM, Menge DNL, Reed SC, Cleveland CC. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences [Internet]. 2013 Jul 5 [cited 2023 Jan 7];368(1621). Available from: https://royalsocietypublishing.org/doi/10.1098/rstb.2013.011970. Rubio LM, Ludden PW. Maturation of nitrogenase: A biochemical puzzle. J Bacteriol [Internet]. 2005 [cited 2023 Jan 7];187(2):405–14. Available from: https://journals.asm.org/doi/10.1128/JB.187.2.405-414.200571. Pankievicz VCS, Irving TB, Maia LGS, Ané JM. Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops. BMC Biology 2019 17:1 [Internet]. 2019 Dec 3 [cited 2023 Jan 7];17(1):1–17. Available from: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-019-0710-072. Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 2011 28:4 [Internet]. 2011 Dec 24 [cited 2023 May 14];28(4):1327–50. Available from: https://link.springer.com/article/10.1007/s11274-011-0979-973. Mpanga IK, Gomez-Genao N, Moradtalab N, Wanke D, Chrobaczek V, Ahmed A, et al. The role of N form supply for PGPM-host plant interactions in maize. Journal of Plant Nutrition and Soil Science [Internet]. 2019 Dec 1 [cited 2023 May 14];182(6):908–20. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/jpln.20190013374. Singh P, Sinhu S. (PDF) Potassium solubilization by rhizosphere bacteria: Influence of nutritional and environmental conditions. ResearchGate [Internet]. 2013 [cited 2023 Feb 10]; Available from: https://www.researchgate.net/publication/273318859_Potassium_solubilization_by_rhizosphere_bacteria_Influence_of_nutritional_and_environmental_conditions75. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv. 2014 Mar 1;32(2):429–48.76. Álvaro GJ. Fertibox. 2019 [cited 2022 May 28]. El potasio y su importancia en el crecimiento vegetal. Available from: https://www.fertibox.net/single-post/potasio-agricultura77. Zörb C, Senbayram M, Peiter E. Potassium in agriculture – Status and perspectives. J Plant Physiol. 2014 May 15;171(9):656–69.78. Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. J Plant Physiol. 2014 May 15;171(9):696–707.79. Shanware AS, Kalkar SA, Trivedi MM. Potassium Solublisers: Occurrence, Mechanism and Their Role as Competent Biofertilizers. IntJCurrMicrobiolAppSci [Internet]. 2014 [cited 2023 Feb 10];3(9):622–9. Available from: http://www.ijcmas.com80. Emsley J. Lenntech . 2001 [cited 2022 Apr 30]. Potasio (K) Propiedades químicas y efectos sobre la salud y el medio ambiente. Available from: https://www.lenntech.es/periodica/elementos/k.htm81. Abou-el-Seoud II, Abdel-Megeed A. Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions. Saudi J Biol Sci. 2012 Jan 1;19(1):55–63.82. Ramakrishna W, Yadav R, Li K. Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology. 2019 Jun;138:10–8.83. Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A. Rhizosphere microbes: Potassium solubilization and crop productivity – present and future aspects. Potassium Solubilizing Microorganisms for Sustainable Agriculture. 2016 Jan 1;315–25.84. Asif R, Yasmin R, Mustafa M, Ambreen A, Mazhar M, Rehman A, et al. Phytohormones as Plant Growth Regulators and Safe Protectors against Biotic and Abiotic Stress. Plant Hormones - Recent Advances, New Perspectives and Applications [Internet]. 2022 Mar 30 [cited 2023 May 14]; Available from: https://www.intechopen.com/chapters/8102685. Poveda J, González-Andrés F. Bacillus as a source of phytohormones for use in agriculture. Appl Microbiol Biotechnol [Internet]. 2021 Dec 1 [cited 2023 May 14];105(23):8629–45. Available from: https://link.springer.com/article/10.1007/s00253-021-11492-886. Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev [Internet]. 2007 Jul 1 [cited 2023 May 14];31(4):425–48. Available from: https://academic.oup.com/femsre/article/31/4/425/239911387. Dilworth LL, Riley CK, Stennett DK. Plant Constituents: Carbohydrates, Oils, Resins, Balsams, and Plant Hormones. Pharmacognosy: Fundamentals, Applications and Strategy. 2017 Jan 1;61–80.88. Woodward AW, Bartel B. Auxin: Regulation, Action, and Interaction. Ann Bot [Internet]. 2005 Apr 1 [cited 2023 May 14];95(5):707–35. Available from: https://academic.oup.com/aob/article/95/5/707/20128389. Zazimalova E, Napier RM. Points of regulation for auxin action. Plant Cell Rep [Internet]. 2003 Mar 1 [cited 2023 May 14];21(7):625–34. Available from: https://link.springer.com/article/10.1007/s00299-002-0562-990. Gao X, Zhang Y, He Z, Fu X. Gibberellins. Hormone Metabolism and Signaling in Plants. 2017 Jan 1;107–60.91. Weiss D, Ori N. Mechanisms of Cross Talk between Gibberellin and Other Hormones. Plant Physiol [Internet]. 2007 Jul 5 [cited 2023 May 14];144(3):1240–6. Available from: https://academic.oup.com/plphys/article/144/3/1240/610669892. Muharram M, Satria Bayu A, Prijo Rahardjo T, - al, Wang X, Liang D, et al. Gibberellin And IAA Production by Rhizobacteria From Various Private Forest. IOP Conf Ser Earth Environ Sci [Internet]. 2019 May 1 [cited 2023 May 14];270(1):012018. Available from: https://iopscience.iop.org/article/10.1088/1755-1315/270/1/01201893. Schmlling T. Cytokinin. Encyclopedia of Biological Chemistry: Second Edition. 2013 Jan 1;627–31.94. He X, Chen H, Niu B, Wang J. Root Growth Optimizer with Self-Similar Propagation. Math Probl Eng. 2015;2015.95. de Garcia Salamone IE, Hynes RK, Nelson LM. Role of Cytokinins in Plant Growth Promotion by Rhizosphere Bacteria. In: PGPR: Biocontrol and Biofertilization. Dordrecht: Springer Netherlands; 2005. p. 173–95.96. Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci. 2017 Apr 4;8:475.97. Vaseva II, Qudeimat E, Potuschak T, Du Y, Genschik P, Vandenbussche F, et al. The plant hormone ethylene restricts Arabidopsis growth via the epidermis. Proc Natl Acad Sci U S A [Internet]. 2018 Apr 24 [cited 2023 May 14];115(17):E4130–9. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.171764911598. Chang C. Q and A: How do plants respond to ethylene and what is its importance? BMC Biol [Internet]. 2016 Jan 27 [cited 2023 May 14];14(1):1–7. Available from: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0230-099. Ravanbakhsh M, Sasidharan R, Voesenek LACJ, Kowalchuk GA, Jousset A. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome [Internet]. 2018 Mar 21 [cited 2023 May 14];6(1):52. Available from: https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0436-1100. Tamariz-Angeles C, Huamán GD, Palacios-Robles E, Olivera-Gonzales P, Castañeda-Barreto A. Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejón de Huaylas (Ancash, Perú). Microbiol Res. 2021 Sep 1;250:126811.Microbiol Res. 2021 Sep 1;250:126811. 101. Connolly EL, Guerinot M Lou. Iron stress in plants. Genome Biology 2002 3:8 [Internet]. 2002 Jul 30 [cited 2023 May 14];3(8):1–4. Available from: https://genomebiology.biomedcentral.com/articles/10.1186/gb-2002-3-8-reviews1024102. Sinha D, Mukherjee S, Mahapatra D. Multifaceted Potential of Plant Growth Promoting Rhizobacteria (PGPR). 2021 Apr 12;205–68.103. Jha Y, Dehury B, Kumar SPJ, Chaurasia A, Singh UB, Yadav MK, et al. Delineation of molecular interactions of plant growth promoting bacteria induced β-1,3-glucanases and guanosine triphosphate ligand for antifungal response in rice: a molecular dynamics approach. Mol Biol Rep [Internet]. 2022 Apr 1 [cited 2023 May 14];49(4):2579. Available from: /pmc/articles/PMC8924079/104. Galeano Vanegas NF, Marulanda Moreno SM, Padilla Hurtado BE, Mantilla Afanador JG, Ceballos Aguirre N, Restrepo Franco GM. Antagonism of plant growth promoting rhizobacteria against the causal agent of the vascular wilting of tomato. Rev Colomb Biotecnol [Internet]. 2020 [cited 2023 May 14];22. Available from: https://www.redalyc.org/journal/776/77666754004/77666754004.pdf105. Shi P, Zhang J, Li X, Zhou L, Luo H, Wang L, et al. Multiple Metabolic Phenotypes as Screening Criteria Are Correlated With the Plant Growth-Promoting Ability of Rhizobacterial Isolates. Front Microbiol [Internet]. 2022 Jan 5 [cited 2023 May 14];12. Available from: /pmc/articles/PMC8767003/106. Mayz-Figueroa J. Fijación biológica de nitrógeno. Revista Científica UDO Agrícola, ISSN-e 1317-9152, Vol 4, No 1, 2004, págs 1-20 [Internet]. 2004 [cited 2023 May 14];4(1):1–20. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=2221548&info=resumen&idioma=SPA107. Baldani JI, Reis VM, Videira SS, Boddey LH, Baldani VLD. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil [Internet]. 2014 Oct 25 [cited 2023 May 14];384(1–2):413–31. Available from: https://link.springer.com/article/10.1007/s11104-014-2186-6108. Juan Esteban D, Rodolfo L. Evaluación preliminar para aislamiento e identificación bioquímica de Streptomyces sp.109. Acevedo E, Galindo-Castañeda T, Prada F, Navia M, Romero HM. Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia. Applied Soil Ecology. 2014 Aug 1;80:26–33.110. Haq IU, Ali S, Iqbal J. Direct production of citric acid from raw starch by Aspergillus niger. Process Biochemistry. 2003 Jan 31;38(6):921–4.111. Zahir ZA, Arshad M, Frankenberger WT. Plant Growth Promoting Rhizobacteria: Applications and Perspectives In Agriculture. Advances in Agronomy. 2003 Jan 1;81:97–168.112. Archana G, Buch A, Kumar GN. Pivotal role of organic acid secretion by rhizobacteria in plant growth promotion. Microorganisms in Sustainable Agriculture and Biotechnology [Internet]. 2013 Oct 1 [cited 2023 May 14];35–53. Available from: https://link.springer.com/chapter/10.1007/978-94-007-2214-9_3113. Etesami H, Emami S, Alikhani HA. Potassium solubilizing bacteria (KSB):: Mechanisms, promotion of plant growth, and future prospects ¬ A review. J Soil Sci Plant Nutr [Internet]. 2017 Dec 1 [cited 2023 May 14];17(4):897–911. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162017000400005&lng=es&nrm=iso&tlng=en114. Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett [Internet]. 1999 Jan 1 [cited 2023 May 14];170(1):265–70. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1574-6968.1999.tb13383.x115. Bello-Akinosho M, Makofane R, Adeleke R, Thantsha M, Pillay M, Chirima GJ. Potential of Polycyclic Aromatic Hydrocarbon-Degrading Bacterial Isolates to Contribute to Soil Fertility. Biomed Res Int [Internet]. 2016 [cited 2023 May 14];2016. Available from: https://www.researchgate.net/publication/308915662_Potential_of_Polycyclic_Aromatic_Hydrocarbon-Degrading_Bacterial_Isolates_to_Contribute_to_Soil_Fertility116. Rocío A, Pabón M, Alexánder H, Quiñonez S. PRODUCCIÓN DE BIOFERTILIZANTES: UN DIAGNÓSTICO DESDE LA VIGILANCIA TECNOLÓGICA. Revista Agropecuaria y Agroindustrial La Angostura [Internet]. 2017 [cited 2023 May 14];4. Available from: https://revistas.sena.edu.co/index.php/raaa/article/view/4723117. Pérez Sánchez A, Sing S, Pérez Sánchez EJ, Segura Silva RM. Evaluación técnico-económica y diseño conceptual de una planta de biofertilizantes líquidos. Rev Colomb Biotecnol. 2018 Jul 1;20(2):6–18.118. Arenas MN. Desarrollo, estabilidad y eficacia de biofertilizantes para la mejora del cultivo de plantas de tomate y maíz. [Barcelona ]: Universidad de Barcelona; 2021.119. Estela González de Bashan L, Moreno Legorreta M, Pablo Hernández J, Alberto Mendoza Labrador J. Métodos de aplicación de biofertilizantes bacterianos 7.120. Vílchez JI, Navas A, González-López J, Arcos SC, Manzanera M. Biosafety Test for Plant Growth-Promoting Bacteria: Proposed Environmental and Human Safety Index (EHSI) Protocol. Front Microbiol [Internet]. 2015 [cited 2023 May 14];6(JAN):1514. Available from: /pmc/articles/PMC4703995/121. Shekhawat K, Fröhlich K, García-Ramírez GX, Trapp MA, Hirt H. Ethylene: A Master Regulator of Plant–Microbe Interactions under Abiotic Stresses. Cells 2023, Vol 12, Page 31 [Internet]. 2022 Dec 21 [cited 2023 May 14];12(1):31. Available from: https://www.mdpi.com/2073-4409/12/1/31/htm122. Cardona JMH, Álvarez JV, Henao LMÁ. Propiedades fisicoquímicas como base para la caracterización de suelos, cultivados en mora (Rubus glaucus, Benth) en el departamento de Risaralda, Colombia / hysico-chemical properties as a basis characterization of soils farming at blackberry crop (Rubus glaucus, Benth) in Risaralda department, Colombia. Brazilian Journal of Animal and Environmental Research. 2021 Dec 9;4(4):6144–63.123. Ríos Gallego G, Muñoz Valencia CI, Franco G, Rodríguez Martínez JL. Caracterización del sistema de producción de mora en los municipios de Quinchía, Guática (Risaralda) y Riosucio (Caldas). [cited 2023 May 13]; Available from: https://repository.agrosavia.co/handle/20.500.12324/21109124. Fajardo Puerta NF. Influencia de las propiedades físicas y químicas en la profundidad del horizonte A de tres suelos de la zona cafetera colombiana. [Internet]. Universidad Nacional de Colombia ; 1979 [cited 2023 May 13]. Available from: https://repository.agrosavia.co/handle/20.500.12324/22891125. Sach´a J. EL CULTIVO DE LAS HORTALIZAS .126. Fao. Producción de hortalizas. 2011;127. Rozano V, Quiróz C, Carlos J, Pulido A, Adrián L, Ayaquica P, et al. HORTALIZAS, LAS LLAVES DE LA ENERGÍA. 2004;128. Correa É. AGRONEGOCIOS. 2011 [cited 2022 Mar 11]. La hora de las hortalizas. Available from: https://www.agronegocios.co/analisis/ender-correa-2982797/la-hora-de-las-hortalizas-2982626129. Karthick R, Rajalingam G V, Praneetha S, Sujatha KB, Arumugam T. Effect of micronutrients on growth , flowering and yield of bitter gourd ( Momordica charantia ) cv . CO 1. 2018;6(1):845–8.130. Naeem M, Aslam Z, Khaliq A, Ahmed JN, Nawaz A, Hussain M. Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat. Brazilian Journal of Microbiology. 2018 Nov 1;49:9–14.131. González X. AGRONEGOCIOS . 2020 [cited 2022 Mar 11]. Nutrición foliar en las plantas es fundamental para el uso eficiente de fertilizantes. Available from: https://www.agronegocios.co/agricultura/nutricion-foliar-en-las-plantas-es-fundamental-para-el-uso-eficiente-de-fertilizantes-3019052132. Traxco. Suelos de cultivo - Características, clasificación y textura [Internet]. 2014 [cited 2022 Mar 11]. Available from: https://www.traxco.es/blog/tecnologia-del-riego/suelos-de-cultivo133. Texas A&M University System. Key Factors in Vegetable Production - Vegetable Resources [Internet]. [cited 2022 Mar 10]. Available from: https://aggie-horticulture.tamu.edu/vegetable/guides/organic-vegetable-production-guide/key-factors-in-vegetable-production/134. Smith AC, Hussy MA. Gram Stain Protocols. American Society for Microbiology [Internet]. 2005 Sep 30 [cited 2023 May 13]; Available from: www.asmscience.org135. Taylor SN, Dicarlo RP, Martin DH. Comparison of methylene blue/gentian violet stain to gram’s stain for the rapid diagnosis of gonococcal urethritis in men. Sex Transm Dis. 2011 Nov;38(11):995–6.136. García SC. Bacterias simbióticas fijadoras de nitrógeno. Vol. 3, CT. 2011.137. Eleonora M, Pineda B. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Vol. 15, Corpoica Cienc. Tecnol. Agropecu. 2014.138. Bhardwaj P, Chauhan A, Ranjan A, Mandzhieva SS, Minkina T, Mina U, et al. Assessing Growth-Promoting Activity of Bacteria Isolated from Municipal Waste Compost on Solanum lycopersicum L. Horticulturae. 2023 Feb 1;9(2).139. Restrepo-Franco GM, Marulanda-Moren S, de la Fe-Pérez Y, Díaz-de la Osa A, Lucia-Baldani V, Hernández-Rodríguez A. Bacterias solubilizadoras de fosfato y sus potencialidades de uso en la promoción del crecimiento de cultivos de importancia económica. CENIC [Internet]. 2014 Sep 10 [cited 2023 May 20];46. Available from: https://www.redalyc.org/pdf/1812/181238817006.pdf140. Alotaibi MO, Alotibi MM, Eissa MA, Ghoneim AM. Compost and plant growth-promoting bacteria enhanced steviol glycoside synthesis in stevia (Stevia rebaudiana Bertoni) plants by improving soil quality and regulating nitrogen uptake. South African Journal of Botany. 2022 Dec 1;151:306–14.141. Pikovskayas Agar. Mumbai; 2015.142. Castellanos-Rozo J. Manual de prácticas de Microbiología Ambiental. 2016.143. Collection S. Ashby ’ s Mannitol Agar.THUMBNAILEscáner 1.pdf.jpgEscáner 1.pdf.jpgIM Thumbnailimage/jpeg31616http://repository.unilibre.edu.co/bitstream/10901/28097/6/Esc%c3%a1ner%201.pdf.jpg21f4aa67cf9f92b62754c1d27414d6beMD56CARACTERIZACIÓN DE ACTIVIDAD PROMOTORA DE CRECIMIENTO VEGETAL EN BACTERIAS AISLADAS DE LA COMPOSTERA DE LA UNIVERSIDAD LIBRE SECCIONAL PEREIRA.pdf.jpgCARACTERIZACIÓN DE ACTIVIDAD PROMOTORA DE CRECIMIENTO VEGETAL EN BACTERIAS AISLADAS DE LA COMPOSTERA DE LA UNIVERSIDAD LIBRE SECCIONAL PEREIRA.pdf.jpgIM Thumbnailimage/jpeg14564http://repository.unilibre.edu.co/bitstream/10901/28097/7/CARACTERIZACI%c3%93N%20DE%20ACTIVIDAD%20PROMOTORA%20DE%20CRECIMIENTO%20VEGETAL%20EN%20BACTERIAS%20AISLADAS%20DE%20LA%20COMPOSTERA%20DE%20LA%20UNIVERSIDAD%20LIBRE%20SECCIONAL%20PEREIRA.pdf.jpgb4afc1eb8cbcc410d399e439f94c1bc3MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/28097/5/license.txt8a4605be74aa9ea9d79846c1fba20a33MD55ORIGINALEscáner 1.pdfEscáner 1.pdfFormato de autorización para la publicación de obras en el Repositorio Institucionalapplication/pdf448983http://repository.unilibre.edu.co/bitstream/10901/28097/1/Esc%c3%a1ner%201.pdf89ac46c67fbef6fbba0f108c28aa793eMD51CARACTERIZACIÓN DE ACTIVIDAD PROMOTORA DE CRECIMIENTO VEGETAL EN BACTERIAS AISLADAS DE LA COMPOSTERA DE LA UNIVERSIDAD LIBRE SECCIONAL PEREIRA.pdfCARACTERIZACIÓN DE ACTIVIDAD PROMOTORA DE CRECIMIENTO VEGETAL EN BACTERIAS AISLADAS DE LA COMPOSTERA DE LA UNIVERSIDAD LIBRE SECCIONAL PEREIRA.pdfTesis de gradoapplication/pdf10751012http://repository.unilibre.edu.co/bitstream/10901/28097/4/CARACTERIZACI%c3%93N%20DE%20ACTIVIDAD%20PROMOTORA%20DE%20CRECIMIENTO%20VEGETAL%20EN%20BACTERIAS%20AISLADAS%20DE%20LA%20COMPOSTERA%20DE%20LA%20UNIVERSIDAD%20LIBRE%20SECCIONAL%20PEREIRA.pdf56bead207a8fcbcc8ec76666d0258137MD5410901/28097oai:repository.unilibre.edu.co:10901/280972024-01-25 06:01:08.436Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=