Optimización del proceso de aspersión térmica por arco eléctrico a la mezcla de los recubrimientos 140mxc-530as y 140mxc-560as usando un algoritmo genético multiobjetivo

La proyección térmica conocida también como aspersión térmica, termo-rociado o por su nombre genérico en inglés Thermal Spray, se puede definir como el proceso mediante el cual se aplica un recubrimiento metálico o no metálico mediante la deposición de partículas fundidas o semifundidas que son acel...

Full description

Autores:
Luna Ortiz, Oscar Eduardo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2016
Institución:
Universidad Libre
Repositorio:
RIU - Repositorio Institucional UniLibre
Idioma:
spa
OAI Identifier:
oai:repository.unilibre.edu.co:10901/9466
Acceso en línea:
https://hdl.handle.net/10901/9466
Palabra clave:
Aspersión térmica
Arco eléctrico
Algoritmo genético
TESIS - INGENIERÍA
INGENIERÍA - MECÁNICA
MECÁNICA
MATERIALES
ACERO
Termo-rociado
Termoaspirasión
Arco eléctrico
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id RULIBRE2_7f9ae8739a990d0764790346d41de5c4
oai_identifier_str oai:repository.unilibre.edu.co:10901/9466
network_acronym_str RULIBRE2
network_name_str RIU - Repositorio Institucional UniLibre
repository_id_str
dc.title.spa.fl_str_mv Optimización del proceso de aspersión térmica por arco eléctrico a la mezcla de los recubrimientos 140mxc-530as y 140mxc-560as usando un algoritmo genético multiobjetivo
title Optimización del proceso de aspersión térmica por arco eléctrico a la mezcla de los recubrimientos 140mxc-530as y 140mxc-560as usando un algoritmo genético multiobjetivo
spellingShingle Optimización del proceso de aspersión térmica por arco eléctrico a la mezcla de los recubrimientos 140mxc-530as y 140mxc-560as usando un algoritmo genético multiobjetivo
Aspersión térmica
Arco eléctrico
Algoritmo genético
TESIS - INGENIERÍA
INGENIERÍA - MECÁNICA
MECÁNICA
MATERIALES
ACERO
Termo-rociado
Termoaspirasión
Arco eléctrico
title_short Optimización del proceso de aspersión térmica por arco eléctrico a la mezcla de los recubrimientos 140mxc-530as y 140mxc-560as usando un algoritmo genético multiobjetivo
title_full Optimización del proceso de aspersión térmica por arco eléctrico a la mezcla de los recubrimientos 140mxc-530as y 140mxc-560as usando un algoritmo genético multiobjetivo
title_fullStr Optimización del proceso de aspersión térmica por arco eléctrico a la mezcla de los recubrimientos 140mxc-530as y 140mxc-560as usando un algoritmo genético multiobjetivo
title_full_unstemmed Optimización del proceso de aspersión térmica por arco eléctrico a la mezcla de los recubrimientos 140mxc-530as y 140mxc-560as usando un algoritmo genético multiobjetivo
title_sort Optimización del proceso de aspersión térmica por arco eléctrico a la mezcla de los recubrimientos 140mxc-530as y 140mxc-560as usando un algoritmo genético multiobjetivo
dc.creator.fl_str_mv Luna Ortiz, Oscar Eduardo
dc.contributor.advisor.none.fl_str_mv Rojas Molano, Héctor Fernando
dc.contributor.author.none.fl_str_mv Luna Ortiz, Oscar Eduardo
dc.subject.spa.fl_str_mv Aspersión térmica
Arco eléctrico
Algoritmo genético
topic Aspersión térmica
Arco eléctrico
Algoritmo genético
TESIS - INGENIERÍA
INGENIERÍA - MECÁNICA
MECÁNICA
MATERIALES
ACERO
Termo-rociado
Termoaspirasión
Arco eléctrico
dc.subject.lemb.spa.fl_str_mv TESIS - INGENIERÍA
INGENIERÍA - MECÁNICA
MECÁNICA
MATERIALES
ACERO
dc.subject.proposal.spa.fl_str_mv Termo-rociado
Termoaspirasión
Arco eléctrico
description La proyección térmica conocida también como aspersión térmica, termo-rociado o por su nombre genérico en inglés Thermal Spray, se puede definir como el proceso mediante el cual se aplica un recubrimiento metálico o no metálico mediante la deposición de partículas fundidas o semifundidas que son aceleradas y proyectadas a alta presión sobre la superficie de un material base o sustrato previamente preparado; este proceso se puede agrupar en tres grandes categorías: proyección a la llama, por arco eléctrico y plasma, mientras que los recubrimientos se pueden aplicar en forma de polvos, alambres o varillas, que cuando impactan sobre la superficie generan una acumulación de las partículas, generando una estructura o película laminar delgada (TSS Training Committee, 2004)
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2016-09-13T15:40:48Z
dc.date.available.none.fl_str_mv 2016-09-13T15:40:48Z
dc.date.created.none.fl_str_mv 2016-08-17
dc.type.local.spa.fl_str_mv Tesis de Pregrado
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10901/9466
dc.identifier.instname.spa.fl_str_mv instname:Universidad Libre
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Libre
url https://hdl.handle.net/10901/9466
identifier_str_mv instname:Universidad Libre
reponame:Repositorio Institucional Universidad Libre
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.Eng.fl_str_mv Afshar, A., Ghorbani, M., and Mazaheri, M. (2004). Electrodeposition of graphitebronze composite coatings and study of electroplating characteristics. Surf. Coat. Technol. 187, 293–299.
Antoine, G., and Batra, R. (2015). Optimization of transparent laminates for specific energy dissipation under low velocity impact using genetic algorithm. Compos. Struct. 124, 29–34.
ASM International Handbook Committee (1987). Thermal Spray Coatings. In ASM HandBook Corrosion, ASM Editorial Staff, ed. (ASM International), pp. 1042–1050.
ASM International Handbook Committee (2003). Thermal Spray Coatings. In ASM HandBook Corrosion: Fundamentals, Testing, and Protection, ASM Editorial Staff, ed. (ASM International), pp. 2062–2088.
Back, T. (1992). Self-adaptation in genetic algorithms. In Proceedings of the First European Conference on Artificial Life, (The MIT Press, Cambridge, MA), pp. 263– 271.
Back, T. (1993). Optimal Mutation Rates in Genetic Search. In Proc. of the 5th International Conference on Genetic Algorithms, pp. 2–8.
Balaji, R., Pushpavanam, M., Kumar, K.Y., and Subramanian, K. (2006). Electrodeposition of bronze–PTFE composite coatings and study on their tribological characteristics. Surf. Coat. Technol. 201, 3205–3211
Behera, S., Sahoo, S., and Pati, B.B. (2015). A review on optimization algorithms and application to wind energy integration to grid. Renew. Sustain. Energy Rev. 48, 214–227
Bowen, J., and Dozier, G. (1995). Solving Constraint Satisfaction Problems Using a Genetic/Systematic Search Hybrid That Realizes When to Quit. In Proceedings of the 6th International Conference on Genetic Algorithms, (Morgan Kaufmann Publishers Inc.), pp. 122–129.
Cai, Z., and Wang, Y. (2006). A multiobjective optimization-based evolutionary algorithm for constrained optimization. Evol. Comput. IEEE Trans. On 10, 658– 675.
Cazacu, R., and Grama, L. (2014). Steel truss optimization using genetic algorithms and FEA. Procedia Technol. 12, 339–346.
Celik, E., Demirkıran, A., and Avcı, E. (1999). Effect of grit blasting of substrate on the corrosion behaviour of plasma-sprayed Al 2 O 3 coatings. Surf. Coat. Technol. 116, 1061–1064
Cellard, A., Zenati, R., Garnier, V., Fantozzi, G., and Baret, G. (2007). Optimization of chromium oxide nanopowders dispersion for spray-drying. J. Eur. Ceram. Soc. 27, 1017–1021.
Cellard, A., Garnier, V., Fantozzi, G., Baret, G., and Fort, P. (2009). Wear resistance of chromium oxide nanostructured coatings. Ceram. Int. 35, 913–916.
Chandra, S., and Fauchais, P. (2009). Formation of Solid Splats During Thermal Spray Deposition. J. Therm. Spray Technol. 18, 148–180.
Chen, Z., Qiu, S., and Jiao, Y. (2013). A penalty-free method for equality constrained optimization. J. Ind. Manag. Optim. 9, 391–409.
Cho, S.H., Park, S.B., Kang, D.S., Jeong, M.S., Park, H., Hur, J.M., and Lee, H.S. (2010). Corrosion behavior of plasma-sprayed Al 2 O 3–Cr 2 O 3 coatings in hot lithium molten salt. J. Nucl. Mater. 399, 212–218.
Cooke, K., Oliver, G., Buchanan, V., and Palmer, N. (2007). Optimisation of the electric wire arc-spraying process for improved wear resistance of sugar mill roller shells. Surf. Coat. Technol. 202, 185–188.
Craenen, B.G.W., Eiben, A.E., and Marchiori, E. (2000). Solving constraint satisfaction problems with heuristic-based evolutionary algorithms. In Evolutionary Computation, 2000. Proceedings of the 2000 Congress on, (IEEE), pp. 1571–1577.
Craenen, B.G.W., Eiben, A.E., and Marchiori, E. (2001). How to handle constraints with evolutionary algorithms. Pract. Handb. Genet. Algorithms Appl. 341–361.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (John Wiley & Sons)
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol. Comput. IEEE Trans. On 6, 182– 197.
Dhiman, R., McDonald, A.G., and Chandra, S. (2007). Predicting splat morphology in a thermal spray process. Surf. Coat. Technol. 201, 7789–7801.
Dimaté Castellanos, L.M., Morales Torres, J.A., and Olaya Flórez, J.J. (2012). Electric arc spray coatings for the naval industry. Ship Sci. Technol. Vol 4 No 8.
Eiben, A.E., and Hauw, J.K. van der (1997). Adaptive penalties for evolutionary graph coloring. In Artificial Evolution: Third European Conference AE ’97 Nîmes, France, October 22–24, 1997 Selected Papers, J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, eds. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 95–106.
Eiben, A.E., and Ruttkay, Z. (1996). Self-adaptivity for constraint satisfaction: Learning penalty functions. In IEEE International Conference on Evolutionary Computation, 1996., (Proceedings of IEEE International Conference on Evolutionary Computation, 1996.: IEEE), pp. 258–261.
Eiben, A.E., van der Hauw, J.K., and van Hemert, J.I. (1998). Graph Coloring with Adaptive Evolutionary Algorithms. J. Heuristics 4, 25–46.
Elhadidy, A.A., Elbeltagi, E.E., and Ammar, M.A. (2015). Optimum analysis of pavement maintenance using multi-objective genetic algorithms. HBRC J. 11, 107– 113.
G. Dozier, J. Bowen, and D. Bahler (1994). Solving small and large scale constraint satisfaction problems using a heuristic-based microgenetic algorithm. Evol. Comput. 1994 IEEE World Congr. Comput. Intell. Proc. First IEEE Conf. On 1, 306–311
G. Dozier, J. Bowen, and D. Bahler (1995). Solving randomly generated constraint satisfaction problems using a micro-evolutionary hybrid that evolves a population of hill-climbers. IEEE Int. Conf. Evol. Comput. 1995 2, 614–619
Gedzevicius, I., and Valiulis, A.V. (2006). Analysis of wire arc spraying process variables on coatings properties. Achiev. Mech. Mater. Eng. 175, 206–211.
Georgieva, P., R. Thorpe, A. Yanski, and S. Seal (2006). Nanocomposite materials: an innovative turnover for the wire arc spraying technology. Int. Therm. Spray Surf. Eng. 1, 68–69
Goldberg, D.E. (1989). Genetic algorithms in search optimization and machine learning (Addison-wesley Reading Menlo Park).
Goyal, T., Walia, R.S., and Sidhu, T.S. (2011). Study of Coating Thickness of Cold Spray Process Using Taguchi Method. Mater. Manuf. Process. 27, 185–192.
Guilemany, J.M., Fernandez, J., Delgado, J., Benedetti, A.V., and Climent, F. (2002). Effects of thickness coating on the electrochemical behaviour of thermal spray Cr 3 C 2–NiCr coatings. Surf. Coat. Technol. 153, 107–113.
Homaifar, A., Qi, C.X., and Lai, S.H. (1994). Constrained optimization via genetic algorithms. Simulation 62, 242–253
Hsu, C.-H., Lee, C.-Y., Chen, K.-L., and Lu, J.-H. (2009). Effects of CrN/EN and Cr 2 O 3/EN duplex coatings on corrosion resistance of ADI. Thin Solid Films 517, 5248–5252.
Hwang, J.D., Li, B.J., Hwang, W.-S., and Hu, C.T. (1998). Comparison of phosphor bronze metal sheet produced by twin roll casting and horizontal continuous casting. J. Mater. Eng. Perform. 7, 495–503
Joines, J.A., and Houck, C.R. (1994). On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s. In Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on, (IEEE), pp. 579–584.
Kahraman, N., and Gülenç, B. (2002). Abrasive wear behaviour of powder flame sprayed coatings on steel substrates. Mater. Des. 23, 721–725.
Kramer, O. (2010). A review of constraint-handling techniques for evolution strategies. Appl. Comput. Intell. Soft Comput. 2010
Lance Chambers (2001). The Practical Handbook of Genetic Algorithms: Applications (Boca Raton London New York Washington, D.C.: Chapman & Hall/CRC).
Liu, C., Bi, Q., Leyland, A., and Matthews, A. (2003). An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviour. Corros. Sci. 45, 1257–1273
Marchiori, E. (1997). Combining constraint processing and genetic algorithms for constraint satisfaction problems. In Proceedings of the Seventh International Conference of Genetic Algorithm, 1997, T. Back, ed. (Morgan Kaufmann Publishers Inc.), pp. 330–337.
Meneses, C.A.P., and Echeverri, M.G. (2007). Optimización multiobjetivo usando un algoritmo genético y un operador elitista basado en un ordenamiento nodominado (NSGA-II). Univ. Tecnol. Pereira 1
Meng, Z., Hu, Q., and Dang, C. (2009). A penalty function algorithm with objective parameters for nonlinear mathematical programming. J. Ind. Manag. Optim. 5, 585–601.
Mitchell, M. (1999). An Introduction to Genetic Algorithms (Cambridge, Massachusetts: A Bradford Book The MIT Press).
Morales, A.K., and Quezada, C.V. (1998). A universal eclectic genetic algorithm for constrained optimization. In Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, (Citeseer), pp. 518–522.
Navas, C., Colaco, R., De Damborenea, J., and Vilar, R. (2006). Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings. Surf. Coat. Technol. 200, 6854–6862.
Paredis, J. (1994). Co-evolutionary constraint satisfaction. In Parallel Problem Solving from Nature—PPSN III, (Springer), pp. 46–55.
Rojas, M.C.R. (1996). Using the knowledge of the constraints network to design an evolutionary algorithm that solves CSP. In Evolutionary Computation, 1996., Proceedings of IEEE International Conference on, (IEEE), pp. 279–284.
Schaffer, J.D., Caruana, R.A., Eshelman, L.J., and Das, R. (1989). A study of control parameters affecting online performance of genetic algorithms for function optimization. In Proceedings of the Third International Conference on Genetic Algorithms, (Morgan Kaufmann Publishers Inc.), pp. 51–60.
Xu, C., Du, L., Yang, B., and Zhang, W. (2011). Study on salt spray corrosion of Ni–graphite abradable coating with 80Ni20Al and 96NiCr–4Al as bonding layers. Surf. Coat. Technol. 205, 4154–4161.
Yen, J., Liao, J.C., Lee, B., and Randolph, D. (1998). A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method. Syst. Man Cybern. Part B Cybern. IEEE Trans. On 28, 173–191.
Zhao, W.-M., Wang, Y., Dong, L.-X., Wu, K.-Y., and Xue, J. (2005). Corrosion mechanism of NiCrBSi coatings deposited by HVOF. Surf. Coat. Technol. 190, 293–298.
Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications (Citeseer).
Deb, K. (2011). Multi-objective optimization using evolutionary algorithms: An introduction. KanGAL Rep. 3–34.
Groşan, C., and Dumitrescu, D. (2002). A comparison of multiobjective evolutionary algorithms. Acta Univ. Apulensis 4, 60–72.
Guilemany, J.M., Espallargas, N., Suegama, P.H., and Benedetti, A.V. (2006). Comparative study of Cr 3 C 2–NiCr coatings obtained by HVOF and hard chromium coatings. Corros. Sci. 48, 2998–3013.
Hoehn, T.P., and Pettey, C.C. (1999). Parental and cyclic-rate mutation in genetic algorithms: an initial investigation. In Proceedings of Genetic and Evolutionary Computation Conference, pp. 297–304.
Hong, T.-P., Chen, C.-H., and Lin, F.-S. (2015). Using group genetic algorithm to improve performance of attribute clustering. Appl. Soft Comput. 29, 371–378.
Hui, I.K., Hua, M., and Lau, H.C.W. (2003). A parametric investigation of arc spraying process for rapid mould making. Int. J. Adv. Manuf. Technol. 22, 786– 795.
Knowles, J., and Corne, D. (1999). The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, (Piscataway, NJ: IEEE), pp. 98–105.
Kuri-Morales, A.F., and Gutiérrez-García, J. (2002). Penalty function methods for constrained optimization with genetic algorithms: A statistical analysis. In MICAI 2002: Advances in Artificial Intelligence, (Springer), pp. 108–117.
Lech Pawlowski (2008). 3.4 Arc Spaying (AS). In The Science and Engineering of Thermal Spray Coatings, (John Wiley & Sons), pp. 79–81.
Lin, W.-Y., Lee, W.-Y., and Hong, T.-P. (2003). Adapting crossover and mutation rates in genetic algorithms. J Inf Sci Eng 19, 889–903.
Long, Q., and Wu, C. (2014). A hybrid method combining genetic algorithm and Hooke-Jeeves m
Mallipeddi, R., and Suganthan, P.N. (2010). Ensemble of constraint handling techniques. Evol. Comput. IEEE Trans. On 14, 561–579.
Mitchell, M. (1998). An introduction to genetic algorithms (MIT press)
Mitchell, G.G., O’Donoghue, D., Barnes, D., and McCarville, M. (2003). GeneRepair-a repair operator for genetic algorithms. In GECCO, (Citeseer), pp. 235–239.
Newbery, A.P., and Grant, P.S. (2003). Large arc voltage fluctuations and droplet formation in electric arc wire spraying. Powder Metall. 46, 229–235.
.Paredis, J. (1994). Co-evolutionary constraint satisfaction. In Parallel Problem Solving from Nature—PPSN III, (Springer), pp. 46–55.
Popov, A. (2005). Genetic algorithms for optimization. User Man. Hambg. 2013
Powell, D., and Skolnick, M.M. (1993). Using genetic algorithms in engineering design optimization with non-linear constraints. In Proceedings of the 5th International Conference on Genetic Algorithms, (Morgan Kaufmann Publishers Inc.), pp. 424–431.
Rahmouni, K., Keddam, M., Srhiri, A., and Takenouti, H. (2005). Corrosion of copper in 3% NaCl solution polluted by sulphide ions. Corros. Sci. 47, 3249–3266.
Ramos, A., Sánchez, P., Ferrer, J.M., Barquín, J., and Linares, P. (2010). Modelos matemáticos de optimización. Publ. Téc
Runarsson, T.P., and Yao, X. (2000). Stochastic ranking for constrained evolutionary optimization. Evol. Comput. IEEE Trans. On 4, 284–294.
Scully, J.R., Silverman, D.C., and Kendig, M.W. (1993). Electrochemical impedance: analysis and interpretation. (ASTM Philadelphia), p
Srinivas, M., and Patnaik, L.M. (1994). Adaptive probabilities of crossover and mutation in genetic algorithms. Syst. Man Cybern. IEEE Trans. On 24, 656–667.
Toma, S.L. (2013). The influence of jet gas temperature on the characteristics of steel coating obtained by wire arc spraying. Proc. Fifth Workshop RIPT Rencontres Int. Sur Proj. Therm. 220, 261–265.
TSS Training Committee (2004). Handbook of Thermal Spray Technology (United States of America: ASM International).
Uyulgan, B., Dokumaci, E., Celik, E., Kayatekin, I., Azem, N.A., Ozdemir, I., and Toparli, M. (2007). Wear behaviour of thermal flame sprayed FeCr coatings on plain carbon steel substrate. J. Mater. Process. Technol. 190, 204–210.
Wang, Y., Tian, W., Zhang, T., and Yang, Y. (2009). Microstructure, spallation and corrosion of plasma sprayed Al 2 O 3–13% TiO 2 coatings. Corros. Sci. 51, 2924– 2931.
Wang, Y.-Y., Li, C.-J., and Ohmori, A. (2005). Influence of substrate roughness on the bonding mechanisms of high velocity oxy-fuel sprayed coatings. Thin Solid Films 485, 141–147.
dc.relation.references.Spa.fl_str_mv Arranz de la Peña, J., and Parra Truyol, A. (2014). Algoritmos Genéticos. Univ. Carlos III.
Azketa, E., Gutiérrez, J.J., Di Natale, M., Almeida, L., and Marcos, M. (2013). Algoritmo genético permutacional para el despliegue y la planificación de sistemas de tiempo real distribuidos. Rev. Iberoam. Automática E Informática Ind. RIAI 10, 344–355.
Chapra, S.C., and Raymond, P.C. (2007). Métodos numéricos para ingenieros. (México, D.F.: McGraw-Hill).
Dimaté, L. (2009). Recuperación de piezas metálicas por proyección térmica. Tesis de maestría. Universidad Nacional de Colombia. 2009. Universidad Nacional de Colombia.
Echeverri, S., Bedoya, J., and Vargas, F. (2007). Estudio de la resistencia al desgaste de recubrimientos depositados mediante proyección térmica sobre acero al carbono. Sci. Tech. 1.
Enrique Baquela, and Andrés Redchuk (2013). Optimización Matemática con R. Volumen I: Introducción al modelado y resolución de problemas (España: Editor Bubok Publishing S.L.).
Gacto, M., Alcalá, R., and Herrera, F. Algoritmo Genético Multi-Objetivo Avanzado para el ajuste de un sistema difuso aplicado al Control de Sistemas de Ventilacion, Calefaccion y Aire Acondicionado.
Gómez, R.E.L., and Guerrero, M.H.A. (2013). Los Algoritmos Genéticos en el Modelo de Cournot. Econ. Inf. 2013, 37–50
Héller Sánchez, Fernando Rojas, and Oscar Luna (2014). Contextualizacion de la tecnica de aspersion por arco electrico. Rev. Ing. Mil. 85–98.
Liang, W., Xiaolei, X., Jiujun, X., and Zukun, H. (2000). Microstructures and properties of PVD aluminum bronze coatings. Thin Solid Films 376, 159–163.
López, E., Mendaña, C., and Rodriguez, M.A. (1998). La gestión de inventarios con algoritmos genéticos. Intel. Artif. Rev. Iberoam. Intel. Artif. 2, 85–89.
Magaña, V.C., and Organero, M.M. (2014). Algoritmo para el cálculo de la velocidad media óptima en una ruta (ASGA). Rev. Iberoam. Automática E Informática Ind. RIAI 11, 435–443.
Martínez Ramírez, G.M., Olaya Flórez, J.J., and Morales Torres, J.A. (2011). Recubrimientos depositados con la técnica de proyección térmica por llama sobre sustratos de piezas navales. Rev. Av. - Investig. En Ing. 8, 52–64.
Mendoza, J., Villaleiva, L., Castro, M., and Lopez, E. (2008). Evaluación de Algoritmos Evolutivos Multiobjetivos para la Toma de Decisiones en el Problema de Reconfiguración de Redes Eléctricas de Media Tensión. p
Parra, R.A.M. (2007). Programación genética: La regresión simbólica. Entramado 3, 76–85
Quintero Salazar, J.A., Molina Cabrera, A., and Quintero Salazar, E.A. (2012). Reubicación del parque de transformadores de los sistemas de distribución de Bogotá DC mediante algoritmos genéticos. Ingeniare Rev. Chil. Ing. 20, 170–184
Ramachandran, C.S., Balasubramanian, V., and Ananthapadmanabhan, P.V. (2011). Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology. J. Therm. Spray Technol. 20, 590–607.
Riff-Rojas, M.C. (1997). Evolutionary search guided by the constraint network to solve CSP. In Evolutionary Computation, 1997., IEEE International Conference on, (IEEE), pp. 337–342.
Rodríguez, A.B., and Saavedra, F. (2010). Optimización del Algoritmo Genético para la Solución Integral de Enrutamiento en Redes Fotónicas. Inf. Tecnológica 21, 125–133
Romero, C. (1993). Teoría de la decisión multicriterio: conceptos, técnicas y aplicaciones (Alianza editorial)
Sandoval, E.H. (2008). Estimación de parámetros de un automóvil utilizando algoritmos genéticos. Ingenierías 11, 4.
Lucena, J. (2008). Análisis de falla de piezas de la industria naval que pueden ser recuperadas por técnicas de proyección térmica. Tesis de pregrado. Universidad Nacional de Colombia.
Marcos Gestal, Daniel Rivero, Juan Ramon Rabuñal, Julian Dorado, and Alejandro Pazos (2010). Introduccion a los Algoritmos Geneticos y la Programacion Genetica (Universidade da Coruña, Servicio de Publicacións).
Méndez Sayago, J.A. (2008). Adaptación de algoritmos genéticos en la simulación del comportamiento estratégico de los agentes contaminadores ante el cobro de tasas retributivas. Cuad. Adm. 21, 161–187.
Mendoza, J.E., Viveros, R.A., and Ruiz, D.A. Un Modelo Multiobjetivo de Localización de DFACTS en Redes de Distribución con Generación Distribuida.
Morales, J.A., Olaya, J.J., and Rojas, H.F. (2012). Una aproximación a la tecnología de proyección térmica. Rev. Av. - Investig. En Ing. 9, 60–71
Natyhelem Gil Londoño (2006). Algoritmos Geneticos.
Robles, F.O., García, O.D., and Gómez, R.O. Algoritmo Evolutivo Multi-Modal para minimizar una funcion de dos Variables.
Rodríguez García, M. del P., Cortez Alejandro, K.A., Méndez Sáenz, A.B., and Garza Sánchez, H.H. (2015). Análisis de portafolio por sectores mediante el uso de algoritmos genéticos: caso aplicado a la Bolsa Mexicana de Valores. Contad. Adm. 60, 87–112.
Rojas Molano, H.F., Olaya Flórez, J.J., and Molina González, C.A. (2016). Caracterización morfológica de los recubrimientos 140MXC-530AS y 140MXC560AS usando la técnica de proyección térmica por arco eléctrico. Ing. Investig. Tecnol. 17, 1–13.
Schoenauer, M., and Xanthakis, S. (1993). Constrained GA optimization. In ICGA, pp. 573–580.
Silva, O.F.B. (1993). Desarrollo de ensayos normalizados para recubrimientos aplicados por metalización. Tesis de Pregrado. Universidad Nacional de Colombia. Facultad de Ingeniera . Departamento de Ingeniera Mec ica.
VALENCIA, E. (1997). Optimización mediante algoritmos genéticos. pp. 83–92
Valencia, P.E. (1997). Optimización mediante algoritmos genéticos. pp. 83–92.
Verdian, M.M., Raeissi, K., and Salehi, M. (2010). Electrochemical impedance spectroscopy of HVOF-sprayed NiTi intermetallic coatings deposited on AISI 1045 steel. J. Alloys Compd. 507, 42–46.
Villar, C.M. (2008). Thermal Spray: Proteccion de alto impacto. Rev. Met. Actual 8, 40–45
Westergård, R., Axén, N., Wiklund, U., and Hogmark, S. (2000). An evaluation of plasma sprayed ceramic coatings by erosion, abrasion and bend testing. Wear 246, 12–19.
dc.relation.references.none.fl_str_mv Jong, K.D. (1980). Adaptive system design: a genetic approach. Syst. Man Cybern. IEEE Trans. On 10, 566–574.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.license.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv PDF
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Bogotá
institution Universidad Libre
bitstream.url.fl_str_mv http://repository.unilibre.edu.co/bitstream/10901/9466/1/Optimizaci%c3%b3n%20del%20proceso%20de%20aspersi%c3%b3n%20t%c3%a9rmica%20por%20arco%20el%c3%a9ctrico.pdf
http://repository.unilibre.edu.co/bitstream/10901/9466/2/license.txt
http://repository.unilibre.edu.co/bitstream/10901/9466/3/Optimizaci%c3%b3n%20del%20proceso%20de%20aspersi%c3%b3n%20t%c3%a9rmica%20por%20arco%20el%c3%a9ctrico.pdf.jpg
bitstream.checksum.fl_str_mv b6ad3c4fc5bbcca3c1417cc6ea57f015
8a4605be74aa9ea9d79846c1fba20a33
e10f1583e798c370d9990047ac12bebd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Unilibre
repository.mail.fl_str_mv repositorio@unilibrebog.edu.co
_version_ 1814090391394189312
spelling Rojas Molano, Héctor FernandoLuna Ortiz, Oscar EduardoBogotá2016-09-13T15:40:48Z2016-09-13T15:40:48Z2016-08-17https://hdl.handle.net/10901/9466instname:Universidad Librereponame:Repositorio Institucional Universidad LibreLa proyección térmica conocida también como aspersión térmica, termo-rociado o por su nombre genérico en inglés Thermal Spray, se puede definir como el proceso mediante el cual se aplica un recubrimiento metálico o no metálico mediante la deposición de partículas fundidas o semifundidas que son aceleradas y proyectadas a alta presión sobre la superficie de un material base o sustrato previamente preparado; este proceso se puede agrupar en tres grandes categorías: proyección a la llama, por arco eléctrico y plasma, mientras que los recubrimientos se pueden aplicar en forma de polvos, alambres o varillas, que cuando impactan sobre la superficie generan una acumulación de las partículas, generando una estructura o película laminar delgada (TSS Training Committee, 2004)PDFapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aspersión térmicaArco eléctricoAlgoritmo genéticoTESIS - INGENIERÍAINGENIERÍA - MECÁNICAMECÁNICAMATERIALESACEROTermo-rociadoTermoaspirasiónArco eléctricoOptimización del proceso de aspersión térmica por arco eléctrico a la mezcla de los recubrimientos 140mxc-530as y 140mxc-560as usando un algoritmo genético multiobjetivoTesis de Pregradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisAfshar, A., Ghorbani, M., and Mazaheri, M. (2004). Electrodeposition of graphitebronze composite coatings and study of electroplating characteristics. Surf. Coat. Technol. 187, 293–299.Antoine, G., and Batra, R. (2015). Optimization of transparent laminates for specific energy dissipation under low velocity impact using genetic algorithm. Compos. Struct. 124, 29–34.ASM International Handbook Committee (1987). Thermal Spray Coatings. In ASM HandBook Corrosion, ASM Editorial Staff, ed. (ASM International), pp. 1042–1050.ASM International Handbook Committee (2003). Thermal Spray Coatings. In ASM HandBook Corrosion: Fundamentals, Testing, and Protection, ASM Editorial Staff, ed. (ASM International), pp. 2062–2088.Back, T. (1992). Self-adaptation in genetic algorithms. In Proceedings of the First European Conference on Artificial Life, (The MIT Press, Cambridge, MA), pp. 263– 271.Back, T. (1993). Optimal Mutation Rates in Genetic Search. In Proc. of the 5th International Conference on Genetic Algorithms, pp. 2–8.Balaji, R., Pushpavanam, M., Kumar, K.Y., and Subramanian, K. (2006). Electrodeposition of bronze–PTFE composite coatings and study on their tribological characteristics. Surf. Coat. Technol. 201, 3205–3211Behera, S., Sahoo, S., and Pati, B.B. (2015). A review on optimization algorithms and application to wind energy integration to grid. Renew. Sustain. Energy Rev. 48, 214–227Bowen, J., and Dozier, G. (1995). Solving Constraint Satisfaction Problems Using a Genetic/Systematic Search Hybrid That Realizes When to Quit. In Proceedings of the 6th International Conference on Genetic Algorithms, (Morgan Kaufmann Publishers Inc.), pp. 122–129.Cai, Z., and Wang, Y. (2006). A multiobjective optimization-based evolutionary algorithm for constrained optimization. Evol. Comput. IEEE Trans. On 10, 658– 675.Cazacu, R., and Grama, L. (2014). Steel truss optimization using genetic algorithms and FEA. Procedia Technol. 12, 339–346.Celik, E., Demirkıran, A., and Avcı, E. (1999). Effect of grit blasting of substrate on the corrosion behaviour of plasma-sprayed Al 2 O 3 coatings. Surf. Coat. Technol. 116, 1061–1064Cellard, A., Zenati, R., Garnier, V., Fantozzi, G., and Baret, G. (2007). Optimization of chromium oxide nanopowders dispersion for spray-drying. J. Eur. Ceram. Soc. 27, 1017–1021.Cellard, A., Garnier, V., Fantozzi, G., Baret, G., and Fort, P. (2009). Wear resistance of chromium oxide nanostructured coatings. Ceram. Int. 35, 913–916.Chandra, S., and Fauchais, P. (2009). Formation of Solid Splats During Thermal Spray Deposition. J. Therm. Spray Technol. 18, 148–180.Chen, Z., Qiu, S., and Jiao, Y. (2013). A penalty-free method for equality constrained optimization. J. Ind. Manag. Optim. 9, 391–409.Cho, S.H., Park, S.B., Kang, D.S., Jeong, M.S., Park, H., Hur, J.M., and Lee, H.S. (2010). Corrosion behavior of plasma-sprayed Al 2 O 3–Cr 2 O 3 coatings in hot lithium molten salt. J. Nucl. Mater. 399, 212–218.Cooke, K., Oliver, G., Buchanan, V., and Palmer, N. (2007). Optimisation of the electric wire arc-spraying process for improved wear resistance of sugar mill roller shells. Surf. Coat. Technol. 202, 185–188.Craenen, B.G.W., Eiben, A.E., and Marchiori, E. (2000). Solving constraint satisfaction problems with heuristic-based evolutionary algorithms. In Evolutionary Computation, 2000. Proceedings of the 2000 Congress on, (IEEE), pp. 1571–1577.Craenen, B.G.W., Eiben, A.E., and Marchiori, E. (2001). How to handle constraints with evolutionary algorithms. Pract. Handb. Genet. Algorithms Appl. 341–361.Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (John Wiley & Sons)Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. Evol. Comput. IEEE Trans. On 6, 182– 197.Dhiman, R., McDonald, A.G., and Chandra, S. (2007). Predicting splat morphology in a thermal spray process. Surf. Coat. Technol. 201, 7789–7801.Dimaté Castellanos, L.M., Morales Torres, J.A., and Olaya Flórez, J.J. (2012). Electric arc spray coatings for the naval industry. Ship Sci. Technol. Vol 4 No 8.Eiben, A.E., and Hauw, J.K. van der (1997). Adaptive penalties for evolutionary graph coloring. In Artificial Evolution: Third European Conference AE ’97 Nîmes, France, October 22–24, 1997 Selected Papers, J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, eds. (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 95–106.Eiben, A.E., and Ruttkay, Z. (1996). Self-adaptivity for constraint satisfaction: Learning penalty functions. In IEEE International Conference on Evolutionary Computation, 1996., (Proceedings of IEEE International Conference on Evolutionary Computation, 1996.: IEEE), pp. 258–261.Eiben, A.E., van der Hauw, J.K., and van Hemert, J.I. (1998). Graph Coloring with Adaptive Evolutionary Algorithms. J. Heuristics 4, 25–46.Elhadidy, A.A., Elbeltagi, E.E., and Ammar, M.A. (2015). Optimum analysis of pavement maintenance using multi-objective genetic algorithms. HBRC J. 11, 107– 113.G. Dozier, J. Bowen, and D. Bahler (1994). Solving small and large scale constraint satisfaction problems using a heuristic-based microgenetic algorithm. Evol. Comput. 1994 IEEE World Congr. Comput. Intell. Proc. First IEEE Conf. On 1, 306–311G. Dozier, J. Bowen, and D. Bahler (1995). Solving randomly generated constraint satisfaction problems using a micro-evolutionary hybrid that evolves a population of hill-climbers. IEEE Int. Conf. Evol. Comput. 1995 2, 614–619Gedzevicius, I., and Valiulis, A.V. (2006). Analysis of wire arc spraying process variables on coatings properties. Achiev. Mech. Mater. Eng. 175, 206–211.Georgieva, P., R. Thorpe, A. Yanski, and S. Seal (2006). Nanocomposite materials: an innovative turnover for the wire arc spraying technology. Int. Therm. Spray Surf. Eng. 1, 68–69Goldberg, D.E. (1989). Genetic algorithms in search optimization and machine learning (Addison-wesley Reading Menlo Park).Goyal, T., Walia, R.S., and Sidhu, T.S. (2011). Study of Coating Thickness of Cold Spray Process Using Taguchi Method. Mater. Manuf. Process. 27, 185–192.Guilemany, J.M., Fernandez, J., Delgado, J., Benedetti, A.V., and Climent, F. (2002). Effects of thickness coating on the electrochemical behaviour of thermal spray Cr 3 C 2–NiCr coatings. Surf. Coat. Technol. 153, 107–113.Homaifar, A., Qi, C.X., and Lai, S.H. (1994). Constrained optimization via genetic algorithms. Simulation 62, 242–253Hsu, C.-H., Lee, C.-Y., Chen, K.-L., and Lu, J.-H. (2009). Effects of CrN/EN and Cr 2 O 3/EN duplex coatings on corrosion resistance of ADI. Thin Solid Films 517, 5248–5252.Hwang, J.D., Li, B.J., Hwang, W.-S., and Hu, C.T. (1998). Comparison of phosphor bronze metal sheet produced by twin roll casting and horizontal continuous casting. J. Mater. Eng. Perform. 7, 495–503Joines, J.A., and Houck, C.R. (1994). On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s. In Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on, (IEEE), pp. 579–584.Kahraman, N., and Gülenç, B. (2002). Abrasive wear behaviour of powder flame sprayed coatings on steel substrates. Mater. Des. 23, 721–725.Kramer, O. (2010). A review of constraint-handling techniques for evolution strategies. Appl. Comput. Intell. Soft Comput. 2010Lance Chambers (2001). The Practical Handbook of Genetic Algorithms: Applications (Boca Raton London New York Washington, D.C.: Chapman & Hall/CRC).Liu, C., Bi, Q., Leyland, A., and Matthews, A. (2003). An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviour. Corros. Sci. 45, 1257–1273Marchiori, E. (1997). Combining constraint processing and genetic algorithms for constraint satisfaction problems. In Proceedings of the Seventh International Conference of Genetic Algorithm, 1997, T. Back, ed. (Morgan Kaufmann Publishers Inc.), pp. 330–337.Meneses, C.A.P., and Echeverri, M.G. (2007). Optimización multiobjetivo usando un algoritmo genético y un operador elitista basado en un ordenamiento nodominado (NSGA-II). Univ. Tecnol. Pereira 1Meng, Z., Hu, Q., and Dang, C. (2009). A penalty function algorithm with objective parameters for nonlinear mathematical programming. J. Ind. Manag. Optim. 5, 585–601.Mitchell, M. (1999). An Introduction to Genetic Algorithms (Cambridge, Massachusetts: A Bradford Book The MIT Press).Morales, A.K., and Quezada, C.V. (1998). A universal eclectic genetic algorithm for constrained optimization. In Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing, (Citeseer), pp. 518–522.Navas, C., Colaco, R., De Damborenea, J., and Vilar, R. (2006). Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings. Surf. Coat. Technol. 200, 6854–6862.Paredis, J. (1994). Co-evolutionary constraint satisfaction. In Parallel Problem Solving from Nature—PPSN III, (Springer), pp. 46–55.Rojas, M.C.R. (1996). Using the knowledge of the constraints network to design an evolutionary algorithm that solves CSP. In Evolutionary Computation, 1996., Proceedings of IEEE International Conference on, (IEEE), pp. 279–284.Schaffer, J.D., Caruana, R.A., Eshelman, L.J., and Das, R. (1989). A study of control parameters affecting online performance of genetic algorithms for function optimization. In Proceedings of the Third International Conference on Genetic Algorithms, (Morgan Kaufmann Publishers Inc.), pp. 51–60.Xu, C., Du, L., Yang, B., and Zhang, W. (2011). Study on salt spray corrosion of Ni–graphite abradable coating with 80Ni20Al and 96NiCr–4Al as bonding layers. Surf. Coat. Technol. 205, 4154–4161.Yen, J., Liao, J.C., Lee, B., and Randolph, D. (1998). A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method. Syst. Man Cybern. Part B Cybern. IEEE Trans. On 28, 173–191.Zhao, W.-M., Wang, Y., Dong, L.-X., Wu, K.-Y., and Xue, J. (2005). Corrosion mechanism of NiCrBSi coatings deposited by HVOF. Surf. Coat. Technol. 190, 293–298.Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and applications (Citeseer).Deb, K. (2011). Multi-objective optimization using evolutionary algorithms: An introduction. KanGAL Rep. 3–34.Groşan, C., and Dumitrescu, D. (2002). A comparison of multiobjective evolutionary algorithms. Acta Univ. Apulensis 4, 60–72.Guilemany, J.M., Espallargas, N., Suegama, P.H., and Benedetti, A.V. (2006). Comparative study of Cr 3 C 2–NiCr coatings obtained by HVOF and hard chromium coatings. Corros. Sci. 48, 2998–3013.Hoehn, T.P., and Pettey, C.C. (1999). Parental and cyclic-rate mutation in genetic algorithms: an initial investigation. In Proceedings of Genetic and Evolutionary Computation Conference, pp. 297–304.Hong, T.-P., Chen, C.-H., and Lin, F.-S. (2015). Using group genetic algorithm to improve performance of attribute clustering. Appl. Soft Comput. 29, 371–378.Hui, I.K., Hua, M., and Lau, H.C.W. (2003). A parametric investigation of arc spraying process for rapid mould making. Int. J. Adv. Manuf. Technol. 22, 786– 795.Knowles, J., and Corne, D. (1999). The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, (Piscataway, NJ: IEEE), pp. 98–105.Kuri-Morales, A.F., and Gutiérrez-García, J. (2002). Penalty function methods for constrained optimization with genetic algorithms: A statistical analysis. In MICAI 2002: Advances in Artificial Intelligence, (Springer), pp. 108–117.Lech Pawlowski (2008). 3.4 Arc Spaying (AS). In The Science and Engineering of Thermal Spray Coatings, (John Wiley & Sons), pp. 79–81.Lin, W.-Y., Lee, W.-Y., and Hong, T.-P. (2003). Adapting crossover and mutation rates in genetic algorithms. J Inf Sci Eng 19, 889–903.Long, Q., and Wu, C. (2014). A hybrid method combining genetic algorithm and Hooke-Jeeves mMallipeddi, R., and Suganthan, P.N. (2010). Ensemble of constraint handling techniques. Evol. Comput. IEEE Trans. On 14, 561–579.Mitchell, M. (1998). An introduction to genetic algorithms (MIT press)Mitchell, G.G., O’Donoghue, D., Barnes, D., and McCarville, M. (2003). GeneRepair-a repair operator for genetic algorithms. In GECCO, (Citeseer), pp. 235–239.Newbery, A.P., and Grant, P.S. (2003). Large arc voltage fluctuations and droplet formation in electric arc wire spraying. Powder Metall. 46, 229–235..Paredis, J. (1994). Co-evolutionary constraint satisfaction. In Parallel Problem Solving from Nature—PPSN III, (Springer), pp. 46–55.Popov, A. (2005). Genetic algorithms for optimization. User Man. Hambg. 2013Powell, D., and Skolnick, M.M. (1993). Using genetic algorithms in engineering design optimization with non-linear constraints. In Proceedings of the 5th International Conference on Genetic Algorithms, (Morgan Kaufmann Publishers Inc.), pp. 424–431.Rahmouni, K., Keddam, M., Srhiri, A., and Takenouti, H. (2005). Corrosion of copper in 3% NaCl solution polluted by sulphide ions. Corros. Sci. 47, 3249–3266.Ramos, A., Sánchez, P., Ferrer, J.M., Barquín, J., and Linares, P. (2010). Modelos matemáticos de optimización. Publ. TécRunarsson, T.P., and Yao, X. (2000). Stochastic ranking for constrained evolutionary optimization. Evol. Comput. IEEE Trans. On 4, 284–294.Scully, J.R., Silverman, D.C., and Kendig, M.W. (1993). Electrochemical impedance: analysis and interpretation. (ASTM Philadelphia), pSrinivas, M., and Patnaik, L.M. (1994). Adaptive probabilities of crossover and mutation in genetic algorithms. Syst. Man Cybern. IEEE Trans. On 24, 656–667.Toma, S.L. (2013). The influence of jet gas temperature on the characteristics of steel coating obtained by wire arc spraying. Proc. Fifth Workshop RIPT Rencontres Int. Sur Proj. Therm. 220, 261–265.TSS Training Committee (2004). Handbook of Thermal Spray Technology (United States of America: ASM International).Uyulgan, B., Dokumaci, E., Celik, E., Kayatekin, I., Azem, N.A., Ozdemir, I., and Toparli, M. (2007). Wear behaviour of thermal flame sprayed FeCr coatings on plain carbon steel substrate. J. Mater. Process. Technol. 190, 204–210.Wang, Y., Tian, W., Zhang, T., and Yang, Y. (2009). Microstructure, spallation and corrosion of plasma sprayed Al 2 O 3–13% TiO 2 coatings. Corros. Sci. 51, 2924– 2931.Wang, Y.-Y., Li, C.-J., and Ohmori, A. (2005). Influence of substrate roughness on the bonding mechanisms of high velocity oxy-fuel sprayed coatings. Thin Solid Films 485, 141–147.Arranz de la Peña, J., and Parra Truyol, A. (2014). Algoritmos Genéticos. Univ. Carlos III.Azketa, E., Gutiérrez, J.J., Di Natale, M., Almeida, L., and Marcos, M. (2013). Algoritmo genético permutacional para el despliegue y la planificación de sistemas de tiempo real distribuidos. Rev. Iberoam. Automática E Informática Ind. RIAI 10, 344–355.Chapra, S.C., and Raymond, P.C. (2007). Métodos numéricos para ingenieros. (México, D.F.: McGraw-Hill).Dimaté, L. (2009). Recuperación de piezas metálicas por proyección térmica. Tesis de maestría. Universidad Nacional de Colombia. 2009. Universidad Nacional de Colombia.Echeverri, S., Bedoya, J., and Vargas, F. (2007). Estudio de la resistencia al desgaste de recubrimientos depositados mediante proyección térmica sobre acero al carbono. Sci. Tech. 1.Enrique Baquela, and Andrés Redchuk (2013). Optimización Matemática con R. Volumen I: Introducción al modelado y resolución de problemas (España: Editor Bubok Publishing S.L.).Gacto, M., Alcalá, R., and Herrera, F. Algoritmo Genético Multi-Objetivo Avanzado para el ajuste de un sistema difuso aplicado al Control de Sistemas de Ventilacion, Calefaccion y Aire Acondicionado.Gómez, R.E.L., and Guerrero, M.H.A. (2013). Los Algoritmos Genéticos en el Modelo de Cournot. Econ. Inf. 2013, 37–50Héller Sánchez, Fernando Rojas, and Oscar Luna (2014). Contextualizacion de la tecnica de aspersion por arco electrico. Rev. Ing. Mil. 85–98.Liang, W., Xiaolei, X., Jiujun, X., and Zukun, H. (2000). Microstructures and properties of PVD aluminum bronze coatings. Thin Solid Films 376, 159–163.López, E., Mendaña, C., and Rodriguez, M.A. (1998). La gestión de inventarios con algoritmos genéticos. Intel. Artif. Rev. Iberoam. Intel. Artif. 2, 85–89.Magaña, V.C., and Organero, M.M. (2014). Algoritmo para el cálculo de la velocidad media óptima en una ruta (ASGA). Rev. Iberoam. Automática E Informática Ind. RIAI 11, 435–443.Martínez Ramírez, G.M., Olaya Flórez, J.J., and Morales Torres, J.A. (2011). Recubrimientos depositados con la técnica de proyección térmica por llama sobre sustratos de piezas navales. Rev. Av. - Investig. En Ing. 8, 52–64.Mendoza, J., Villaleiva, L., Castro, M., and Lopez, E. (2008). Evaluación de Algoritmos Evolutivos Multiobjetivos para la Toma de Decisiones en el Problema de Reconfiguración de Redes Eléctricas de Media Tensión. pParra, R.A.M. (2007). Programación genética: La regresión simbólica. Entramado 3, 76–85Quintero Salazar, J.A., Molina Cabrera, A., and Quintero Salazar, E.A. (2012). Reubicación del parque de transformadores de los sistemas de distribución de Bogotá DC mediante algoritmos genéticos. Ingeniare Rev. Chil. Ing. 20, 170–184Ramachandran, C.S., Balasubramanian, V., and Ananthapadmanabhan, P.V. (2011). Multiobjective Optimization of Atmospheric Plasma Spray Process Parameters to Deposit Yttria-Stabilized Zirconia Coatings Using Response Surface Methodology. J. Therm. Spray Technol. 20, 590–607.Riff-Rojas, M.C. (1997). Evolutionary search guided by the constraint network to solve CSP. In Evolutionary Computation, 1997., IEEE International Conference on, (IEEE), pp. 337–342.Rodríguez, A.B., and Saavedra, F. (2010). Optimización del Algoritmo Genético para la Solución Integral de Enrutamiento en Redes Fotónicas. Inf. Tecnológica 21, 125–133Romero, C. (1993). Teoría de la decisión multicriterio: conceptos, técnicas y aplicaciones (Alianza editorial)Sandoval, E.H. (2008). Estimación de parámetros de un automóvil utilizando algoritmos genéticos. Ingenierías 11, 4.Lucena, J. (2008). Análisis de falla de piezas de la industria naval que pueden ser recuperadas por técnicas de proyección térmica. Tesis de pregrado. Universidad Nacional de Colombia.Marcos Gestal, Daniel Rivero, Juan Ramon Rabuñal, Julian Dorado, and Alejandro Pazos (2010). Introduccion a los Algoritmos Geneticos y la Programacion Genetica (Universidade da Coruña, Servicio de Publicacións).Méndez Sayago, J.A. (2008). Adaptación de algoritmos genéticos en la simulación del comportamiento estratégico de los agentes contaminadores ante el cobro de tasas retributivas. Cuad. Adm. 21, 161–187.Mendoza, J.E., Viveros, R.A., and Ruiz, D.A. Un Modelo Multiobjetivo de Localización de DFACTS en Redes de Distribución con Generación Distribuida.Morales, J.A., Olaya, J.J., and Rojas, H.F. (2012). Una aproximación a la tecnología de proyección térmica. Rev. Av. - Investig. En Ing. 9, 60–71Natyhelem Gil Londoño (2006). Algoritmos Geneticos.Robles, F.O., García, O.D., and Gómez, R.O. Algoritmo Evolutivo Multi-Modal para minimizar una funcion de dos Variables.Rodríguez García, M. del P., Cortez Alejandro, K.A., Méndez Sáenz, A.B., and Garza Sánchez, H.H. (2015). Análisis de portafolio por sectores mediante el uso de algoritmos genéticos: caso aplicado a la Bolsa Mexicana de Valores. Contad. Adm. 60, 87–112.Rojas Molano, H.F., Olaya Flórez, J.J., and Molina González, C.A. (2016). Caracterización morfológica de los recubrimientos 140MXC-530AS y 140MXC560AS usando la técnica de proyección térmica por arco eléctrico. Ing. Investig. Tecnol. 17, 1–13.Schoenauer, M., and Xanthakis, S. (1993). Constrained GA optimization. In ICGA, pp. 573–580.Silva, O.F.B. (1993). Desarrollo de ensayos normalizados para recubrimientos aplicados por metalización. Tesis de Pregrado. Universidad Nacional de Colombia. Facultad de Ingeniera . Departamento de Ingeniera Mec ica.VALENCIA, E. (1997). Optimización mediante algoritmos genéticos. pp. 83–92Valencia, P.E. (1997). Optimización mediante algoritmos genéticos. pp. 83–92.Verdian, M.M., Raeissi, K., and Salehi, M. (2010). Electrochemical impedance spectroscopy of HVOF-sprayed NiTi intermetallic coatings deposited on AISI 1045 steel. J. Alloys Compd. 507, 42–46.Villar, C.M. (2008). Thermal Spray: Proteccion de alto impacto. Rev. Met. Actual 8, 40–45Westergård, R., Axén, N., Wiklund, U., and Hogmark, S. (2000). An evaluation of plasma sprayed ceramic coatings by erosion, abrasion and bend testing. Wear 246, 12–19.Jong, K.D. (1980). Adaptive system design: a genetic approach. Syst. Man Cybern. IEEE Trans. On 10, 566–574.ORIGINALOptimización del proceso de aspersión térmica por arco eléctrico.pdfOptimización del proceso de aspersión térmica por arco eléctrico.pdfLunaOrtizOscarEduardo2016application/pdf8100503http://repository.unilibre.edu.co/bitstream/10901/9466/1/Optimizaci%c3%b3n%20del%20proceso%20de%20aspersi%c3%b3n%20t%c3%a9rmica%20por%20arco%20el%c3%a9ctrico.pdfb6ad3c4fc5bbcca3c1417cc6ea57f015MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/9466/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILOptimización del proceso de aspersión térmica por arco eléctrico.pdf.jpgOptimización del proceso de aspersión térmica por arco eléctrico.pdf.jpgIM Thumbnailimage/jpeg8457http://repository.unilibre.edu.co/bitstream/10901/9466/3/Optimizaci%c3%b3n%20del%20proceso%20de%20aspersi%c3%b3n%20t%c3%a9rmica%20por%20arco%20el%c3%a9ctrico.pdf.jpge10f1583e798c370d9990047ac12bebdMD5310901/9466oai:repository.unilibre.edu.co:10901/94662022-10-11 12:57:36.04Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=