Pseudomona aeruginosa: Estado del arte
La Pseudomona aeruginosa es una bacteria gramnegativa con gran capacidad de adaptación a ambientes hostiles, uno de ellos, el medio hospitalario, donde ha surgido como germen a temer por el papel preponderante que ha tenido en los pacientes que cursan con infecciones del torrente sanguíneo, dado por...
- Autores:
-
Fragozo Mendoza, Luis Carlos
Villalobos Caballero, Carlos Alexis
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2016
- Institución:
- Universidad Libre
- Repositorio:
- RIU - Repositorio Institucional UniLibre
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unilibre.edu.co:10901/10232
- Acceso en línea:
- https://hdl.handle.net/10901/10232
- Palabra clave:
- Pseudomona aeruginosa
Antimicrobial
Medicina
Pseudomonas aeruginosa
Multidrug resistence to drugs
Bloodstream infection
PSEUDOMONAS AERUGINOSA
RESISTENCIA A MÚLTIPLES DROGAS
INFECCIONES POR PSEUDOMAS
Pseudomona aeruginosa
Resistencia a medicamentos
Infección del torrente sanguíneo
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
RULIBRE2_743e70a7dbfcf93feff941e2b29837ef |
---|---|
oai_identifier_str |
oai:repository.unilibre.edu.co:10901/10232 |
network_acronym_str |
RULIBRE2 |
network_name_str |
RIU - Repositorio Institucional UniLibre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Pseudomona aeruginosa: Estado del arte |
title |
Pseudomona aeruginosa: Estado del arte |
spellingShingle |
Pseudomona aeruginosa: Estado del arte Pseudomona aeruginosa Antimicrobial Medicina Pseudomonas aeruginosa Multidrug resistence to drugs Bloodstream infection PSEUDOMONAS AERUGINOSA RESISTENCIA A MÚLTIPLES DROGAS INFECCIONES POR PSEUDOMAS Pseudomona aeruginosa Resistencia a medicamentos Infección del torrente sanguíneo |
title_short |
Pseudomona aeruginosa: Estado del arte |
title_full |
Pseudomona aeruginosa: Estado del arte |
title_fullStr |
Pseudomona aeruginosa: Estado del arte |
title_full_unstemmed |
Pseudomona aeruginosa: Estado del arte |
title_sort |
Pseudomona aeruginosa: Estado del arte |
dc.creator.fl_str_mv |
Fragozo Mendoza, Luis Carlos Villalobos Caballero, Carlos Alexis |
dc.contributor.advisor.none.fl_str_mv |
Iglesias Acosta, Jesús Fernandez Chica, Dinno Alberto |
dc.contributor.author.none.fl_str_mv |
Fragozo Mendoza, Luis Carlos Villalobos Caballero, Carlos Alexis |
dc.subject.spa.fl_str_mv |
Pseudomona aeruginosa Antimicrobial Medicina |
topic |
Pseudomona aeruginosa Antimicrobial Medicina Pseudomonas aeruginosa Multidrug resistence to drugs Bloodstream infection PSEUDOMONAS AERUGINOSA RESISTENCIA A MÚLTIPLES DROGAS INFECCIONES POR PSEUDOMAS Pseudomona aeruginosa Resistencia a medicamentos Infección del torrente sanguíneo |
dc.subject.subjectenglish.eng.fl_str_mv |
Pseudomonas aeruginosa Multidrug resistence to drugs Bloodstream infection |
dc.subject.lemb.spa.fl_str_mv |
PSEUDOMONAS AERUGINOSA RESISTENCIA A MÚLTIPLES DROGAS INFECCIONES POR PSEUDOMAS |
dc.subject.proposal.spa.fl_str_mv |
Pseudomona aeruginosa Resistencia a medicamentos Infección del torrente sanguíneo |
description |
La Pseudomona aeruginosa es una bacteria gramnegativa con gran capacidad de adaptación a ambientes hostiles, uno de ellos, el medio hospitalario, donde ha surgido como germen a temer por el papel preponderante que ha tenido en los pacientes que cursan con infecciones del torrente sanguíneo, dado por el desarrollo de mecanismo de resistencia a diferentes antimicrobianos que hace complejo el manejo terapéutico, incrementando de esta manera la morbimortalidad, la estancia hospitalaria y los gastos en atención sanitaria de estos paciente. Se realizó una revisión sistemática de la literatura disponible para establecer el estado actual del manejo antimicrobiano de la infección del torrente sanguíneo por Pseudomona aeruginosa. |
publishDate |
2016 |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2017-07-26T15:03:50Z |
dc.date.available.none.fl_str_mv |
2017-07-26T15:03:50Z |
dc.type.local.spa.fl_str_mv |
Tesis de Especialización |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10901/10232 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Libre |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Libre |
url |
https://hdl.handle.net/10901/10232 |
identifier_str_mv |
instname:Universidad Libre reponame:Repositorio Institucional Universidad Libre |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.SPA.fl_str_mv |
Fleming A. Penicilin [Internet]. 1945 [citado 13 de junio de 2016]. Recuperado a partir de: http://www.nobelprize.org/nobel_prizes/medicine/laureates/1945/flemin g-lecture.pdf Nathan C, Cars O. Antibiotic Resistance — Problems, Progress, and Prospects. N Engl J Med [Internet]. 6 de noviembre de 2014 [citado 13 de junio de 2016];371(19):1761–3. Recuperado a partir de: http://www.nejm.org/doi/abs/10.1056/NEJMp1408040 OMS | Una atención limpia es una atención más segura. WHO [Internet]. World Health Organization; 2016 [citado 13 de junio de 2016]; Recuperado a partir de: http://www.who.int/gpsc/es/ WHO Report on the Burden of Endemic Health Care-Associated Infection Worldwide. 2011 [citado 13 de junio de 2016]; Recuperado a partir de: http://apps.who.int/iris/bitstream/10665/80135/1/9789241501507_eng.p df WHO Report on the Burden of Endemic Health Care-Associated Infection Worldwide. 2011 [citado 13 de junio de 2016]; Recuperado a partir de: http://apps.who.int/iris/bitstream/10665/80135/1/9789241501507_eng.p df Iii M. Vigilancia epidemiológica de las infecciones asociadas a la atención de la salud. 2012 [citado 13 de junio de 2016]; Recuperado a partir de: http://www.paho.org/hq/index.php?option=com_docman&task=doc_vie w&gid=19272&Itemid= Lucía M, Martínez O, Enrique M, Duran M, Vigilancia D, Del Riesgo En A, et al. Vigilancia y analisis del riesgo en salud pública protocolo de vigilancia en salud publica infecciones asociadas a dispositivos Protocolo de Vigilancia en Salud Pública infecciones asociadas a dispositivos. 2016 [citado 13 de junio de 2016]; Recuperado a partir de: http://www.ins.gov.co/lineas-de-accion/SubdireccionVigilancia/sivigila/Protocolos SIVIGILA/PRO Infecciones asociadas a dispositivos.pdf Diaz Högberg L, Weist K, Suetens C, Griskeviciene J, Monnet D, Heuer O. Antimicrobial resistance surveillance in Europe Annual epidemiological report 2014. 2014 [citado 13 de junio de 2016]; Recuperado a partir de: http://ecdc.europa.eu/en/publications/Publications/antimicrobialresistance-annual-epidemiological-report.pdf Dudeck MA, Horan TC, Peterson KD, Allen-Bridson K, Pollock DA, Edwards JR. National Healthcare Safety Network (NHSN) Report, Data Summary for 2011, Device-associated Module. 2013 [citado 13 de junio de 2016]; Recuperado a partir de: http://www.cdc.gov/nhsn/pdfs/datastat/nhsn-report-2011-datasummary.pdf Bennett J, Dolin R, Blaser M. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases [Internet]. Principles and Practice of Infectious Diseases. Elsevier; 2014. 3463-3480 p. Recuperado a partir de: http://dx.doi.org/10.1016/B978-0-443-06839- 3.00276- 9\nhttp://books.google.com/books?hl=en&lr=&id=73pYBAAAQBAJ&oi=f nd&pg=PP1&dq=Mandell,+Douglas,+and+Bennett%27s+Principles+an d+Practice+of+Infectious+Diseases&ots=UYfmdEZvk9&sig=WBuIXsVZ fpXIE0k5Eqa3_lkKoZQ Silby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol Rev. 2011;35(4):652–80. Stover C, Pham X, Erwin a, Mizoguchi S. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature [Internet]. 2000;406(August):959–64. Recuperado a partir de: http://www.nature.com/nature/journal/v406/n6799/abs/406959a0.html Battle SE, Rello J, Hauser AR. Genomic islands of Pseudomonas aeruginosa. FEMS Microbiol Lett [Internet]. 2009;290(1):70–8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubM ed&dopt=Citation&list_uids=19025565 Pohl S, Klockgether J, Eckweiler D, Khaledi A, Schniederjans M, Chouvarine P, et al. The extensive set of accessory Pseudomonas aeruginosa genomic components. FEMS Microbiol Lett. 2014;356(2):235–41. Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, et al. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol [Internet]. 2006;7(10):R90. Recuperado a partir de: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1794565&too l=pmcentrez&rendertype=abstract Bucior I, Pielage JF, Engel JN. Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog [Internet]. 2012 [citado 14 de abril de 2016];8(4):e1002616. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22496644 Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J [Internet]. EMBO Press; 1 de agosto de 2003 [citado 29 de abril de 2016];22(15):3803–15. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/12881415 García-Lara B, Saucedo-Mora MÁ, Roldán-Sánchez JA, Pérez-Eretza B, Ramasamy M, Lee J, et al. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett Appl Microbiol [Internet]. septiembre de 2015 [citado 29 de abril de 2016];61(3):299–305. Recuperado a partir de: http://doi.wiley.com/10.1111/lam.12456 O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci [Internet]. National Acad Sciences; 29 de octubre de 2013 [citado 29 de abril de 2016];110(44):17981–6. Recuperado a partir de: http://www.pnas.org/cgi/doi/10.1073/pnas.1316981110 van ’t Wout EFA, van Schadewijk A, van Boxtel R, Dalton LE, Clarke HJ, Tommassen J, et al. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells. PLoS Pathog [Internet]. junio de 2015 [citado 14 de abril de 2016];11(6):e1004946. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/26083346 Rehman ZU, Wang Y, Moradali MF, Hay ID, Rehm BHA. Insights into the assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa. Appl Environ Microbiol [Internet]. mayo de 2013 [citado 14 de abril de 2016];79(10):3264–72. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23503314 Pechère J-C, Köhler T, Nikaido H, Hancock R, Nordmann P, Guibert M, et al. Patterns and modes of β-lactam resistance in Pseudomonas aeruginosa. Clin Microbiol Infect [Internet]. Elsevier; marzo de 1999 87 [citado 12 de junio de 2016];5:S15–8. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S1198743X1464386X BRYAN LE, HARAPHONGSE R, ELZEN HM VAN DEN. Gentamicin resistance in clinical-isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable enzymatic modification. J Antibiot (Tokyo) [Internet]. 1976 [citado 12 de junio de 2016];29(7):743–53. Recuperado a partir de: http://joi.jlc.jst.go.jp/JST.Journalarchive/antibiotics1968/29.743?from=Cr ossRef Livermore DM. Interplay of impermeability and chromosomal betalactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de septiembre de 1992 [citado 12 de junio de 2016];36(9):2046–8. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.36.9.2046 MacLeod DL, Nelson LE, Shawar RM, Lin BB, Lockwood LG, Dirk JE, et al. Aminoglycoside‐Resistance Mechanisms for Cystic Fibrosis Pseudomonas aeruginosa Isolates Are Unchanged by Long‐Term, Intermittent, Inhaled Tobramycin Treatment. J Infect Dis [Internet]. marzo de 2000 [citado 12 de junio de 2016];181(3):1180–4. Recuperado a partir de: http://jid.oxfordjournals.org/lookup/doi/10.1086/315312 Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol [Internet]. abril de 2001 [citado 8 de junio de 2016];3(2):255–64. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/11321581 Gibb AP, Tribuddharat C, Moore RA, Louie TJ, Krulicki W, Livermore DM, et al. Nosocomial Outbreak of Carbapenem-Resistant Pseudomonas aeruginosa with a New blaIMP Allele, blaIMP-7. Antimicrob Agents Chemother [Internet]. 1 de enero de 2002 [citado 14 de junio de 2016];46(1):255–8. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.46.1.255-258.2002 Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plesiat P. Clinical Strains of Pseudomonas aeruginosa Overproducing MexABOprM and MexXY Efflux Pumps Simultaneously. Antimicrob Agents Chemother [Internet]. 1 de mayo de 2004 [citado 8 de junio de 2016];48(5):1797–802. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.48.5.1797-1802.2004 Li X-Z, Zhang L, Poole K. Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother [Internet]. 1 de abril de 2000 [citado 9 de junio de 2016];45(4):433–6. Recuperado a partir de: http://www.jac.oxfordjournals.org/cgi/doi/10.1093/jac/45.4.433 Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol [Internet]. noviembre de 1993 [citado 8 de junio de 2016];175(22):7363–72. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/8226684 Westbrock-Wadman S, Sherman DR, Hickey MJ, Coulter SN, Zhu YQ, Warrener P, et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother [Internet]. diciembre de 1999 [citado 10 de junio de 2016];43(12):2975–83. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/10582892 Mao W, Warren MS, Lee A, Mistry A, Lomovskaya O. MexXY-OprM Efflux Pump Is Required for Antagonism of Aminoglycosides by Divalent Cations in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de julio de 2001 [citado 10 de junio de 2016];45(7):2001–7. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.45.7.2001-2007.2001 Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Contribution of the MexX-MexY-OprM Efflux System to Intrinsic Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de septiembre de 2000 [citado 10 de junio de 2016];44(9):2242–6. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.44.9.2242-2246.2000 Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Contribution of the MexX-MexY-OprM Efflux System to Intrinsic Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de septiembre de 2000 [citado 10 de junio de 2016];44(9):2242–6. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.44.9.2242-2246.2000 Álvarez CA, Alberto J, María C, Ovalle V. Infecciones micóticas en nuestros hospitales Boletín informativo GREBO www.grebo.org. 2010; Mayo 5 Día Mundial de lavado de manos dedicado a la contención de la resistencia bacteriana. [citado 14 de junio de 2016]; Recuperado a partir de: http://www.grebo.org/documentos/Boletin_Grebo_2014.pdf |
dc.relation.references.eng.fl_str_mv |
Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother [Internet]. 1 de marzo de 2001 [citado 10 de junio de 2016];47(3):247–50. Recuperado a partir de: http://www.jac.oupjournals.org/cgi/doi/10.1093/jac/47.3.247 Pai H, Kim J-W, Kim J, Lee JH, Choe KW, Gotoh N. Carbapenem Resistance Mechanisms in Pseudomonas aeruginosa Clinical Isolates. Antimicrob Agents Chemother [Internet]. 1 de febrero de 2001 [citado 12 de junio de 2016];45(2):480–4. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.45.2.480-484.2001 Livermore DM. Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa: Our Worst Nightmare? Clin Infect Dis [Internet]. 1 de marzo de 2002 [citado 8 de junio de 2016];34(5):634– 40. Recuperado a partir de: http://cid.oxfordjournals.org/lookup/doi/10.1086/338782 Poole K, Gotoh N, Tsujimoto H, Zhao Q, Wada A, Yamasaki T, et al. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol [Internet]. agosto de 1996 [citado 10 de junio de 2016];21(4):713–24. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/8878035 Hamzehpour MM, Pechere JC, Plesiat P, Köhler T. OprK and OprM define two genetically distinct multidrug efflux systems in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. noviembre de 1995 [citado 10 de junio de 2016];39(11):2392–6. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/8585714 Yordanov D, Strateva T. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol [Internet]. Microbiology Society; 1 de septiembre de 2009 [citado 8 de junio de 2016];58(9):1133–48. Recuperado a partir de: http://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm. 0.009142-0 Kohler T, Michea-Hamzehpour M, Henze U, Gotoh N, Kocjancic Curty L, Pechere J-C. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol [Internet]. Blackwell Science Ltd; enero de 1997 [citado 10 de junio de 2016];23(2):345–54. Recuperado a partir de: http://doi.wiley.com/10.1046/j.1365-2958.1997.2281594.x Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci [Internet]. The Royal Society; 16 de mayo de 1980 [citado 13 de junio de 2016];289(1036):321–31. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/6109327 Bush K, Jacoby GA, Medeiros AA. MINIREVIEW A Functional Classification Scheme for -Lactamases and Its Correlation with Molecular Structure. Antimicrob Agents Chemother. 1995;39(6):1211– 33. Nordmann patrice, Guilbert Mi. Extended-spectrum B-lactamases in Pseudomonas aeruginosa. J Antimicrob Chemother. 1998;42:125–8. Langaee TY, Gagnon L, Huletsky A. Inactivation of the ampD Gene in Pseudomonas aeruginosa Leads to Moderate-Basal-Level and Hyperinducible AmpC beta -Lactamase Expression. Antimicrob Agents Chemother [Internet]. 1 de marzo de 2000 [citado 13 de junio de 2016];44(3):583–9. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.44.3.583-589.2000 Bagge N, Ciofu O, Hentzer M, Campbell JIA, Givskov M, Hoiby N. Constitutive High Expression of Chromosomal -Lactamase in Pseudomonas aeruginosa Caused by a New Insertion Sequence (IS1669) Located in ampD. Antimicrob Agents Chemother [Internet]. 1 de noviembre de 2002 [citado 13 de junio de 2016];46(11):3406–11. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.46.11.3406-3411.2002 NORMARK S. β-Lactamase Induction in Gram-Negative Bacteria Is Intimately Linked to Peptidoglycan Recycling. Microb Drug Resist [Internet]. enero de 1995 [citado 13 de junio de 2016];1(2):111–4. Recuperado a partir de: http://www.liebertonline.com/doi/abs/10.1089/mdr.1995.1.111 Höltje J V, Kopp U, Ursinus A, Wiedemann B, Normark S, Bartowsky E, et al. The negative regulator of beta-lactamase induction AmpD is a Nacetyl-anhydromuramyl-L-alanine amidase. FEMS Microbiol Lett [Internet]. The Oxford University Press; 15 de septiembre de 1994 [citado 13 de junio de 2016];122(1-2):159–64. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/7958768 Honoré N, Nicolas M-H, Cole ST. Regulation of enterobacterial cephalosporinase production: the role of a membrane-bound sensory 92 transducer. Mol Microbiol [Internet]. Blackwell Publishing Ltd; agosto de 1989 [citado 13 de junio de 2016];3(8):1121–30. Recuperado a partir de: http://doi.wiley.com/10.1111/j.1365-2958.1989.tb00262.x Juan C, Moya B, Perez JL, Oliver A. Stepwise Upregulation of the Pseudomonas aeruginosa Chromosomal Cephalosporinase Conferring High-Level -Lactam Resistance Involves Three AmpD Homologues. Antimicrob Agents Chemother [Internet]. 1 de mayo de 2006 [citado 13 de junio de 2016];50(5):1780–7. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.50.5.1780-1787.2006 Bert F, Branger C, Lambert-Zechovsky N. Identification of PSE and OXA beta-lactamase genes in Pseudomonas aeruginosa using PCRrestriction fragment length polymorphism. J Antimicrob Chemother [Internet]. julio de 2002 [citado 13 de junio de 2016];50(1):11–8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/12096001 Weldhagen GF, Poirel L, Nordmann P. Ambler Class A ExtendedSpectrum -Lactamases in Pseudomonas aeruginosa: Novel Developments and Clinical Impact. Antimicrob Agents Chemother [Internet]. 1 de agosto de 2003 [citado 14 de junio de 2016];47(8):2385–92. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.47.8.2385-2392.2003 Naas T, Philippon L, Poirel L, Ronco E, Nordmann P. An SHV-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. mayo de 1999 [citado 14 de junio de 2016];43(5):1281–4. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/10223953 Neonakis IK, Scoulica E V., Dimitriou SK, Gikas AI, Tselentis YJ. Molecular Epidemiology of Extended-Spectrum β -Lactamases Produced by Clinical Isolates in a University Hospital in Greece: Detection of SHV-5 in Pseudomonas aeruginosa and Prevalence of SHV-12. Microb Drug Resist [Internet]. junio de 2003 [citado 14 de junio de 2016];9(2):161–5. Recuperado a partir de: http://www.liebertonline.com/doi/abs/10.1089/107662903765826750 Chanawong A, M’Zali FH, Heritage J, Lulitanond A, Hawkey PM. SHV12, SHV-5, SHV-2a and VEB-1 extended-spectrum beta-lactamases in Gram-negative bacteria isolated in a university hospital in Thailand. J Antimicrob Chemother [Internet]. 1 de diciembre de 2001 [citado 14 de junio de 2016];48(6):839–52. Recuperado a partir de: http://www.jac.oupjournals.org/cgi/doi/10.1093/jac/48.6.839 Mugnier P, Dubrous P, Casin I, Arlet G, Collatz E. A TEM-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1996;40(11):2488–93. Poirel L, Ronco E, Naas T, Nordmann P, Bush K, Jacoby G, et al. Extended-spectrum β-lactamase TEM-4 in Pseudomonas aeruginosa. Clin Microbiol Infect [Internet]. Elsevier; octubre de 1999 [citado 14 de junio de 2016];5(10):651–2. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S1198743X14644748 Dubois V, Arpin C, Noury P, Quentin C. Clinical Strain of Pseudomonas aeruginosa Carrying a blaTEM-21 Gene Located on a Chromosomal Interrupted TnA Type Transposon. Antimicrob Agents Chemother [Internet]. 1 de noviembre de 2002 [citado 14 de junio de 2016];46(11):3624–6. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.46.11.3624-3626.2002 Nordmann P, Naas T. Sequence analysis of PER-1 extended-spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with class A beta-lactamases. Antimicrob Agents Chemother [Internet]. 1 de enero de 1994 [citado 14 de junio de 2016];38(1):104–14. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.38.1.104 Castanheira M, Mendes RE, Walsh TR, Gales AC, Jones RN. Emergence of the Extended-Spectrum -Lactamase GES-1 in a Pseudomonas aeruginosa Strain from Brazil: Report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother [Internet]. 1 de junio de 2004 [citado 14 de junio de 2016];48(6):2344– 5. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.48.6.2344-2345.2004 Poirel L, Weldhagen GF, Champs C De, Nordmann P. A nosocomial outbreak of Pseudomonas aeruginosa isolates expressing the extended-spectrum beta-lactamase GES-2 in South Africa. J Antimicrob Chemother [Internet]. 1 de marzo de 2002 [citado 14 de junio de 2016];49(3):561–5. Recuperado a partir de: http://www.jac.oupjournals.org/cgi/doi/10.1093/jac/49.3.561 Mavroidi A, Tzelepi E, Tsakris A, Miriagou V, Sofianou D, Tzouvelekis LS. An integron-associated beta-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum beta-lactamase IBC1. J Antimicrob Chemother [Internet]. 1 de noviembre de 2001 [citado 14 de junio de 2016];48(5):627–30. Recuperado a partir de: http://www.jac.oupjournals.org/cgi/doi/10.1093/jac/48.5.627 Poirel L, Brinas L, Fortineau N, Nordmann P. Integron-Encoded GES- 95 Type Extended-Spectrum -Lactamase with Increased Activity toward Aztreonam in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de agosto de 2005 [citado 14 de junio de 2016];49(8):3593–7. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.49.8.3593-3597.2005 Bogaerts P, Bauraing C, Deplano A, Glupczynski Y. Emergence and Dissemination of BEL-1-Producing Pseudomonas aeruginosa Isolates in Belgium. Antimicrob Agents Chemother [Internet]. 1 de abril de 2007 [citado 14 de junio de 2016];51(4):1584–5. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.01603-06 Nicolau CJ, Oliver A. Enfermedades Infecciosas y Microbiología Clínica Enfermedades Infecciosas y Microbiología Clínica Carbapenemasas en especies del género Pseudomonas Carbapenemases in Pseudomonas spp. Enferm Infecc Microbiol Clin [Internet]. 2010 [citado 19 de junio de 2016];28:19–28. Recuperado a partir de: www.elsevier.es/eimc Girlich D, Naas T, Leelaporn A, Poirel L, Fennewald M, Nordmann P. Nosocomial Spread of the Integron-Located veb-1--Like Cassette Encoding an Extended-Spectrum -Lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis [Internet]. 1 de marzo de 2002 [citado 14 de junio de 2016];34(5):603–11. Recuperado a partir de: http://cid.oxfordjournals.org/lookup/doi/10.1086/338786 Senda K, Arakawa Y, Nakashima K, Ito H, Ichiyama S, Shimokata K, et al. Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems. Antimicrob Agents Chemother [Internet]. 1996;40(2):349–53. Recuperado a partir de: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=163114&tool =pmcentrez&rendertype=abstract Parkins MD, Pitout JDD, Church DL, Conly JM, Laupland KB, Jones R, et al. Treatment of infections caused by metallo-β-lactamase-producing Pseudomonas aeruginosa in the Calgary Health Region. Clin Microbiol Infect [Internet]. Elsevier; febrero de 2007 [citado 14 de junio de 2016];13(2):199–202. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S1198743X14615871 Koh TH, Wang GCY, Sng L-H. Clonal Spread of IMP-1-Producing Pseudomonas aeruginosa in Two Hospitals in Singapore. J Clin Microbiol [Internet]. 1 de noviembre de 2004 [citado 14 de junio de 2016];42(11):5378–80. Recuperado a partir de: http://jcm.asm.org/cgi/doi/10.1128/JCM.42.11.5378-5380.2004 Xiong J, Hynes MF, Ye H, Chen H, Yang Y, M’Zali F, et al. blaIMP-9 and Its Association with Large Plasmids Carried by Pseudomonas aeruginosa Isolates from the People’s Republic of China. Antimicrob Agents Chemother [Internet]. 1 de enero de 2006 [citado 14 de junio de 2016];50(1):355–8. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.50.1.355-358.2006 Pagani L, Colinon C, Migliavacca R, Labonia M, Docquier J-D, Nucleo E, et al. Nosocomial Outbreak Caused by Multidrug-Resistant Pseudomonas aeruginosa Producing IMP-13 Metallo- -Lactamase. J Clin Microbiol [Internet]. 1 de agosto de 2005 [citado 14 de junio de 2016];43(8):3824–8. Recuperado a partir de: http://jcm.asm.org/cgi/doi/10.1128/JCM.43.8.3824-3828.2005 Mendes RE, Toleman MA, Ribeiro J, Sader HS, Jones RN, Walsh TR. Integron Carrying a Novel Metallo- -Lactamase Gene, blaIMP-16, and a Fused Form of Aminoglycoside-Resistant Gene aac(6’)-30/aac(6')-Ib': Report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother [Internet]. 1 de diciembre de 2004 [citado 97 14 de junio de 2016];48(12):4693–702. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.48.12.4693-4702.2004 Hanson ND, Hossain A, Buck L, Moland ES, Thomson KS. First Occurrence of a Pseudomonas aeruginosa Isolate in the United States Producing an IMP Metallo- -Lactamase, IMP-18. Antimicrob Agents Chemother [Internet]. 1 de junio de 2006 [citado 14 de junio de 2016];50(6):2272–3. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.01440-05 Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al. Cloning and Characterization of blaVIM, a New Integron-Borne Metallo-beta -Lactamase Gene from a Pseudomonas aeruginosa Clinical Isolate. Antimicrob Agents Chemother [Internet]. 1999;43(7):1584–90. Recuperado a partir de: http://aac.asm.org/cgi/content/abstract/43/7/1584 Riccio ML, Pallecchi L, Fontana R, Rossolini GM. In70 of Plasmid pAX22, a blaVIM-1-Containing Integron Carrying a New Aminoglycoside Phosphotransferase Gene Cassette. Antimicrob Agents Chemother [Internet]. 1 de abril de 2001 [citado 14 de junio de 2016];45(4):1249–53. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.45.4.1249-1253.2001 Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo J-D, et al. Characterization of VIM-2, a Carbapenem-Hydrolyzing Metallo-beta - Lactamase and Its Plasmid- and Integron-Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in France. Antimicrob Agents Chemother [Internet]. 1 de abril de 2000 [citado 14 de junio de 2016];44(4):891–7. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.44.4.891-897.2000 Yan J-J, Hsueh P-R, Ko W-C, Luh K-T, Tsai S-H, Wu H-M, et al. Metallo- -Lactamases in Clinical Pseudomonas Isolates in Taiwan and Identification of VIM-3, a Novel Variant of the VIM-2 Enzyme. Antimicrob Agents Chemother [Internet]. 1 de agosto de 2001 [citado 14 de junio de 2016];45(8):2224–8. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.45.8.2224-2228.2001 Pournaras S, Tsakris A, Maniati M, Tzouvelekis LS, Maniatis AN. Novel Variant (blaVIM-4) of the Metallo- -Lactamase Gene blaVIM-1 in a Clinical Strain of Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de diciembre de 2002 [citado 14 de junio de 2016];46(12):4026–8. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.46.12.4026-4028.2002 Libisch B, Gacs M, Csiszar K, Muzslay M, Rokusz L, Fuzi M. Isolation of an Integron-Borne blaVIM-4 Type Metallo- -Lactamase Gene from a Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolate in Hungary. Antimicrob Agents Chemother [Internet]. 1 de septiembre de 2004 [citado 14 de junio de 2016];48(9):3576–8. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.48.9.3576-3578.2004 Patzer J, Toleman MA, Deshpande LM, Kamińska W, Dzierzanowska D, Bennett PM, et al. Pseudomonas aeruginosa strains harbouring an unusual blaVIM-4 gene cassette isolated from hospitalized children in Poland (1998-2001). J Antimicrob Chemother [Internet]. marzo de 2004 [citado 14 de junio de 2016];53(3):451–6. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/14749341 Giske CG, Rylander M, Kronvall G. VIM-4 in a Carbapenem-Resistant Strain of Pseudomonas aeruginosa Isolated in Sweden. Antimicrob Agents Chemother [Internet]. 1 de septiembre de 2003 [citado 14 de junio de 2016];47(9):3034–5. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.47.9.3034-3035.2003 Bahar G, Mazzariol A, Koncan R, Mert A, Fontana R, Rossolini GM, et al. Detection of VIM-5 metallo-beta-lactamase in a Pseudomonas aeruginosa clinical isolate from Turkey. J Antimicrob Chemother [Internet]. julio de 2004 [citado 14 de junio de 2016];54(1):282–3. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/15190017 Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular Characterization of a -Lactamase Gene, blaGIM-1, Encoding a New Subclass of Metallo- -Lactamase. Antimicrob Agents Chemother [Internet]. 1 de diciembre de 2004 [citado 14 de junio de 2016];48(12):4654–61. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.48.12.4654-4661.2004 Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, et al. Outbreak of Carbapenem-Resistant Pseudomonas aeruginosa Producing VIM-8, a Novel Metallo- -Lactamase, in a Tertiary Care Center in Cali, Colombia. J Clin Microbiol [Internet]. 1 de noviembre de 2004 [citado 14 de junio de 2016];42(11):5094–101. Recuperado a partir de: http://jcm.asm.org/cgi/doi/10.1128/JCM.42.11.5094- 5101.2004 Pasteran F, Faccone D, Petroni A, Rapoport M, Galas M, Vazquez M, et al. Novel Variant (blaVIM-11) of the Metallo- -Lactamase blaVIM Family in a GES-1 Extended-Spectrum- -Lactamase-Producing Pseudomonas aeruginosa Clinical Isolate in Argentina. Antimicrob Agents Chemother [Internet]. 1 de enero de 2005 [citado 14 de junio de 2016];49(1):474–5. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.49.1.474-475.2005 Juan C, Beceiro A, Gutierrez O, Alberti S, Garau M, Perez JL, et al. Characterization of the New Metallo- -Lactamase VIM-13 and Its Integron-Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in Spain. Antimicrob Agents Chemother [Internet]. 1 de octubre de 2008 [citado 14 de junio de 2016];52(10):3589–96. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.00465-08 Schneider I, Keuleyan E, Rasshofer R, Markovska R, Queenan AM, Bauernfeind A. VIM-15 and VIM-16, Two New VIM-2-Like Metallo- - Lactamases in Pseudomonas aeruginosa Isolates from Bulgaria and Germany. Antimicrob Agents Chemother [Internet]. 1 de agosto de 2008 [citado 14 de junio de 2016];52(8):2977–9. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.00175-08 Toleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, et al. Molecular characterization of SPM-1, a novel metallo-betalactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother [Internet]. noviembre de 2002 [citado 14 de junio de 2016];50(5):673–9. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/12407123 Poirel L, Magalhaes M, Lopes M, Nordmann P. Molecular Analysis of Metallo- -Lactamase Gene blaSPM-1-Surrounding Sequences from Disseminated Pseudomonas aeruginosa Isolates in Recife, Brazil. Antimicrob Agents Chemother [Internet]. 1 de abril de 2004 [citado 14 de junio de 2016];48(4):1406–9. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.48.4.1406-1409.2004 Zavascki AP, Gaspareto PB, Martins AF, Gonçalves AL, Barth AL. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-{beta}-lactamase in a teaching hospital in southern Brazil. J Antimicrob Chemother [Internet]. diciembre de 2005 [citado 14 de junio de 2016];56(6):1148–51. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/16239284 Bradford PA. Extended-Spectrum -Lactamases in the 21st Century: 101 Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin Microbiol Rev [Internet]. 1 de octubre de 2001 [citado 14 de junio de 2016];14(4):933–51. Recuperado a partir de: http://cmr.asm.org/cgi/doi/10.1128/CMR.14.4.933-951.2001 Couture F, Lachapelle J, Levesque RC. Phylogeny of LCR-1 and OXA5 with class A and class D ?-lactamases. Mol Microbiol [Internet]. Blackwell Publishing Ltd; junio de 1992 [citado 14 de junio de 2016];6(12):1693–705. Recuperado a partir de: http://doi.wiley.com/10.1111/j.1365-2958.1992.tb00894.x Scoulica E, Aransay A, Tselentis Y. Molecular characterization of the OXA-7 beta-lactamase gene. Antimicrob Agents Chemother [Internet]. 1 de junio de 1995 [citado 14 de junio de 2016];39(6):1379–82. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.39.6.1379 Aubert D, Poirel L, Chevalier J, Leotard S, Pages J-M, Nordmann P. Oxacillinase-Mediated Resistance to Cefepime and Susceptibility to Ceftazidime in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de junio de 2001 [citado 14 de junio de 2016];45(6):1615–20. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.45.6.1615-1620.2001 Dale JW, Godwin D, Mossakowska D, Stephenson P, Wall S. Sequence of the OXA2 β-lactamase: comparison with other penicillinreactive enzymes. FEBS Lett [Internet]. 21 de octubre de 1985 [citado 14 de junio de 2016];191(1):39–44. Recuperado a partir de: http://doi.wiley.com/10.1016/0014-5793%2885%2980989-3 Toleman MA, Rolston K, Jones RN, Walsh TR. Molecular and Biochemical Characterization of OXA-45, an Extended-Spectrum Class 2d’ -Lactamase in Pseudomonas aeruginosa. Antimicrob Agents 102 Chemother [Internet]. 1 de septiembre de 2003 [citado 14 de junio de 2016];47(9):2859–63. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.47.9.2859-2863.2003 Llano-Sotelo B, Azucena EF, Kotra LP, Mobashery S, Chow CS, Gale EF, et al. Aminoglycosides Modified by Resistance Enzymes Display Diminished Binding to the Bacterial Ribosomal Aminoacyl-tRNA Site. Chem Biol [Internet]. Elsevier; abril de 2002 [citado 13 de junio de 2016];9(4):455–63. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S1074552102001254 Vakulenko SB, Mobashery S. Versatility of Aminoglycosides and Prospects for Their Future. Clin Microbiol Rev [Internet]. 1 de julio de 2003 [citado 13 de junio de 2016];16(3):430–50. Recuperado a partir de: http://cmr.asm.org/cgi/doi/10.1128/CMR.16.3.430-450.2003 Miller GH, Sabatelli FJ, Hare RS, Glupczynski Y, Mackey P, Shlaes D, et al. The Most Frequent Aminoglycoside Resistance Mechanisms-- Changes with Time and Geographic Area: A Reflection of Aminoglycoside Usage Patterns? Clin Infect Dis [Internet]. 1 de enero de 1997 [citado 13 de junio de 2016];24(Supplement 1):S46–62. Recuperado a partir de: http://cid.oxfordjournals.org/lookup/doi/10.1093/clinids/24.Supplement_ 1.S46 Mouneimné H, Robert J, Jarlier V, Cambau E. Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43(1):62–6. Jalal S, Ciofu O, Hoiby N, Gotoh N, Wretlind B. Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother [Internet]. 2000;44(3):710–2. Recuperado a partir de: 103 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=89751&tool= pmcentrez&rendertype=abstract Hooper DC. Mechanisms of fluoroquinolone resistance. Drug Resist Updat [Internet]. febrero de 1999 [citado 13 de junio de 2016];2(1):38– 55. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S1368764698900681 Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N, Shibayama K, et al. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet. 2003;362(9399):1888–93. Doi Y, Arakawa Y. 16S Ribosomal RNA Methylation: Emerging Resistance Mechanism against Aminoglycosides. Clin Infect Dis [Internet]. 2007;45(1):88–94. Recuperado a partir de: http://cid.oxfordjournals.org/content/45/1/88.abstract\nhttp://cid.oxfordjo urnals.org/content/45/1/88.full.pdf Doi Y, de Oliveira Garcia D, Adams J, Paterson DL. Coproduction of novel 16S rRNA methylase RmtD and metallo-beta-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. Antimicrob Agents Chemother [Internet]. marzo de 2007 [citado 13 de junio de 2016];51(3):852–6. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/17158944 Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis [Internet]. 1 de agosto de 2004 [citado 14 de junio de 2016];39(3):309–17. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/15306996 Annual epidemiological report Reporting on 2011 surveillance data and 2012 epidemic intelligence data. [citado 14 de junio de 2016]; 104 Recuperado a partir de: http://ecdc.europa.eu/en/publications/Publications/annualepidemiological-report-2013.pdf Al-Hasan MN, Wilson JW, Lahr BD, Eckel-Passow JE, Baddour LM. Incidence of Pseudomonas aeruginosa bacteremia: a population-based study. Am J Med [Internet]. agosto de 2008 [citado 14 de junio de 2016];121(8):702–8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/18691484 Paul M, Carmeli Y, Durante-Mangoni E, Mouton JW, Tacconelli E, Theuretzbacher U, et al. Combination therapy for carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother. 2014;69(9):2305–9. Kmeid JG, Youssef MM, Kanafani ZA, Kanj SS. Combination therapy for Gram-negative bacteria: what is the evidence? Expert Rev Anti Infect Ther [Internet]. diciembre de 2013 [citado 14 de junio de 2016];11(12):1355–62. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24168069 Kmeid JG, Youssef MM, Kanafani ZA, Kanj SS. Combination therapy for Gram-negative bacteria: what is the evidence? Expert Rev Anti Infect Ther [Internet]. diciembre de 2013 [citado 14 de junio de 2016];11(12):1355–62. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24168069 Safdar N, Handelsman J, Maki DG. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A metaanalysis. Lancet Infect Dis [Internet]. agosto de 2004 [citado 14 de junio de 2016];4(8):519–27. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/15288826 uravleff JJ, Yu VL, Yee RB. Ticarcillin-tobramycin-rifampin: in vitro synergy of the triplet combination against Pseudomonas aeruginosa. J Lab Clin Med [Internet]. junio de 1983 [citado 14 de junio de 2016];101(6):896–902. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/6406628 Dundar D, Otkun M. In-vitro efficacy of synergistic antibiotic combinations in multidrug resistant Pseudomonas aeruginosa strains. Yonsei Med J [Internet]. enero de 2010 [citado 14 de junio de 2016];51(1):111–6. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/20046523 Dubois V, Arpin C, Melon M, Melon B, Andre C, Frigo C, et al. Nosocomial outbreak due to a multiresistant strain of Pseudomonas aeruginosa P12: efficacy of cefepime-amikacin therapy and analysis of beta-lactam resistance. J Clin Microbiol [Internet]. junio de 2001 [citado 14 de junio de 2016];39(6):2072–8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/11376037 Gunderson BW, Ibrahim KH, Hovde LB, Fromm TL, Reed MD, Rotschafer JC. Synergistic activity of colistin and ceftazidime against multiantibiotic-resistant Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother [Internet]. marzo de 2003 [citado 14 de junio de 2016];47(3):905–9. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/12604520 Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents [Internet]. agosto de 2009 [citado 14 de junio de 2016];34(2):111–20. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/19403273 Fish DN, Choi MK, Jung R. Synergic activity of cephalosporins plus fluoroquinolones against Pseudomonas aeruginosa with resistance to one or both drugs. J Antimicrob Chemother. 2002;50(6):1045–9. Zavascki AP, Bulitta JB, Landerdorfer CB. Combination therapy for Gram-negative bacteria. Expert Rev Anti Infect Ther. 2013;11(12):1333–53. Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2006;50(9):2946–50. Hawley JS, Murray CK, Jorgensen JH. Colistin heteroresistance in Acinetobacter and its association with previous colistin therapy. Antimicrob Agents Chemother. 2008;52(1):351–2. Balaji V, Jeremiah SS, Baliga PR. Polymyxins: Antimicrobial susceptibility concerns and therapeutic options. Indian J Med Microbiol [Internet]. [citado 14 de junio de 2016];29(3):230–42. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/21860102 Álvarez CA, Cortes JA, Victoria M, Colaboradores En Esta Edición O, Camacho G, Escobar J, et al. Boletín Informativo " La carbapenemasa NDM ya está en Colombia. Es la llegada de las " superbacterias " ? 2008 [citado 14 de junio de 2016]; Recuperado a partir de: http://www.grebo.org/grebo_site/jgrebo/documentos/Boletin_Grebo_20 13.pdf Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis [Internet]. 1 de mayo de 2005 [citado 14 de junio de 2016];40(9):1333–41. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/15825037 Kwa AL, Tam VH, Falagas ME. Polymyxins: a review of the current 107 status including recent developments. Ann Acad Med Singapore [Internet]. octubre de 2008 [citado 14 de junio de 2016];37(10):870–83. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/19037522 Martis N, Leroy S, Blanc V. Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: a narrative review for the clinician. J Infect [Internet]. julio de 2014 [citado 14 de junio de 2016];69(1):1–12. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24631777 Martis N, Leroy S, Blanc V. Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: a narrative review for the clinician. J Infect [Internet]. julio de 2014 [citado 14 de junio de 2016];69(1):1–12. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24631777 Gough M, Hancock RE, Kelly NM. Antiendotoxin activity of cationic peptide antimicrobial agents. Infect Immun [Internet]. diciembre de 1996 [citado 14 de junio de 2016];64(12):4922–7. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/8945527 Karvanen M, Plachouras D, Friberg LE, Paramythiotou E, Papadomichelakis E, Karaiskos I, et al. Colistin methanesulfonate and colistin pharmacokinetics in critically ill patients receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother [Internet]. enero de 2013 [citado 14 de junio de 2016];57(1):668–71. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23147733 Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother [Internet]. julio de 2011 [citado 14 de junio de 2016];55(7):3284–94. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/21555763 Plachouras D, Karvanen M, Friberg LE, Papadomichelakis E, Antoniadou A, Tsangaris I, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gramnegative bacteria. Antimicrob Agents Chemother [Internet]. agosto de 2009 [citado 14 de junio de 2016];53(8):3430–6. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/19433570 Gauthier TP, Lantz E, Frederick C, Masmouei H, Ruiz-Serrano L, Smith L, et al. Variability within investigations of intravenous colistin: the scope of the problem. Clin Infect Dis [Internet]. mayo de 2014 [citado 14 de junio de 2016];58(9):1340–2. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24470273 Ortwine JK, Sutton JD, Kaye KS, Pogue JM. Strategies for the safe use of colistin. Expert Rev Anti Infect Ther [Internet]. 2015 [citado 14 de junio de 2016];13(10):1237–47. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/26182825 Mohamed AF, Karaiskos I, Plachouras D, Karvanen M, Pontikis K, Jansson B, et al. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother [Internet]. agosto de 2012 [citado 14 de junio de 2016];56(8):4241–9. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22615285 Gauthier TP, Wolowich WR, Reddy A, Cano E, Abbo L, Smith LB. Incidence and predictors of nephrotoxicity associated with intravenous colistin in overweight and obese patients. Antimicrob Agents Chemother [Internet]. mayo de 2012 [citado 14 de junio de 2016];56(5):2392–6. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22371891 Rigatto MH, Behle TF, Falci DR, Freitas T, Lopes NT, Nunes M, et al. Risk factors for acute kidney injury (AKI) in patients treated with polymyxin B and influence of AKI on mortality: a multicentre prospective cohort study. J Antimicrob Chemother [Internet]. mayo de 2015 [citado 14 de junio de 2016];70(5):1552–7. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/25604744 Sorlí L, Luque S, Grau S, Berenguer N, Segura C, Montero MM, et al. Trough colistin plasma level is an independent risk factor for nephrotoxicity: a prospective observational cohort study. BMC Infect Dis [Internet]. 2013 [citado 14 de junio de 2016];13:380. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23957376 He H, Li J-C, Nation RL, Jacob J, Chen G, Lee HJ, et al. Pharmacokinetics of four different brands of colistimethate and formed colistin in rats. J Antimicrob Chemother [Internet]. octubre de 2013 [citado 14 de junio de 2016];68(10):2311–7. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23749953 Kim J, Lee K-H, Yoo S, Pai H. Clinical characteristics and risk factors of colistin-induced nephrotoxicity. Int J Antimicrob Agents [Internet]. noviembre de 2009 [citado 14 de junio de 2016];34(5):434–8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/19726164 ogue JM, Lee J, Marchaim D, Yee V, Zhao JJ, Chopra T, et al. Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin Infect Dis [Internet]. noviembre de 2011 [citado 14 de junio de 2016];53(9):879–84. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/21900484 Doshi NM, Mount KL, Murphy C V. Nephrotoxicity associated with intravenous colistin in critically ill patients. Pharmacotherapy [Internet]. diciembre de 2011 [citado 14 de junio de 2016];31(12):1257–64. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22122186 Rattanaumpawan P, Ungprasert P, Thamlikitkul V. Risk factors for colistin-associated nephrotoxicity. J Infect [Internet]. febrero de 2011 [citado 14 de junio de 2016];62(2):187–90. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/21129401 Sandri AM, Landersdorfer CB, Jacob J, Boniatti MM, Dalarosa MG, Falci DR, et al. Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis [Internet]. agosto de 2013 [citado 14 de junio de 2016];57(4):524–31. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23697744 Elias LS, Konzen D, Krebs JM, Zavascki AP. The impact of polymyxin B dosage on in-hospital mortality of patients treated with this antibiotic. J Antimicrob Chemother [Internet]. octubre de 2010 [citado 14 de junio de 2016];65(10):2231–7. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/20685752 Abdelraouf K, Braggs KH, Yin T, Truong LD, Hu M, Tam VH. Characterization of polymyxin B-induced nephrotoxicity: implications for dosing regimen design. Antimicrob Agents Chemother [Internet]. septiembre de 2012 [citado 14 de junio de 2016];56(9):4625–9. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22687519 Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev [Internet]. octubre de 2012 [citado 14 de junio de 2016];25(4):682–707. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23034326 Lee GC, Burgess DS. Treatment of Klebsiella pneumoniae carbapenemase (KPC) infections: a review of published case series and case reports. Ann Clin Microbiol Antimicrob [Internet]. 2012 [citado 14 de junio de 2016];11:32. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23234297 Rigatto MH, Vieira FJ, Antochevis LC, Behle TF, Lopes NT, Zavascki AP. Polymyxin B in Combination with Antimicrobials Lacking In Vitro Activity versus Polymyxin B in Monotherapy in Critically Ill Patients with Acinetobacter baumannii or Pseudomonas aeruginosa Infections. Antimicrob Agents Chemother [Internet]. octubre de 2015 [citado 14 de junio de 2016];59(10):6575–80. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/26259799 Ly NS, Bulman ZP, Bulitta JB, Baron C, Rao GG, Holden PN, et al. Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. mayo de 2016 [citado 14 de junio de 2016];60(5):2870–80. Recuperado a partir de: http://aac.asm.org/lookup/doi/10.1128/AAC.02377-15 Bergen PJ, Tsuji BT, Bulitta JB, Forrest A, Jacob J, Sidjabat HE, et al. Synergistic killing of multidrug-resistant Pseudomonas aeruginosa at multiple inocula by colistin combined with doripenem in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother [Internet]. diciembre de 2011 [citado 14 de junio de 2016];55(12):5685–95. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/21911563 He W, Kaniga K, Lynch AS, Flamm RK, Davies TA. In vitro Etest synergy of doripenem with amikacin, colistin, and levofloxacin against Pseudomonas aeruginosa with defined carbapenem resistance mechanisms as determined by the Etest method. Diagn Microbiol Infect Dis [Internet]. diciembre de 2012 [citado 14 de junio de 2016];74(4):417–9. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22995366 Bozkurt-Guzel C, Gerceker AA. In vitro pharmacodynamic properties of colistin methanesulfonate and amikacin against Pseudomonas aeruginosa. Indian J Med Microbiol [Internet]. [citado 14 de junio de 2016];30(1):34–8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22361758 Morata L, Cobos-Trigueros N, Martínez JA, Soriano A, Almela M, Marco F, et al. Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother [Internet]. septiembre de 2012 [citado 14 de junio de 2016];56(9):4833–7. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22751533 |
dc.relation.references.spa.fl_str_mv |
Marchandin H, Jean-Pierre H, De Champs C, Sirot D, Darbas H, Perigault PF, et al. Production of a TEM-24 Plasmid-Mediated Extended-Spectrum beta -Lactamase by a Clinical Isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de enero de 2000 [citado 14 de junio de 2016];44(1):213–6. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.44.1.213-216.2000 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.license.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
PDF |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Barranquilla |
institution |
Universidad Libre |
bitstream.url.fl_str_mv |
http://repository.unilibre.edu.co/bitstream/10901/10232/1/1122397816.pdf http://repository.unilibre.edu.co/bitstream/10901/10232/2/license.txt http://repository.unilibre.edu.co/bitstream/10901/10232/3/1122397816.pdf.jpg |
bitstream.checksum.fl_str_mv |
d611b34c14ec865c6e006a3d90ff8a57 8a4605be74aa9ea9d79846c1fba20a33 b0dcc922998f2c5e64ed843f6f930e9a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Unilibre |
repository.mail.fl_str_mv |
repositorio@unilibrebog.edu.co |
_version_ |
1814090399587762176 |
spelling |
Iglesias Acosta, JesúsFernandez Chica, Dinno AlbertoFragozo Mendoza, Luis CarlosVillalobos Caballero, Carlos AlexisBarranquilla2017-07-26T15:03:50Z2017-07-26T15:03:50Z2016https://hdl.handle.net/10901/10232instname:Universidad Librereponame:Repositorio Institucional Universidad LibreLa Pseudomona aeruginosa es una bacteria gramnegativa con gran capacidad de adaptación a ambientes hostiles, uno de ellos, el medio hospitalario, donde ha surgido como germen a temer por el papel preponderante que ha tenido en los pacientes que cursan con infecciones del torrente sanguíneo, dado por el desarrollo de mecanismo de resistencia a diferentes antimicrobianos que hace complejo el manejo terapéutico, incrementando de esta manera la morbimortalidad, la estancia hospitalaria y los gastos en atención sanitaria de estos paciente. Se realizó una revisión sistemática de la literatura disponible para establecer el estado actual del manejo antimicrobiano de la infección del torrente sanguíneo por Pseudomona aeruginosa.Pseudomonas aeruginosa is a gram-negative bacteria, possesses a great adaptability to hostile environments, one of them is the clinical environment, where it has emerged as a fearful germ which performs a leading role in patients who present bloodstream infections, due to its development resistance mechanisms to different antimicrobial it makes therapeutic management complex, increases mortality and morbidity, hospital stay and health care expenses for these patients are high. A systematic review of available literature was performed to establish the current status of antimicrobial management of bloodstream infection by Pseudomonas aeruginosa.PDFapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pseudomona aeruginosaAntimicrobialMedicinaPseudomonas aeruginosaMultidrug resistence to drugsBloodstream infectionPSEUDOMONAS AERUGINOSARESISTENCIA A MÚLTIPLES DROGASINFECCIONES POR PSEUDOMASPseudomona aeruginosaResistencia a medicamentosInfección del torrente sanguíneoPseudomona aeruginosa: Estado del arteTesis de Especializacióninfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisFleming A. Penicilin [Internet]. 1945 [citado 13 de junio de 2016]. Recuperado a partir de: http://www.nobelprize.org/nobel_prizes/medicine/laureates/1945/flemin g-lecture.pdfNathan C, Cars O. Antibiotic Resistance — Problems, Progress, and Prospects. N Engl J Med [Internet]. 6 de noviembre de 2014 [citado 13 de junio de 2016];371(19):1761–3. Recuperado a partir de: http://www.nejm.org/doi/abs/10.1056/NEJMp1408040OMS | Una atención limpia es una atención más segura. WHO [Internet]. World Health Organization; 2016 [citado 13 de junio de 2016]; Recuperado a partir de: http://www.who.int/gpsc/es/WHO Report on the Burden of Endemic Health Care-Associated Infection Worldwide. 2011 [citado 13 de junio de 2016]; Recuperado a partir de: http://apps.who.int/iris/bitstream/10665/80135/1/9789241501507_eng.p dfWHO Report on the Burden of Endemic Health Care-Associated Infection Worldwide. 2011 [citado 13 de junio de 2016]; Recuperado a partir de: http://apps.who.int/iris/bitstream/10665/80135/1/9789241501507_eng.p dfIii M. Vigilancia epidemiológica de las infecciones asociadas a la atención de la salud. 2012 [citado 13 de junio de 2016]; Recuperado a partir de: http://www.paho.org/hq/index.php?option=com_docman&task=doc_vie w&gid=19272&Itemid=Lucía M, Martínez O, Enrique M, Duran M, Vigilancia D, Del Riesgo En A, et al. Vigilancia y analisis del riesgo en salud pública protocolo de vigilancia en salud publica infecciones asociadas a dispositivos Protocolo de Vigilancia en Salud Pública infecciones asociadas a dispositivos. 2016 [citado 13 de junio de 2016]; Recuperado a partir de: http://www.ins.gov.co/lineas-de-accion/SubdireccionVigilancia/sivigila/Protocolos SIVIGILA/PRO Infecciones asociadas a dispositivos.pdfDiaz Högberg L, Weist K, Suetens C, Griskeviciene J, Monnet D, Heuer O. Antimicrobial resistance surveillance in Europe Annual epidemiological report 2014. 2014 [citado 13 de junio de 2016]; Recuperado a partir de: http://ecdc.europa.eu/en/publications/Publications/antimicrobialresistance-annual-epidemiological-report.pdfDudeck MA, Horan TC, Peterson KD, Allen-Bridson K, Pollock DA, Edwards JR. National Healthcare Safety Network (NHSN) Report, Data Summary for 2011, Device-associated Module. 2013 [citado 13 de junio de 2016]; Recuperado a partir de: http://www.cdc.gov/nhsn/pdfs/datastat/nhsn-report-2011-datasummary.pdfBennett J, Dolin R, Blaser M. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases [Internet]. Principles and Practice of Infectious Diseases. Elsevier; 2014. 3463-3480 p. Recuperado a partir de: http://dx.doi.org/10.1016/B978-0-443-06839- 3.00276- 9\nhttp://books.google.com/books?hl=en&lr=&id=73pYBAAAQBAJ&oi=f nd&pg=PP1&dq=Mandell,+Douglas,+and+Bennett%27s+Principles+an d+Practice+of+Infectious+Diseases&ots=UYfmdEZvk9&sig=WBuIXsVZ fpXIE0k5Eqa3_lkKoZQSilby MW, Winstanley C, Godfrey SAC, Levy SB, Jackson RW. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol Rev. 2011;35(4):652–80.Stover C, Pham X, Erwin a, Mizoguchi S. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature [Internet]. 2000;406(August):959–64. Recuperado a partir de: http://www.nature.com/nature/journal/v406/n6799/abs/406959a0.htmlBattle SE, Rello J, Hauser AR. Genomic islands of Pseudomonas aeruginosa. FEMS Microbiol Lett [Internet]. 2009;290(1):70–8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubM ed&dopt=Citation&list_uids=19025565Pohl S, Klockgether J, Eckweiler D, Khaledi A, Schniederjans M, Chouvarine P, et al. The extensive set of accessory Pseudomonas aeruginosa genomic components. FEMS Microbiol Lett. 2014;356(2):235–41.Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, et al. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol [Internet]. 2006;7(10):R90. Recuperado a partir de: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1794565&too l=pmcentrez&rendertype=abstractBucior I, Pielage JF, Engel JN. Pseudomonas aeruginosa pili and flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog [Internet]. 2012 [citado 14 de abril de 2016];8(4):e1002616. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22496644Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J [Internet]. EMBO Press; 1 de agosto de 2003 [citado 29 de abril de 2016];22(15):3803–15. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/12881415García-Lara B, Saucedo-Mora MÁ, Roldán-Sánchez JA, Pérez-Eretza B, Ramasamy M, Lee J, et al. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett Appl Microbiol [Internet]. septiembre de 2015 [citado 29 de abril de 2016];61(3):299–305. Recuperado a partir de: http://doi.wiley.com/10.1111/lam.12456O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci [Internet]. National Acad Sciences; 29 de octubre de 2013 [citado 29 de abril de 2016];110(44):17981–6. Recuperado a partir de: http://www.pnas.org/cgi/doi/10.1073/pnas.1316981110van ’t Wout EFA, van Schadewijk A, van Boxtel R, Dalton LE, Clarke HJ, Tommassen J, et al. Virulence Factors of Pseudomonas aeruginosa Induce Both the Unfolded Protein and Integrated Stress Responses in Airway Epithelial Cells. PLoS Pathog [Internet]. junio de 2015 [citado 14 de abril de 2016];11(6):e1004946. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/26083346Rehman ZU, Wang Y, Moradali MF, Hay ID, Rehm BHA. Insights into the assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa. Appl Environ Microbiol [Internet]. mayo de 2013 [citado 14 de abril de 2016];79(10):3264–72. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23503314Pechère J-C, Köhler T, Nikaido H, Hancock R, Nordmann P, Guibert M, et al. Patterns and modes of β-lactam resistance in Pseudomonas aeruginosa. Clin Microbiol Infect [Internet]. Elsevier; marzo de 1999 87 [citado 12 de junio de 2016];5:S15–8. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S1198743X1464386XBRYAN LE, HARAPHONGSE R, ELZEN HM VAN DEN. Gentamicin resistance in clinical-isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable enzymatic modification. J Antibiot (Tokyo) [Internet]. 1976 [citado 12 de junio de 2016];29(7):743–53. Recuperado a partir de: http://joi.jlc.jst.go.jp/JST.Journalarchive/antibiotics1968/29.743?from=Cr ossRefLivermore DM. Interplay of impermeability and chromosomal betalactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de septiembre de 1992 [citado 12 de junio de 2016];36(9):2046–8. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.36.9.2046MacLeod DL, Nelson LE, Shawar RM, Lin BB, Lockwood LG, Dirk JE, et al. Aminoglycoside‐Resistance Mechanisms for Cystic Fibrosis Pseudomonas aeruginosa Isolates Are Unchanged by Long‐Term, Intermittent, Inhaled Tobramycin Treatment. J Infect Dis [Internet]. marzo de 2000 [citado 12 de junio de 2016];181(3):1180–4. Recuperado a partir de: http://jid.oxfordjournals.org/lookup/doi/10.1086/315312Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol [Internet]. abril de 2001 [citado 8 de junio de 2016];3(2):255–64. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/11321581Gibb AP, Tribuddharat C, Moore RA, Louie TJ, Krulicki W, Livermore DM, et al. Nosocomial Outbreak of Carbapenem-Resistant Pseudomonas aeruginosa with a New blaIMP Allele, blaIMP-7. Antimicrob Agents Chemother [Internet]. 1 de enero de 2002 [citado 14 de junio de 2016];46(1):255–8. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.46.1.255-258.2002Llanes C, Hocquet D, Vogne C, Benali-Baitich D, Neuwirth C, Plesiat P. Clinical Strains of Pseudomonas aeruginosa Overproducing MexABOprM and MexXY Efflux Pumps Simultaneously. Antimicrob Agents Chemother [Internet]. 1 de mayo de 2004 [citado 8 de junio de 2016];48(5):1797–802. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.48.5.1797-1802.2004Li X-Z, Zhang L, Poole K. Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J Antimicrob Chemother [Internet]. 1 de abril de 2000 [citado 9 de junio de 2016];45(4):433–6. Recuperado a partir de: http://www.jac.oxfordjournals.org/cgi/doi/10.1093/jac/45.4.433Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol [Internet]. noviembre de 1993 [citado 8 de junio de 2016];175(22):7363–72. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/8226684Westbrock-Wadman S, Sherman DR, Hickey MJ, Coulter SN, Zhu YQ, Warrener P, et al. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob Agents Chemother [Internet]. diciembre de 1999 [citado 10 de junio de 2016];43(12):2975–83. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/10582892Mao W, Warren MS, Lee A, Mistry A, Lomovskaya O. MexXY-OprM Efflux Pump Is Required for Antagonism of Aminoglycosides by Divalent Cations in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de julio de 2001 [citado 10 de junio de 2016];45(7):2001–7. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.45.7.2001-2007.2001Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Contribution of the MexX-MexY-OprM Efflux System to Intrinsic Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de septiembre de 2000 [citado 10 de junio de 2016];44(9):2242–6. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.44.9.2242-2246.2000Masuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Contribution of the MexX-MexY-OprM Efflux System to Intrinsic Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de septiembre de 2000 [citado 10 de junio de 2016];44(9):2242–6. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.44.9.2242-2246.2000Álvarez CA, Alberto J, María C, Ovalle V. Infecciones micóticas en nuestros hospitales Boletín informativo GREBO www.grebo.org. 2010;Mayo 5 Día Mundial de lavado de manos dedicado a la contención de la resistencia bacteriana. [citado 14 de junio de 2016]; Recuperado a partir de: http://www.grebo.org/documentos/Boletin_Grebo_2014.pdfLivermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother [Internet]. 1 de marzo de 2001 [citado 10 de junio de 2016];47(3):247–50. Recuperado a partir de: http://www.jac.oupjournals.org/cgi/doi/10.1093/jac/47.3.247Pai H, Kim J-W, Kim J, Lee JH, Choe KW, Gotoh N. Carbapenem Resistance Mechanisms in Pseudomonas aeruginosa Clinical Isolates. Antimicrob Agents Chemother [Internet]. 1 de febrero de 2001 [citado 12 de junio de 2016];45(2):480–4. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.45.2.480-484.2001Livermore DM. Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa: Our Worst Nightmare? Clin Infect Dis [Internet]. 1 de marzo de 2002 [citado 8 de junio de 2016];34(5):634– 40. Recuperado a partir de: http://cid.oxfordjournals.org/lookup/doi/10.1086/338782Poole K, Gotoh N, Tsujimoto H, Zhao Q, Wada A, Yamasaki T, et al. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol [Internet]. agosto de 1996 [citado 10 de junio de 2016];21(4):713–24. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/8878035Hamzehpour MM, Pechere JC, Plesiat P, Köhler T. OprK and OprM define two genetically distinct multidrug efflux systems in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. noviembre de 1995 [citado 10 de junio de 2016];39(11):2392–6. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/8585714Yordanov D, Strateva T. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol [Internet]. Microbiology Society; 1 de septiembre de 2009 [citado 8 de junio de 2016];58(9):1133–48. Recuperado a partir de: http://www.microbiologyresearch.org/content/journal/jmm/10.1099/jmm. 0.009142-0Kohler T, Michea-Hamzehpour M, Henze U, Gotoh N, Kocjancic Curty L, Pechere J-C. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol [Internet]. Blackwell Science Ltd; enero de 1997 [citado 10 de junio de 2016];23(2):345–54. Recuperado a partir de: http://doi.wiley.com/10.1046/j.1365-2958.1997.2281594.xAmbler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci [Internet]. The Royal Society; 16 de mayo de 1980 [citado 13 de junio de 2016];289(1036):321–31. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/6109327Bush K, Jacoby GA, Medeiros AA. MINIREVIEW A Functional Classification Scheme for -Lactamases and Its Correlation with Molecular Structure. Antimicrob Agents Chemother. 1995;39(6):1211– 33.Nordmann patrice, Guilbert Mi. Extended-spectrum B-lactamases in Pseudomonas aeruginosa. J Antimicrob Chemother. 1998;42:125–8.Langaee TY, Gagnon L, Huletsky A. Inactivation of the ampD Gene in Pseudomonas aeruginosa Leads to Moderate-Basal-Level and Hyperinducible AmpC beta -Lactamase Expression. Antimicrob Agents Chemother [Internet]. 1 de marzo de 2000 [citado 13 de junio de 2016];44(3):583–9. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.44.3.583-589.2000Bagge N, Ciofu O, Hentzer M, Campbell JIA, Givskov M, Hoiby N. Constitutive High Expression of Chromosomal -Lactamase in Pseudomonas aeruginosa Caused by a New Insertion Sequence (IS1669) Located in ampD. Antimicrob Agents Chemother [Internet]. 1 de noviembre de 2002 [citado 13 de junio de 2016];46(11):3406–11. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.46.11.3406-3411.2002NORMARK S. β-Lactamase Induction in Gram-Negative Bacteria Is Intimately Linked to Peptidoglycan Recycling. Microb Drug Resist [Internet]. enero de 1995 [citado 13 de junio de 2016];1(2):111–4. Recuperado a partir de: http://www.liebertonline.com/doi/abs/10.1089/mdr.1995.1.111Höltje J V, Kopp U, Ursinus A, Wiedemann B, Normark S, Bartowsky E, et al. The negative regulator of beta-lactamase induction AmpD is a Nacetyl-anhydromuramyl-L-alanine amidase. FEMS Microbiol Lett [Internet]. The Oxford University Press; 15 de septiembre de 1994 [citado 13 de junio de 2016];122(1-2):159–64. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/7958768Honoré N, Nicolas M-H, Cole ST. Regulation of enterobacterial cephalosporinase production: the role of a membrane-bound sensory 92 transducer. Mol Microbiol [Internet]. Blackwell Publishing Ltd; agosto de 1989 [citado 13 de junio de 2016];3(8):1121–30. Recuperado a partir de: http://doi.wiley.com/10.1111/j.1365-2958.1989.tb00262.xJuan C, Moya B, Perez JL, Oliver A. Stepwise Upregulation of the Pseudomonas aeruginosa Chromosomal Cephalosporinase Conferring High-Level -Lactam Resistance Involves Three AmpD Homologues. Antimicrob Agents Chemother [Internet]. 1 de mayo de 2006 [citado 13 de junio de 2016];50(5):1780–7. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.50.5.1780-1787.2006Bert F, Branger C, Lambert-Zechovsky N. Identification of PSE and OXA beta-lactamase genes in Pseudomonas aeruginosa using PCRrestriction fragment length polymorphism. J Antimicrob Chemother [Internet]. julio de 2002 [citado 13 de junio de 2016];50(1):11–8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/12096001Weldhagen GF, Poirel L, Nordmann P. Ambler Class A ExtendedSpectrum -Lactamases in Pseudomonas aeruginosa: Novel Developments and Clinical Impact. Antimicrob Agents Chemother [Internet]. 1 de agosto de 2003 [citado 14 de junio de 2016];47(8):2385–92. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.47.8.2385-2392.2003Naas T, Philippon L, Poirel L, Ronco E, Nordmann P. An SHV-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. mayo de 1999 [citado 14 de junio de 2016];43(5):1281–4. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/10223953Neonakis IK, Scoulica E V., Dimitriou SK, Gikas AI, Tselentis YJ. Molecular Epidemiology of Extended-Spectrum β -Lactamases Produced by Clinical Isolates in a University Hospital in Greece: Detection of SHV-5 in Pseudomonas aeruginosa and Prevalence of SHV-12. Microb Drug Resist [Internet]. junio de 2003 [citado 14 de junio de 2016];9(2):161–5. Recuperado a partir de: http://www.liebertonline.com/doi/abs/10.1089/107662903765826750Chanawong A, M’Zali FH, Heritage J, Lulitanond A, Hawkey PM. SHV12, SHV-5, SHV-2a and VEB-1 extended-spectrum beta-lactamases in Gram-negative bacteria isolated in a university hospital in Thailand. J Antimicrob Chemother [Internet]. 1 de diciembre de 2001 [citado 14 de junio de 2016];48(6):839–52. Recuperado a partir de: http://www.jac.oupjournals.org/cgi/doi/10.1093/jac/48.6.839Mugnier P, Dubrous P, Casin I, Arlet G, Collatz E. A TEM-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1996;40(11):2488–93.Poirel L, Ronco E, Naas T, Nordmann P, Bush K, Jacoby G, et al. Extended-spectrum β-lactamase TEM-4 in Pseudomonas aeruginosa. Clin Microbiol Infect [Internet]. Elsevier; octubre de 1999 [citado 14 de junio de 2016];5(10):651–2. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S1198743X14644748Dubois V, Arpin C, Noury P, Quentin C. Clinical Strain of Pseudomonas aeruginosa Carrying a blaTEM-21 Gene Located on a Chromosomal Interrupted TnA Type Transposon. Antimicrob Agents Chemother [Internet]. 1 de noviembre de 2002 [citado 14 de junio de 2016];46(11):3624–6. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.46.11.3624-3626.2002Nordmann P, Naas T. Sequence analysis of PER-1 extended-spectrum beta-lactamase from Pseudomonas aeruginosa and comparison with class A beta-lactamases. Antimicrob Agents Chemother [Internet]. 1 de enero de 1994 [citado 14 de junio de 2016];38(1):104–14. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.38.1.104Castanheira M, Mendes RE, Walsh TR, Gales AC, Jones RN. Emergence of the Extended-Spectrum -Lactamase GES-1 in a Pseudomonas aeruginosa Strain from Brazil: Report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother [Internet]. 1 de junio de 2004 [citado 14 de junio de 2016];48(6):2344– 5. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.48.6.2344-2345.2004Poirel L, Weldhagen GF, Champs C De, Nordmann P. A nosocomial outbreak of Pseudomonas aeruginosa isolates expressing the extended-spectrum beta-lactamase GES-2 in South Africa. J Antimicrob Chemother [Internet]. 1 de marzo de 2002 [citado 14 de junio de 2016];49(3):561–5. Recuperado a partir de: http://www.jac.oupjournals.org/cgi/doi/10.1093/jac/49.3.561Mavroidi A, Tzelepi E, Tsakris A, Miriagou V, Sofianou D, Tzouvelekis LS. An integron-associated beta-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum beta-lactamase IBC1. J Antimicrob Chemother [Internet]. 1 de noviembre de 2001 [citado 14 de junio de 2016];48(5):627–30. Recuperado a partir de: http://www.jac.oupjournals.org/cgi/doi/10.1093/jac/48.5.627Poirel L, Brinas L, Fortineau N, Nordmann P. Integron-Encoded GES- 95 Type Extended-Spectrum -Lactamase with Increased Activity toward Aztreonam in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de agosto de 2005 [citado 14 de junio de 2016];49(8):3593–7. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.49.8.3593-3597.2005Bogaerts P, Bauraing C, Deplano A, Glupczynski Y. Emergence and Dissemination of BEL-1-Producing Pseudomonas aeruginosa Isolates in Belgium. Antimicrob Agents Chemother [Internet]. 1 de abril de 2007 [citado 14 de junio de 2016];51(4):1584–5. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.01603-06Nicolau CJ, Oliver A. Enfermedades Infecciosas y Microbiología Clínica Enfermedades Infecciosas y Microbiología Clínica Carbapenemasas en especies del género Pseudomonas Carbapenemases in Pseudomonas spp. Enferm Infecc Microbiol Clin [Internet]. 2010 [citado 19 de junio de 2016];28:19–28. Recuperado a partir de: www.elsevier.es/eimcGirlich D, Naas T, Leelaporn A, Poirel L, Fennewald M, Nordmann P. Nosocomial Spread of the Integron-Located veb-1--Like Cassette Encoding an Extended-Spectrum -Lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis [Internet]. 1 de marzo de 2002 [citado 14 de junio de 2016];34(5):603–11. Recuperado a partir de: http://cid.oxfordjournals.org/lookup/doi/10.1086/338786Senda K, Arakawa Y, Nakashima K, Ito H, Ichiyama S, Shimokata K, et al. Multifocal outbreaks of metallo-beta-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum beta-lactams, including carbapenems. Antimicrob Agents Chemother [Internet]. 1996;40(2):349–53. Recuperado a partir de: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=163114&tool =pmcentrez&rendertype=abstractParkins MD, Pitout JDD, Church DL, Conly JM, Laupland KB, Jones R, et al. Treatment of infections caused by metallo-β-lactamase-producing Pseudomonas aeruginosa in the Calgary Health Region. Clin Microbiol Infect [Internet]. Elsevier; febrero de 2007 [citado 14 de junio de 2016];13(2):199–202. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S1198743X14615871Koh TH, Wang GCY, Sng L-H. Clonal Spread of IMP-1-Producing Pseudomonas aeruginosa in Two Hospitals in Singapore. J Clin Microbiol [Internet]. 1 de noviembre de 2004 [citado 14 de junio de 2016];42(11):5378–80. Recuperado a partir de: http://jcm.asm.org/cgi/doi/10.1128/JCM.42.11.5378-5380.2004Xiong J, Hynes MF, Ye H, Chen H, Yang Y, M’Zali F, et al. blaIMP-9 and Its Association with Large Plasmids Carried by Pseudomonas aeruginosa Isolates from the People’s Republic of China. Antimicrob Agents Chemother [Internet]. 1 de enero de 2006 [citado 14 de junio de 2016];50(1):355–8. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.50.1.355-358.2006Pagani L, Colinon C, Migliavacca R, Labonia M, Docquier J-D, Nucleo E, et al. Nosocomial Outbreak Caused by Multidrug-Resistant Pseudomonas aeruginosa Producing IMP-13 Metallo- -Lactamase. J Clin Microbiol [Internet]. 1 de agosto de 2005 [citado 14 de junio de 2016];43(8):3824–8. Recuperado a partir de: http://jcm.asm.org/cgi/doi/10.1128/JCM.43.8.3824-3828.2005Mendes RE, Toleman MA, Ribeiro J, Sader HS, Jones RN, Walsh TR. Integron Carrying a Novel Metallo- -Lactamase Gene, blaIMP-16, and a Fused Form of Aminoglycoside-Resistant Gene aac(6’)-30/aac(6')-Ib': Report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother [Internet]. 1 de diciembre de 2004 [citado 97 14 de junio de 2016];48(12):4693–702. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.48.12.4693-4702.2004Hanson ND, Hossain A, Buck L, Moland ES, Thomson KS. First Occurrence of a Pseudomonas aeruginosa Isolate in the United States Producing an IMP Metallo- -Lactamase, IMP-18. Antimicrob Agents Chemother [Internet]. 1 de junio de 2006 [citado 14 de junio de 2016];50(6):2272–3. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.01440-05Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al. Cloning and Characterization of blaVIM, a New Integron-Borne Metallo-beta -Lactamase Gene from a Pseudomonas aeruginosa Clinical Isolate. Antimicrob Agents Chemother [Internet]. 1999;43(7):1584–90. Recuperado a partir de: http://aac.asm.org/cgi/content/abstract/43/7/1584Riccio ML, Pallecchi L, Fontana R, Rossolini GM. In70 of Plasmid pAX22, a blaVIM-1-Containing Integron Carrying a New Aminoglycoside Phosphotransferase Gene Cassette. Antimicrob Agents Chemother [Internet]. 1 de abril de 2001 [citado 14 de junio de 2016];45(4):1249–53. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.45.4.1249-1253.2001Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo J-D, et al. Characterization of VIM-2, a Carbapenem-Hydrolyzing Metallo-beta - Lactamase and Its Plasmid- and Integron-Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in France. Antimicrob Agents Chemother [Internet]. 1 de abril de 2000 [citado 14 de junio de 2016];44(4):891–7. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.44.4.891-897.2000Yan J-J, Hsueh P-R, Ko W-C, Luh K-T, Tsai S-H, Wu H-M, et al. Metallo- -Lactamases in Clinical Pseudomonas Isolates in Taiwan and Identification of VIM-3, a Novel Variant of the VIM-2 Enzyme. Antimicrob Agents Chemother [Internet]. 1 de agosto de 2001 [citado 14 de junio de 2016];45(8):2224–8. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.45.8.2224-2228.2001Pournaras S, Tsakris A, Maniati M, Tzouvelekis LS, Maniatis AN. Novel Variant (blaVIM-4) of the Metallo- -Lactamase Gene blaVIM-1 in a Clinical Strain of Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de diciembre de 2002 [citado 14 de junio de 2016];46(12):4026–8. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.46.12.4026-4028.2002Libisch B, Gacs M, Csiszar K, Muzslay M, Rokusz L, Fuzi M. Isolation of an Integron-Borne blaVIM-4 Type Metallo- -Lactamase Gene from a Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolate in Hungary. Antimicrob Agents Chemother [Internet]. 1 de septiembre de 2004 [citado 14 de junio de 2016];48(9):3576–8. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.48.9.3576-3578.2004Patzer J, Toleman MA, Deshpande LM, Kamińska W, Dzierzanowska D, Bennett PM, et al. Pseudomonas aeruginosa strains harbouring an unusual blaVIM-4 gene cassette isolated from hospitalized children in Poland (1998-2001). J Antimicrob Chemother [Internet]. marzo de 2004 [citado 14 de junio de 2016];53(3):451–6. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/14749341Giske CG, Rylander M, Kronvall G. VIM-4 in a Carbapenem-Resistant Strain of Pseudomonas aeruginosa Isolated in Sweden. Antimicrob Agents Chemother [Internet]. 1 de septiembre de 2003 [citado 14 de junio de 2016];47(9):3034–5. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.47.9.3034-3035.2003Bahar G, Mazzariol A, Koncan R, Mert A, Fontana R, Rossolini GM, et al. Detection of VIM-5 metallo-beta-lactamase in a Pseudomonas aeruginosa clinical isolate from Turkey. J Antimicrob Chemother [Internet]. julio de 2004 [citado 14 de junio de 2016];54(1):282–3. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/15190017Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. Molecular Characterization of a -Lactamase Gene, blaGIM-1, Encoding a New Subclass of Metallo- -Lactamase. Antimicrob Agents Chemother [Internet]. 1 de diciembre de 2004 [citado 14 de junio de 2016];48(12):4654–61. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.48.12.4654-4661.2004Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, et al. Outbreak of Carbapenem-Resistant Pseudomonas aeruginosa Producing VIM-8, a Novel Metallo- -Lactamase, in a Tertiary Care Center in Cali, Colombia. J Clin Microbiol [Internet]. 1 de noviembre de 2004 [citado 14 de junio de 2016];42(11):5094–101. Recuperado a partir de: http://jcm.asm.org/cgi/doi/10.1128/JCM.42.11.5094- 5101.2004Pasteran F, Faccone D, Petroni A, Rapoport M, Galas M, Vazquez M, et al. Novel Variant (blaVIM-11) of the Metallo- -Lactamase blaVIM Family in a GES-1 Extended-Spectrum- -Lactamase-Producing Pseudomonas aeruginosa Clinical Isolate in Argentina. Antimicrob Agents Chemother [Internet]. 1 de enero de 2005 [citado 14 de junio de 2016];49(1):474–5. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.49.1.474-475.2005Juan C, Beceiro A, Gutierrez O, Alberti S, Garau M, Perez JL, et al. Characterization of the New Metallo- -Lactamase VIM-13 and Its Integron-Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in Spain. Antimicrob Agents Chemother [Internet]. 1 de octubre de 2008 [citado 14 de junio de 2016];52(10):3589–96. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.00465-08Schneider I, Keuleyan E, Rasshofer R, Markovska R, Queenan AM, Bauernfeind A. VIM-15 and VIM-16, Two New VIM-2-Like Metallo- - Lactamases in Pseudomonas aeruginosa Isolates from Bulgaria and Germany. Antimicrob Agents Chemother [Internet]. 1 de agosto de 2008 [citado 14 de junio de 2016];52(8):2977–9. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.00175-08Toleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, et al. Molecular characterization of SPM-1, a novel metallo-betalactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother [Internet]. noviembre de 2002 [citado 14 de junio de 2016];50(5):673–9. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/12407123Poirel L, Magalhaes M, Lopes M, Nordmann P. Molecular Analysis of Metallo- -Lactamase Gene blaSPM-1-Surrounding Sequences from Disseminated Pseudomonas aeruginosa Isolates in Recife, Brazil. Antimicrob Agents Chemother [Internet]. 1 de abril de 2004 [citado 14 de junio de 2016];48(4):1406–9. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.48.4.1406-1409.2004Zavascki AP, Gaspareto PB, Martins AF, Gonçalves AL, Barth AL. Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing SPM-1 metallo-{beta}-lactamase in a teaching hospital in southern Brazil. J Antimicrob Chemother [Internet]. diciembre de 2005 [citado 14 de junio de 2016];56(6):1148–51. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/16239284Bradford PA. Extended-Spectrum -Lactamases in the 21st Century: 101 Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin Microbiol Rev [Internet]. 1 de octubre de 2001 [citado 14 de junio de 2016];14(4):933–51. Recuperado a partir de: http://cmr.asm.org/cgi/doi/10.1128/CMR.14.4.933-951.2001Couture F, Lachapelle J, Levesque RC. Phylogeny of LCR-1 and OXA5 with class A and class D ?-lactamases. Mol Microbiol [Internet]. Blackwell Publishing Ltd; junio de 1992 [citado 14 de junio de 2016];6(12):1693–705. Recuperado a partir de: http://doi.wiley.com/10.1111/j.1365-2958.1992.tb00894.xScoulica E, Aransay A, Tselentis Y. Molecular characterization of the OXA-7 beta-lactamase gene. Antimicrob Agents Chemother [Internet]. 1 de junio de 1995 [citado 14 de junio de 2016];39(6):1379–82. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.39.6.1379Aubert D, Poirel L, Chevalier J, Leotard S, Pages J-M, Nordmann P. Oxacillinase-Mediated Resistance to Cefepime and Susceptibility to Ceftazidime in Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de junio de 2001 [citado 14 de junio de 2016];45(6):1615–20. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.45.6.1615-1620.2001Dale JW, Godwin D, Mossakowska D, Stephenson P, Wall S. Sequence of the OXA2 β-lactamase: comparison with other penicillinreactive enzymes. FEBS Lett [Internet]. 21 de octubre de 1985 [citado 14 de junio de 2016];191(1):39–44. Recuperado a partir de: http://doi.wiley.com/10.1016/0014-5793%2885%2980989-3Toleman MA, Rolston K, Jones RN, Walsh TR. Molecular and Biochemical Characterization of OXA-45, an Extended-Spectrum Class 2d’ -Lactamase in Pseudomonas aeruginosa. Antimicrob Agents 102 Chemother [Internet]. 1 de septiembre de 2003 [citado 14 de junio de 2016];47(9):2859–63. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.47.9.2859-2863.2003Llano-Sotelo B, Azucena EF, Kotra LP, Mobashery S, Chow CS, Gale EF, et al. Aminoglycosides Modified by Resistance Enzymes Display Diminished Binding to the Bacterial Ribosomal Aminoacyl-tRNA Site. Chem Biol [Internet]. Elsevier; abril de 2002 [citado 13 de junio de 2016];9(4):455–63. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S1074552102001254Vakulenko SB, Mobashery S. Versatility of Aminoglycosides and Prospects for Their Future. Clin Microbiol Rev [Internet]. 1 de julio de 2003 [citado 13 de junio de 2016];16(3):430–50. Recuperado a partir de: http://cmr.asm.org/cgi/doi/10.1128/CMR.16.3.430-450.2003Miller GH, Sabatelli FJ, Hare RS, Glupczynski Y, Mackey P, Shlaes D, et al. The Most Frequent Aminoglycoside Resistance Mechanisms-- Changes with Time and Geographic Area: A Reflection of Aminoglycoside Usage Patterns? Clin Infect Dis [Internet]. 1 de enero de 1997 [citado 13 de junio de 2016];24(Supplement 1):S46–62. Recuperado a partir de: http://cid.oxfordjournals.org/lookup/doi/10.1093/clinids/24.Supplement_ 1.S46Mouneimné H, Robert J, Jarlier V, Cambau E. Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43(1):62–6.Jalal S, Ciofu O, Hoiby N, Gotoh N, Wretlind B. Molecular mechanisms of fluoroquinolone resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother [Internet]. 2000;44(3):710–2. Recuperado a partir de: 103 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=89751&tool= pmcentrez&rendertype=abstractHooper DC. Mechanisms of fluoroquinolone resistance. Drug Resist Updat [Internet]. febrero de 1999 [citado 13 de junio de 2016];2(1):38– 55. Recuperado a partir de: http://linkinghub.elsevier.com/retrieve/pii/S1368764698900681Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N, Shibayama K, et al. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet. 2003;362(9399):1888–93.Doi Y, Arakawa Y. 16S Ribosomal RNA Methylation: Emerging Resistance Mechanism against Aminoglycosides. Clin Infect Dis [Internet]. 2007;45(1):88–94. Recuperado a partir de: http://cid.oxfordjournals.org/content/45/1/88.abstract\nhttp://cid.oxfordjo urnals.org/content/45/1/88.full.pdfDoi Y, de Oliveira Garcia D, Adams J, Paterson DL. Coproduction of novel 16S rRNA methylase RmtD and metallo-beta-lactamase SPM-1 in a panresistant Pseudomonas aeruginosa isolate from Brazil. Antimicrob Agents Chemother [Internet]. marzo de 2007 [citado 13 de junio de 2016];51(3):852–6. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/17158944Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis [Internet]. 1 de agosto de 2004 [citado 14 de junio de 2016];39(3):309–17. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/15306996Annual epidemiological report Reporting on 2011 surveillance data and 2012 epidemic intelligence data. [citado 14 de junio de 2016]; 104 Recuperado a partir de: http://ecdc.europa.eu/en/publications/Publications/annualepidemiological-report-2013.pdfAl-Hasan MN, Wilson JW, Lahr BD, Eckel-Passow JE, Baddour LM. Incidence of Pseudomonas aeruginosa bacteremia: a population-based study. Am J Med [Internet]. agosto de 2008 [citado 14 de junio de 2016];121(8):702–8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/18691484Paul M, Carmeli Y, Durante-Mangoni E, Mouton JW, Tacconelli E, Theuretzbacher U, et al. Combination therapy for carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother. 2014;69(9):2305–9.Kmeid JG, Youssef MM, Kanafani ZA, Kanj SS. Combination therapy for Gram-negative bacteria: what is the evidence? Expert Rev Anti Infect Ther [Internet]. diciembre de 2013 [citado 14 de junio de 2016];11(12):1355–62. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24168069Kmeid JG, Youssef MM, Kanafani ZA, Kanj SS. Combination therapy for Gram-negative bacteria: what is the evidence? Expert Rev Anti Infect Ther [Internet]. diciembre de 2013 [citado 14 de junio de 2016];11(12):1355–62. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24168069Safdar N, Handelsman J, Maki DG. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A metaanalysis. Lancet Infect Dis [Internet]. agosto de 2004 [citado 14 de junio de 2016];4(8):519–27. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/15288826uravleff JJ, Yu VL, Yee RB. Ticarcillin-tobramycin-rifampin: in vitro synergy of the triplet combination against Pseudomonas aeruginosa. J Lab Clin Med [Internet]. junio de 1983 [citado 14 de junio de 2016];101(6):896–902. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/6406628Dundar D, Otkun M. In-vitro efficacy of synergistic antibiotic combinations in multidrug resistant Pseudomonas aeruginosa strains. Yonsei Med J [Internet]. enero de 2010 [citado 14 de junio de 2016];51(1):111–6. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/20046523Dubois V, Arpin C, Melon M, Melon B, Andre C, Frigo C, et al. Nosocomial outbreak due to a multiresistant strain of Pseudomonas aeruginosa P12: efficacy of cefepime-amikacin therapy and analysis of beta-lactam resistance. J Clin Microbiol [Internet]. junio de 2001 [citado 14 de junio de 2016];39(6):2072–8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/11376037Gunderson BW, Ibrahim KH, Hovde LB, Fromm TL, Reed MD, Rotschafer JC. Synergistic activity of colistin and ceftazidime against multiantibiotic-resistant Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother [Internet]. marzo de 2003 [citado 14 de junio de 2016];47(3):905–9. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/12604520Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents [Internet]. agosto de 2009 [citado 14 de junio de 2016];34(2):111–20. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/19403273Fish DN, Choi MK, Jung R. Synergic activity of cephalosporins plus fluoroquinolones against Pseudomonas aeruginosa with resistance to one or both drugs. J Antimicrob Chemother. 2002;50(6):1045–9.Zavascki AP, Bulitta JB, Landerdorfer CB. Combination therapy for Gram-negative bacteria. Expert Rev Anti Infect Ther. 2013;11(12):1333–53.Li J, Rayner CR, Nation RL, Owen RJ, Spelman D, Tan KE, et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2006;50(9):2946–50.Hawley JS, Murray CK, Jorgensen JH. Colistin heteroresistance in Acinetobacter and its association with previous colistin therapy. Antimicrob Agents Chemother. 2008;52(1):351–2.Balaji V, Jeremiah SS, Baliga PR. Polymyxins: Antimicrobial susceptibility concerns and therapeutic options. Indian J Med Microbiol [Internet]. [citado 14 de junio de 2016];29(3):230–42. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/21860102Álvarez CA, Cortes JA, Victoria M, Colaboradores En Esta Edición O, Camacho G, Escobar J, et al. Boletín Informativo " La carbapenemasa NDM ya está en Colombia. Es la llegada de las " superbacterias " ? 2008 [citado 14 de junio de 2016]; Recuperado a partir de: http://www.grebo.org/grebo_site/jgrebo/documentos/Boletin_Grebo_20 13.pdfFalagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis [Internet]. 1 de mayo de 2005 [citado 14 de junio de 2016];40(9):1333–41. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/15825037Kwa AL, Tam VH, Falagas ME. Polymyxins: a review of the current 107 status including recent developments. Ann Acad Med Singapore [Internet]. octubre de 2008 [citado 14 de junio de 2016];37(10):870–83. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/19037522Martis N, Leroy S, Blanc V. Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: a narrative review for the clinician. J Infect [Internet]. julio de 2014 [citado 14 de junio de 2016];69(1):1–12. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24631777Martis N, Leroy S, Blanc V. Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: a narrative review for the clinician. J Infect [Internet]. julio de 2014 [citado 14 de junio de 2016];69(1):1–12. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24631777Gough M, Hancock RE, Kelly NM. Antiendotoxin activity of cationic peptide antimicrobial agents. Infect Immun [Internet]. diciembre de 1996 [citado 14 de junio de 2016];64(12):4922–7. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/8945527Karvanen M, Plachouras D, Friberg LE, Paramythiotou E, Papadomichelakis E, Karaiskos I, et al. Colistin methanesulfonate and colistin pharmacokinetics in critically ill patients receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother [Internet]. enero de 2013 [citado 14 de junio de 2016];57(1):668–71. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23147733Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother [Internet]. julio de 2011 [citado 14 de junio de 2016];55(7):3284–94. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/21555763Plachouras D, Karvanen M, Friberg LE, Papadomichelakis E, Antoniadou A, Tsangaris I, et al. Population pharmacokinetic analysis of colistin methanesulfonate and colistin after intravenous administration in critically ill patients with infections caused by gramnegative bacteria. Antimicrob Agents Chemother [Internet]. agosto de 2009 [citado 14 de junio de 2016];53(8):3430–6. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/19433570Gauthier TP, Lantz E, Frederick C, Masmouei H, Ruiz-Serrano L, Smith L, et al. Variability within investigations of intravenous colistin: the scope of the problem. Clin Infect Dis [Internet]. mayo de 2014 [citado 14 de junio de 2016];58(9):1340–2. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/24470273Ortwine JK, Sutton JD, Kaye KS, Pogue JM. Strategies for the safe use of colistin. Expert Rev Anti Infect Ther [Internet]. 2015 [citado 14 de junio de 2016];13(10):1237–47. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/26182825Mohamed AF, Karaiskos I, Plachouras D, Karvanen M, Pontikis K, Jansson B, et al. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother [Internet]. agosto de 2012 [citado 14 de junio de 2016];56(8):4241–9. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22615285Gauthier TP, Wolowich WR, Reddy A, Cano E, Abbo L, Smith LB. Incidence and predictors of nephrotoxicity associated with intravenous colistin in overweight and obese patients. Antimicrob Agents Chemother [Internet]. mayo de 2012 [citado 14 de junio de 2016];56(5):2392–6. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22371891Rigatto MH, Behle TF, Falci DR, Freitas T, Lopes NT, Nunes M, et al. Risk factors for acute kidney injury (AKI) in patients treated with polymyxin B and influence of AKI on mortality: a multicentre prospective cohort study. J Antimicrob Chemother [Internet]. mayo de 2015 [citado 14 de junio de 2016];70(5):1552–7. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/25604744Sorlí L, Luque S, Grau S, Berenguer N, Segura C, Montero MM, et al. Trough colistin plasma level is an independent risk factor for nephrotoxicity: a prospective observational cohort study. BMC Infect Dis [Internet]. 2013 [citado 14 de junio de 2016];13:380. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23957376He H, Li J-C, Nation RL, Jacob J, Chen G, Lee HJ, et al. Pharmacokinetics of four different brands of colistimethate and formed colistin in rats. J Antimicrob Chemother [Internet]. octubre de 2013 [citado 14 de junio de 2016];68(10):2311–7. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23749953Kim J, Lee K-H, Yoo S, Pai H. Clinical characteristics and risk factors of colistin-induced nephrotoxicity. Int J Antimicrob Agents [Internet]. noviembre de 2009 [citado 14 de junio de 2016];34(5):434–8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/19726164ogue JM, Lee J, Marchaim D, Yee V, Zhao JJ, Chopra T, et al. Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin Infect Dis [Internet]. noviembre de 2011 [citado 14 de junio de 2016];53(9):879–84. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/21900484Doshi NM, Mount KL, Murphy C V. Nephrotoxicity associated with intravenous colistin in critically ill patients. Pharmacotherapy [Internet]. diciembre de 2011 [citado 14 de junio de 2016];31(12):1257–64. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22122186Rattanaumpawan P, Ungprasert P, Thamlikitkul V. Risk factors for colistin-associated nephrotoxicity. J Infect [Internet]. febrero de 2011 [citado 14 de junio de 2016];62(2):187–90. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/21129401Sandri AM, Landersdorfer CB, Jacob J, Boniatti MM, Dalarosa MG, Falci DR, et al. Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis [Internet]. agosto de 2013 [citado 14 de junio de 2016];57(4):524–31. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23697744Elias LS, Konzen D, Krebs JM, Zavascki AP. The impact of polymyxin B dosage on in-hospital mortality of patients treated with this antibiotic. J Antimicrob Chemother [Internet]. octubre de 2010 [citado 14 de junio de 2016];65(10):2231–7. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/20685752Abdelraouf K, Braggs KH, Yin T, Truong LD, Hu M, Tam VH. Characterization of polymyxin B-induced nephrotoxicity: implications for dosing regimen design. Antimicrob Agents Chemother [Internet]. septiembre de 2012 [citado 14 de junio de 2016];56(9):4625–9. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22687519Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev [Internet]. octubre de 2012 [citado 14 de junio de 2016];25(4):682–707. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23034326Lee GC, Burgess DS. Treatment of Klebsiella pneumoniae carbapenemase (KPC) infections: a review of published case series and case reports. Ann Clin Microbiol Antimicrob [Internet]. 2012 [citado 14 de junio de 2016];11:32. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/23234297Rigatto MH, Vieira FJ, Antochevis LC, Behle TF, Lopes NT, Zavascki AP. Polymyxin B in Combination with Antimicrobials Lacking In Vitro Activity versus Polymyxin B in Monotherapy in Critically Ill Patients with Acinetobacter baumannii or Pseudomonas aeruginosa Infections. Antimicrob Agents Chemother [Internet]. octubre de 2015 [citado 14 de junio de 2016];59(10):6575–80. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/26259799Ly NS, Bulman ZP, Bulitta JB, Baron C, Rao GG, Holden PN, et al. Optimization of Polymyxin B in Combination with Doripenem To Combat Mutator Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. mayo de 2016 [citado 14 de junio de 2016];60(5):2870–80. Recuperado a partir de: http://aac.asm.org/lookup/doi/10.1128/AAC.02377-15Bergen PJ, Tsuji BT, Bulitta JB, Forrest A, Jacob J, Sidjabat HE, et al. Synergistic killing of multidrug-resistant Pseudomonas aeruginosa at multiple inocula by colistin combined with doripenem in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother [Internet]. diciembre de 2011 [citado 14 de junio de 2016];55(12):5685–95. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/21911563He W, Kaniga K, Lynch AS, Flamm RK, Davies TA. In vitro Etest synergy of doripenem with amikacin, colistin, and levofloxacin against Pseudomonas aeruginosa with defined carbapenem resistance mechanisms as determined by the Etest method. Diagn Microbiol Infect Dis [Internet]. diciembre de 2012 [citado 14 de junio de 2016];74(4):417–9. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22995366Bozkurt-Guzel C, Gerceker AA. In vitro pharmacodynamic properties of colistin methanesulfonate and amikacin against Pseudomonas aeruginosa. Indian J Med Microbiol [Internet]. [citado 14 de junio de 2016];30(1):34–8. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22361758Morata L, Cobos-Trigueros N, Martínez JA, Soriano A, Almela M, Marco F, et al. Influence of multidrug resistance and appropriate empirical therapy on the 30-day mortality rate of Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother [Internet]. septiembre de 2012 [citado 14 de junio de 2016];56(9):4833–7. Recuperado a partir de: http://www.ncbi.nlm.nih.gov/pubmed/22751533Marchandin H, Jean-Pierre H, De Champs C, Sirot D, Darbas H, Perigault PF, et al. Production of a TEM-24 Plasmid-Mediated Extended-Spectrum beta -Lactamase by a Clinical Isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother [Internet]. 1 de enero de 2000 [citado 14 de junio de 2016];44(1):213–6. Recuperado a partir de: http://aac.asm.org/cgi/doi/10.1128/AAC.44.1.213-216.2000ORIGINAL1122397816.pdf1122397816.pdfTrabajo de Gradoapplication/pdf1516423http://repository.unilibre.edu.co/bitstream/10901/10232/1/1122397816.pdfd611b34c14ec865c6e006a3d90ff8a57MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/10232/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAIL1122397816.pdf.jpg1122397816.pdf.jpgIM Thumbnailimage/jpeg4298http://repository.unilibre.edu.co/bitstream/10901/10232/3/1122397816.pdf.jpgb0dcc922998f2c5e64ed843f6f930e9aMD5310901/10232oai:repository.unilibre.edu.co:10901/102322022-10-11 12:08:26.58Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |