Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022
Se construyó una base de datos bibliográfica con 5.012 documentos extraídos de Scopus, la cual rastrea el surgimiento y la evolución en la investigación de las aplicaciones biotecnológicas de las algas desde el año 1947 hasta el 2022 alrededor del mundo. Este documento proporciona una revisión actua...
- Autores:
-
Abril Torres, Karen Daniela
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Libre
- Repositorio:
- RIU - Repositorio Institucional UniLibre
- Idioma:
- OAI Identifier:
- oai:repository.unilibre.edu.co:10901/29565
- Acceso en línea:
- https://hdl.handle.net/10901/29565
- Palabra clave:
- Algas marinas
Biotecnología
Investigación
Bibliometría
Seaweed
Biotechnology
Research
Bibliometrics
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
RULIBRE2_6c47759b82bf8fb91ff94e8756ed41bc |
---|---|
oai_identifier_str |
oai:repository.unilibre.edu.co:10901/29565 |
network_acronym_str |
RULIBRE2 |
network_name_str |
RIU - Repositorio Institucional UniLibre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022 |
title |
Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022 |
spellingShingle |
Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022 Algas marinas Biotecnología Investigación Bibliometría Seaweed Biotechnology Research Bibliometrics |
title_short |
Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022 |
title_full |
Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022 |
title_fullStr |
Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022 |
title_full_unstemmed |
Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022 |
title_sort |
Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022 |
dc.creator.fl_str_mv |
Abril Torres, Karen Daniela |
dc.contributor.advisor.none.fl_str_mv |
Alvarez Aldana, Adalucy Gaviria, Duverney Londoño Giraldo, Lina M |
dc.contributor.author.none.fl_str_mv |
Abril Torres, Karen Daniela |
dc.subject.spa.fl_str_mv |
Algas marinas Biotecnología Investigación Bibliometría |
topic |
Algas marinas Biotecnología Investigación Bibliometría Seaweed Biotechnology Research Bibliometrics |
dc.subject.subjectenglish.spa.fl_str_mv |
Seaweed Biotechnology Research Bibliometrics |
description |
Se construyó una base de datos bibliográfica con 5.012 documentos extraídos de Scopus, la cual rastrea el surgimiento y la evolución en la investigación de las aplicaciones biotecnológicas de las algas desde el año 1947 hasta el 2022 alrededor del mundo. Este documento proporciona una revisión actualizada de los datos más relevantes en cuanto a autores, países, revistas, instituciones y artículos, mediante el uso de los softwares Bibliometrix y VOSviewer. Además, se identifican las principales corrientes de investigación de las aplicaciones biotecnológicas de las algas, resaltando su importancia en diferentes disciplinas. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-25T21:11:21Z |
dc.date.available.none.fl_str_mv |
2024-07-25T21:11:21Z |
dc.date.created.none.fl_str_mv |
2024-06-12 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Tesis de Pregrado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10901/29565 |
url |
https://hdl.handle.net/10901/29565 |
dc.relation.references.spa.fl_str_mv |
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. Baghel, R. S., Trivedi, N., Gupta, V., Neori, A., Reddy, C. R. K., Lali, A., & Jha, B. (2015). Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chemistry, 17(4), 2436–2443. https://doi.org/10.1039/c4gc02532f Bailey, S. E., Olin, T. J., Mark Bricka, R., & Dean Adrian, D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479. Batista González, A. E., Charles, M. B., Mancini-Filho, J., & Vidal Novoa, A. (2009). Seaweeds as sources of antioxidant phytomedicines. Revista Cubana de Plantas Medicinales, 14(2), 1–18. Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012 Bwapwa, J. K., Jaiyeola, A. T., & Chetty, R. (2017). Bioremediation of acid mine drainage using algae strains: A review. South African Journal of Chemical Engineering, 24(June), 62–70. https://doi.org/10.1016/j.sajce.2017.06.005 Castejón, N., Thorarinsdottir, K. A., Einarsdóttir, R., Kristbergsson, K., & Marteinsdóttir, G. (2021). Exploring the potential of icelandic seaweeds extracts produced by aqueous pulsed electric fields-assisted extraction for cosmetic applications. Marine Drugs, 19(12). https://doi.org/10.3390/md19120662 Connor, J. O., Meaney, S., Williams, G. A., & Hayes, M. (2020). Extraction of Protein from Four Di ff erent Seaweeds Using Three Di ff erent Physical. Molecules, 25, 1–11. Cozzolino, E., Di Mola, I., Ottaiano, L., Nocerino, S., Sifola, M. I., El-Nakhel, C., Rouphael, Y., & Mori, M. (2021). Can seaweed extract improve yield and quality of brewing barley subjected to different levels of nitrogen fertilization? Agronomy, 11(12), 1–15. https://doi.org/10.3390/agronomy11122481 De Jesus Raposo, M. F., De Morais, A. M. B., & De Morais, R. M. S. C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs, 13(5), 2967–3028. https://doi.org/10.3390/md13052967 Dittami, S. M., Heesch, S., Olsen, J. L., & Collén, J. (2017). Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. International Journal of Laboratory Hematology, 53(4), 731–745. https://doi.org/10.1111/ijlh.12426 Duarte, B., Carreiras, J., Feijão, E., de Carvalho, R. C., Matos, A. R., Fonseca, V. F., Novais, S. C., & Lemos, M. F. L. (2021). Potential of asparagopsis armata as a biopesticide for weed control under an invasive seaweed circular-economy framework. Biology, 10(12). https://doi.org/10.3390/biology10121321 Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152. https://doi.org/https://doi.org/10.1007/s11192-006-0144-7 Fleitas Ramírez, P., Rodríguez Rodríguez, E. M., & Rodríguez Galdón, B. (2019). Algas En La Alimentación Humana Trabajo De Fin De Máster. Universidad de La Laguna. Gomez Zavaglia, A., Prieto Lage, M. A., Jimenez Lopez, C., Mejuto, J. C., & Simal Gandara, J. (2019). The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants, 8(9). https://doi.org/10.3390/antiox8090406 Gouveia, L., Raymundo, A., Batista, A. P., Sousa, I., & Empis, J. (2006). Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 222(3–4), 362–367. https://doi.org/10.1007/s00217-005-0105-z Guiry, M. D. (2012). How many species of algae are there? Journal of Phycology, 48(5), 1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.x Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572. Hu, Z., Zheng, Y., Yan, F., Xiao, B., & Liu, S. (2013). Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization. Energy, 52, 119–125. https://doi.org/10.1016/j.energy.2013.01.059 Janssens, J. C. A., Steenackers, H., Robijns, S., Gellens, E., Levin, J., Zhao, H., Hermans, K., De Coster, D., Verhoeven, T. L., Marchal, K., Vanderleyden, J., De Vos, D. E., & De Keersmaecker, S. C. J. (2008). Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Applied and Environmental Microbiology, 74(21), 6639–6648. https://doi.org/10.1128/AEM.01262-08 Jun, J. Y., Jung, M. J., Jeong, I. H., Yamazaki, K., Kawai, Y., & Kim, B. M. (2018). Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Marine Drugs, 16(9). https://doi.org/10.3390/md16090301 López Padrón, I., Martínez González, L., Pérez Domínguez, G., Reyes Guerrero, Y., Núñez Vázquez, M., & Cabrera Rodríguez, J. A. (2020). Las algas y sus usos en la agricultura. Una visión actualizada. Cultivos Tropicales, 41(2), 10. Omar, Hanan H, Dighriri, K. A., & Gashgary, R. M. (2019). The Benefit Roles of Micro-and Macro-Algae in Probiotics. Nature and Science, 17(11), 258–279. https://doi.org/10.7537/marsnsj171119.33.Keywords Omar, Hanan Hafez, Al-Judaibiand, A., & El-Gendy, A. (2018). Antimicrobial, antioxidant, anticancer activity and phytochemical analysis of the red alga, laurencia papillosa. International Journal of Pharmacology, 14(4), 572–583. https://doi.org/10.3923/ijp.2018.572.583 Patel, A. K., Choi, Y. Y., & Sim, S. J. (2020). Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresource Technology, 300(November 2019), 122741. https://doi.org/10.1016/j.biortech.2020.122741 Patel, A. K., Singhania, R. R., Awasthi, M. K., Varjani, S., Bhatia, S. K., Tsai, M. L., Hsieh, S. L., Chen, C. W., & Dong, C. Di. (2021). Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Factories, 20(1), 1–16. https://doi.org/10.1186/s12934-021-01601-7 PEREA, L. N., GAVIRIA, D., & REDONDO, M. I. (2020). Bioeconomy: bibliometric analysis from 2006 to 2019. Revista Espacios, 41(45), 10–28. https://doi.org/10.48082/espacios-a20v41n43p02 Perianes-Rodriguez, A., Waltman, L., & Van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. Sudhakar, K., Mamat, R., Samykano, M., Azmi, W. H., Ishak, W. F. W., & Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews, 91(November 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100 Vicente, T. F. L., Lemos, M. F. L., Félix, R., Valentão, P., & Félix, C. (2021). Marine macroalgae, a source of natural inhibitors of fungal phytopathogens. Journal of Fungi, 7(12). https://doi.org/10.3390/jof7121006 Villarruel-López, A., Ascencio, F., & Nunõ, K. (2017). Microalgae, a Potential Natural Functional Food Source- A Review. Polish Journal of Food and Nutrition Sciences, 67(4), 251–263. https://doi.org/10.1515/pjfns-2017-0017 Wang, H. M. D., Chen, C. C., Huynh, P., & Chang, J. S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355–362. https://doi.org/10.1016/j.biortech.2014.12.001 Williams, T. I., Edgington, S., Owen, A., & Gange, A. C. (2021). Evaluating the use of seaweed extracts against root knot nematodes: A meta-analytic approach. Applied Soil Ecology, 168(July), 104170. https://doi.org/10.1016/j.apsoil.2021.104170 |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
PDF |
dc.coverage.spatial.spa.fl_str_mv |
Pereira |
institution |
Universidad Libre |
bitstream.url.fl_str_mv |
http://repository.unilibre.edu.co/bitstream/10901/29565/4/AUTORIZACIO%cc%81N%20PARA%20LA%20PUBLICACIO%cc%81N.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/29565/5/Aplicaciones%20biotecnol%c3%b3gicas%20de%20las%20algas%20a%20nivel%20mundial%2c%20an%c3%a1lisis%20bibliom%c3%a9trico%201947-2022.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/29565/3/license.txt http://repository.unilibre.edu.co/bitstream/10901/29565/1/AUTORIZACIO%cc%81N%20PARA%20LA%20PUBLICACIO%cc%81N.pdf http://repository.unilibre.edu.co/bitstream/10901/29565/2/Aplicaciones%20biotecnol%c3%b3gicas%20de%20las%20algas%20a%20nivel%20mundial%2c%20an%c3%a1lisis%20bibliom%c3%a9trico%201947-2022.pdf |
bitstream.checksum.fl_str_mv |
1c724c3f72adc553a6d5636cf294a1d3 1bec3d0f11b1bf0acd995a1e8dfdf8ff 8a4605be74aa9ea9d79846c1fba20a33 c849ceed289314a72668319bb1621ca8 15d0a39948ebe29dd2ea5e619d6025a3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Unilibre |
repository.mail.fl_str_mv |
repositorio@unilibrebog.edu.co |
_version_ |
1814090593772503040 |
spelling |
Alvarez Aldana, AdalucyGaviria, DuverneyLondoño Giraldo, Lina MAbril Torres, Karen DanielaPereira2024-07-25T21:11:21Z2024-07-25T21:11:21Z2024-06-12https://hdl.handle.net/10901/29565Se construyó una base de datos bibliográfica con 5.012 documentos extraídos de Scopus, la cual rastrea el surgimiento y la evolución en la investigación de las aplicaciones biotecnológicas de las algas desde el año 1947 hasta el 2022 alrededor del mundo. Este documento proporciona una revisión actualizada de los datos más relevantes en cuanto a autores, países, revistas, instituciones y artículos, mediante el uso de los softwares Bibliometrix y VOSviewer. Además, se identifican las principales corrientes de investigación de las aplicaciones biotecnológicas de las algas, resaltando su importancia en diferentes disciplinas.Universidad Libre Seccional Pereira -- Facultad de Ciencias de la Salud, Exactas y Naturales -- MicrobiologíaA bibliographic database was constructed with 5,012 documents extracted from the Scopus database, which tracks the emergence and evolution of research on the biotechnological applications of algae from 1947 to 2022 around the world. This paper provides an updated review of the most relevant data in terms of authors, countries, journals, institutions, and articles, using Bibliometrix and VOSviewer software. In addition, the main currents of research on the biotechnological applications of algae are identified, highlighting their importance in different disciplines.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Algas marinasBiotecnologíaInvestigaciónBibliometríaSeaweedBiotechnologyResearchBibliometricsAplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022Tesis de Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975.Baghel, R. S., Trivedi, N., Gupta, V., Neori, A., Reddy, C. R. K., Lali, A., & Jha, B. (2015). Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chemistry, 17(4), 2436–2443. https://doi.org/10.1039/c4gc02532fBailey, S. E., Olin, T. J., Mark Bricka, R., & Dean Adrian, D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479.Batista González, A. E., Charles, M. B., Mancini-Filho, J., & Vidal Novoa, A. (2009). Seaweeds as sources of antioxidant phytomedicines. Revista Cubana de Plantas Medicinales, 14(2), 1–18.Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012Bwapwa, J. K., Jaiyeola, A. T., & Chetty, R. (2017). Bioremediation of acid mine drainage using algae strains: A review. South African Journal of Chemical Engineering, 24(June), 62–70. https://doi.org/10.1016/j.sajce.2017.06.005Castejón, N., Thorarinsdottir, K. A., Einarsdóttir, R., Kristbergsson, K., & Marteinsdóttir, G. (2021). Exploring the potential of icelandic seaweeds extracts produced by aqueous pulsed electric fields-assisted extraction for cosmetic applications. Marine Drugs, 19(12). https://doi.org/10.3390/md19120662Connor, J. O., Meaney, S., Williams, G. A., & Hayes, M. (2020). Extraction of Protein from Four Di ff erent Seaweeds Using Three Di ff erent Physical. Molecules, 25, 1–11.Cozzolino, E., Di Mola, I., Ottaiano, L., Nocerino, S., Sifola, M. I., El-Nakhel, C., Rouphael, Y., & Mori, M. (2021). Can seaweed extract improve yield and quality of brewing barley subjected to different levels of nitrogen fertilization? Agronomy, 11(12), 1–15. https://doi.org/10.3390/agronomy11122481De Jesus Raposo, M. F., De Morais, A. M. B., & De Morais, R. M. S. C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs, 13(5), 2967–3028. https://doi.org/10.3390/md13052967Dittami, S. M., Heesch, S., Olsen, J. L., & Collén, J. (2017). Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. International Journal of Laboratory Hematology, 53(4), 731–745. https://doi.org/10.1111/ijlh.12426Duarte, B., Carreiras, J., Feijão, E., de Carvalho, R. C., Matos, A. R., Fonseca, V. F., Novais, S. C., & Lemos, M. F. L. (2021). Potential of asparagopsis armata as a biopesticide for weed control under an invasive seaweed circular-economy framework. Biology, 10(12). https://doi.org/10.3390/biology10121321Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152. https://doi.org/https://doi.org/10.1007/s11192-006-0144-7Fleitas Ramírez, P., Rodríguez Rodríguez, E. M., & Rodríguez Galdón, B. (2019). Algas En La Alimentación Humana Trabajo De Fin De Máster. Universidad de La Laguna.Gomez Zavaglia, A., Prieto Lage, M. A., Jimenez Lopez, C., Mejuto, J. C., & Simal Gandara, J. (2019). The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants, 8(9). https://doi.org/10.3390/antiox8090406Gouveia, L., Raymundo, A., Batista, A. P., Sousa, I., & Empis, J. (2006). Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 222(3–4), 362–367. https://doi.org/10.1007/s00217-005-0105-zGuiry, M. D. (2012). How many species of algae are there? Journal of Phycology, 48(5), 1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.xHirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.Hu, Z., Zheng, Y., Yan, F., Xiao, B., & Liu, S. (2013). Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization. Energy, 52, 119–125. https://doi.org/10.1016/j.energy.2013.01.059Janssens, J. C. A., Steenackers, H., Robijns, S., Gellens, E., Levin, J., Zhao, H., Hermans, K., De Coster, D., Verhoeven, T. L., Marchal, K., Vanderleyden, J., De Vos, D. E., & De Keersmaecker, S. C. J. (2008). Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Applied and Environmental Microbiology, 74(21), 6639–6648. https://doi.org/10.1128/AEM.01262-08Jun, J. Y., Jung, M. J., Jeong, I. H., Yamazaki, K., Kawai, Y., & Kim, B. M. (2018). Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Marine Drugs, 16(9). https://doi.org/10.3390/md16090301López Padrón, I., Martínez González, L., Pérez Domínguez, G., Reyes Guerrero, Y., Núñez Vázquez, M., & Cabrera Rodríguez, J. A. (2020). Las algas y sus usos en la agricultura. Una visión actualizada. Cultivos Tropicales, 41(2), 10.Omar, Hanan H, Dighriri, K. A., & Gashgary, R. M. (2019). The Benefit Roles of Micro-and Macro-Algae in Probiotics. Nature and Science, 17(11), 258–279. https://doi.org/10.7537/marsnsj171119.33.KeywordsOmar, Hanan Hafez, Al-Judaibiand, A., & El-Gendy, A. (2018). Antimicrobial, antioxidant, anticancer activity and phytochemical analysis of the red alga, laurencia papillosa. International Journal of Pharmacology, 14(4), 572–583. https://doi.org/10.3923/ijp.2018.572.583Patel, A. K., Choi, Y. Y., & Sim, S. J. (2020). Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresource Technology, 300(November 2019), 122741. https://doi.org/10.1016/j.biortech.2020.122741Patel, A. K., Singhania, R. R., Awasthi, M. K., Varjani, S., Bhatia, S. K., Tsai, M. L., Hsieh, S. L., Chen, C. W., & Dong, C. Di. (2021). Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Factories, 20(1), 1–16. https://doi.org/10.1186/s12934-021-01601-7PEREA, L. N., GAVIRIA, D., & REDONDO, M. I. (2020). Bioeconomy: bibliometric analysis from 2006 to 2019. Revista Espacios, 41(45), 10–28. https://doi.org/10.48082/espacios-a20v41n43p02Perianes-Rodriguez, A., Waltman, L., & Van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195.Sudhakar, K., Mamat, R., Samykano, M., Azmi, W. H., Ishak, W. F. W., & Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews, 91(November 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100Vicente, T. F. L., Lemos, M. F. L., Félix, R., Valentão, P., & Félix, C. (2021). Marine macroalgae, a source of natural inhibitors of fungal phytopathogens. Journal of Fungi, 7(12). https://doi.org/10.3390/jof7121006Villarruel-López, A., Ascencio, F., & Nunõ, K. (2017). Microalgae, a Potential Natural Functional Food Source- A Review. Polish Journal of Food and Nutrition Sciences, 67(4), 251–263. https://doi.org/10.1515/pjfns-2017-0017Wang, H. M. D., Chen, C. C., Huynh, P., & Chang, J. S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355–362. https://doi.org/10.1016/j.biortech.2014.12.001Williams, T. I., Edgington, S., Owen, A., & Gange, A. C. (2021). Evaluating the use of seaweed extracts against root knot nematodes: A meta-analytic approach. Applied Soil Ecology, 168(July), 104170. https://doi.org/10.1016/j.apsoil.2021.104170THUMBNAILAUTORIZACIÓN PARA LA PUBLICACIÓN.pdf.jpgAUTORIZACIÓN PARA LA PUBLICACIÓN.pdf.jpgIM Thumbnailimage/jpeg24342http://repository.unilibre.edu.co/bitstream/10901/29565/4/AUTORIZACIO%cc%81N%20PARA%20LA%20PUBLICACIO%cc%81N.pdf.jpg1c724c3f72adc553a6d5636cf294a1d3MD54Aplicaciones biotecnológicas de las algas a nivel mundial, análisis bibliométrico 1947-2022.pdf.jpgAplicaciones biotecnológicas de las algas a nivel mundial, análisis bibliométrico 1947-2022.pdf.jpgIM Thumbnailimage/jpeg19179http://repository.unilibre.edu.co/bitstream/10901/29565/5/Aplicaciones%20biotecnol%c3%b3gicas%20de%20las%20algas%20a%20nivel%20mundial%2c%20an%c3%a1lisis%20bibliom%c3%a9trico%201947-2022.pdf.jpg1bec3d0f11b1bf0acd995a1e8dfdf8ffMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/29565/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALAUTORIZACIÓN PARA LA PUBLICACIÓN.pdfAUTORIZACIÓN PARA LA PUBLICACIÓN.pdfapplication/pdf1331885http://repository.unilibre.edu.co/bitstream/10901/29565/1/AUTORIZACIO%cc%81N%20PARA%20LA%20PUBLICACIO%cc%81N.pdfc849ceed289314a72668319bb1621ca8MD51Aplicaciones biotecnológicas de las algas a nivel mundial, análisis bibliométrico 1947-2022.pdfAplicaciones biotecnológicas de las algas a nivel mundial, análisis bibliométrico 1947-2022.pdfapplication/pdf1301265http://repository.unilibre.edu.co/bitstream/10901/29565/2/Aplicaciones%20biotecnol%c3%b3gicas%20de%20las%20algas%20a%20nivel%20mundial%2c%20an%c3%a1lisis%20bibliom%c3%a9trico%201947-2022.pdf15d0a39948ebe29dd2ea5e619d6025a3MD5210901/29565oai:repository.unilibre.edu.co:10901/295652024-08-06 06:01:54.539Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |