Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022

Se construyó una base de datos bibliográfica con 5.012 documentos extraídos de Scopus, la cual rastrea el surgimiento y la evolución en la investigación de las aplicaciones biotecnológicas de las algas desde el año 1947 hasta el 2022 alrededor del mundo. Este documento proporciona una revisión actua...

Full description

Autores:
Abril Torres, Karen Daniela
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Libre
Repositorio:
RIU - Repositorio Institucional UniLibre
Idioma:
OAI Identifier:
oai:repository.unilibre.edu.co:10901/29565
Acceso en línea:
https://hdl.handle.net/10901/29565
Palabra clave:
Algas marinas
Biotecnología
Investigación
Bibliometría
Seaweed
Biotechnology
Research
Bibliometrics
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id RULIBRE2_6c47759b82bf8fb91ff94e8756ed41bc
oai_identifier_str oai:repository.unilibre.edu.co:10901/29565
network_acronym_str RULIBRE2
network_name_str RIU - Repositorio Institucional UniLibre
repository_id_str
dc.title.spa.fl_str_mv Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022
title Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022
spellingShingle Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022
Algas marinas
Biotecnología
Investigación
Bibliometría
Seaweed
Biotechnology
Research
Bibliometrics
title_short Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022
title_full Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022
title_fullStr Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022
title_full_unstemmed Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022
title_sort Aplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022
dc.creator.fl_str_mv Abril Torres, Karen Daniela
dc.contributor.advisor.none.fl_str_mv Alvarez Aldana, Adalucy
Gaviria, Duverney
Londoño Giraldo, Lina M
dc.contributor.author.none.fl_str_mv Abril Torres, Karen Daniela
dc.subject.spa.fl_str_mv Algas marinas
Biotecnología
Investigación
Bibliometría
topic Algas marinas
Biotecnología
Investigación
Bibliometría
Seaweed
Biotechnology
Research
Bibliometrics
dc.subject.subjectenglish.spa.fl_str_mv Seaweed
Biotechnology
Research
Bibliometrics
description Se construyó una base de datos bibliográfica con 5.012 documentos extraídos de Scopus, la cual rastrea el surgimiento y la evolución en la investigación de las aplicaciones biotecnológicas de las algas desde el año 1947 hasta el 2022 alrededor del mundo. Este documento proporciona una revisión actualizada de los datos más relevantes en cuanto a autores, países, revistas, instituciones y artículos, mediante el uso de los softwares Bibliometrix y VOSviewer. Además, se identifican las principales corrientes de investigación de las aplicaciones biotecnológicas de las algas, resaltando su importancia en diferentes disciplinas.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-25T21:11:21Z
dc.date.available.none.fl_str_mv 2024-07-25T21:11:21Z
dc.date.created.none.fl_str_mv 2024-06-12
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis de Pregrado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10901/29565
url https://hdl.handle.net/10901/29565
dc.relation.references.spa.fl_str_mv Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975.
Baghel, R. S., Trivedi, N., Gupta, V., Neori, A., Reddy, C. R. K., Lali, A., & Jha, B. (2015). Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chemistry, 17(4), 2436–2443. https://doi.org/10.1039/c4gc02532f
Bailey, S. E., Olin, T. J., Mark Bricka, R., & Dean Adrian, D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479.
Batista González, A. E., Charles, M. B., Mancini-Filho, J., & Vidal Novoa, A. (2009). Seaweeds as sources of antioxidant phytomedicines. Revista Cubana de Plantas Medicinales, 14(2), 1–18.
Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012
Bwapwa, J. K., Jaiyeola, A. T., & Chetty, R. (2017). Bioremediation of acid mine drainage using algae strains: A review. South African Journal of Chemical Engineering, 24(June), 62–70. https://doi.org/10.1016/j.sajce.2017.06.005
Castejón, N., Thorarinsdottir, K. A., Einarsdóttir, R., Kristbergsson, K., & Marteinsdóttir, G. (2021). Exploring the potential of icelandic seaweeds extracts produced by aqueous pulsed electric fields-assisted extraction for cosmetic applications. Marine Drugs, 19(12). https://doi.org/10.3390/md19120662
Connor, J. O., Meaney, S., Williams, G. A., & Hayes, M. (2020). Extraction of Protein from Four Di ff erent Seaweeds Using Three Di ff erent Physical. Molecules, 25, 1–11.
Cozzolino, E., Di Mola, I., Ottaiano, L., Nocerino, S., Sifola, M. I., El-Nakhel, C., Rouphael, Y., & Mori, M. (2021). Can seaweed extract improve yield and quality of brewing barley subjected to different levels of nitrogen fertilization? Agronomy, 11(12), 1–15. https://doi.org/10.3390/agronomy11122481
De Jesus Raposo, M. F., De Morais, A. M. B., & De Morais, R. M. S. C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs, 13(5), 2967–3028. https://doi.org/10.3390/md13052967
Dittami, S. M., Heesch, S., Olsen, J. L., & Collén, J. (2017). Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. International Journal of Laboratory Hematology, 53(4), 731–745. https://doi.org/10.1111/ijlh.12426
Duarte, B., Carreiras, J., Feijão, E., de Carvalho, R. C., Matos, A. R., Fonseca, V. F., Novais, S. C., & Lemos, M. F. L. (2021). Potential of asparagopsis armata as a biopesticide for weed control under an invasive seaweed circular-economy framework. Biology, 10(12). https://doi.org/10.3390/biology10121321
Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152. https://doi.org/https://doi.org/10.1007/s11192-006-0144-7
Fleitas Ramírez, P., Rodríguez Rodríguez, E. M., & Rodríguez Galdón, B. (2019). Algas En La Alimentación Humana Trabajo De Fin De Máster. Universidad de La Laguna.
Gomez Zavaglia, A., Prieto Lage, M. A., Jimenez Lopez, C., Mejuto, J. C., & Simal Gandara, J. (2019). The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants, 8(9). https://doi.org/10.3390/antiox8090406
Gouveia, L., Raymundo, A., Batista, A. P., Sousa, I., & Empis, J. (2006). Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 222(3–4), 362–367. https://doi.org/10.1007/s00217-005-0105-z
Guiry, M. D. (2012). How many species of algae are there? Journal of Phycology, 48(5), 1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.x
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.
Hu, Z., Zheng, Y., Yan, F., Xiao, B., & Liu, S. (2013). Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization. Energy, 52, 119–125. https://doi.org/10.1016/j.energy.2013.01.059
Janssens, J. C. A., Steenackers, H., Robijns, S., Gellens, E., Levin, J., Zhao, H., Hermans, K., De Coster, D., Verhoeven, T. L., Marchal, K., Vanderleyden, J., De Vos, D. E., & De Keersmaecker, S. C. J. (2008). Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Applied and Environmental Microbiology, 74(21), 6639–6648. https://doi.org/10.1128/AEM.01262-08
Jun, J. Y., Jung, M. J., Jeong, I. H., Yamazaki, K., Kawai, Y., & Kim, B. M. (2018). Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Marine Drugs, 16(9). https://doi.org/10.3390/md16090301
López Padrón, I., Martínez González, L., Pérez Domínguez, G., Reyes Guerrero, Y., Núñez Vázquez, M., & Cabrera Rodríguez, J. A. (2020). Las algas y sus usos en la agricultura. Una visión actualizada. Cultivos Tropicales, 41(2), 10.
Omar, Hanan H, Dighriri, K. A., & Gashgary, R. M. (2019). The Benefit Roles of Micro-and Macro-Algae in Probiotics. Nature and Science, 17(11), 258–279. https://doi.org/10.7537/marsnsj171119.33.Keywords
Omar, Hanan Hafez, Al-Judaibiand, A., & El-Gendy, A. (2018). Antimicrobial, antioxidant, anticancer activity and phytochemical analysis of the red alga, laurencia papillosa. International Journal of Pharmacology, 14(4), 572–583. https://doi.org/10.3923/ijp.2018.572.583
Patel, A. K., Choi, Y. Y., & Sim, S. J. (2020). Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresource Technology, 300(November 2019), 122741. https://doi.org/10.1016/j.biortech.2020.122741
Patel, A. K., Singhania, R. R., Awasthi, M. K., Varjani, S., Bhatia, S. K., Tsai, M. L., Hsieh, S. L., Chen, C. W., & Dong, C. Di. (2021). Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Factories, 20(1), 1–16. https://doi.org/10.1186/s12934-021-01601-7
PEREA, L. N., GAVIRIA, D., & REDONDO, M. I. (2020). Bioeconomy: bibliometric analysis from 2006 to 2019. Revista Espacios, 41(45), 10–28. https://doi.org/10.48082/espacios-a20v41n43p02
Perianes-Rodriguez, A., Waltman, L., & Van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195.
Sudhakar, K., Mamat, R., Samykano, M., Azmi, W. H., Ishak, W. F. W., & Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews, 91(November 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100
Vicente, T. F. L., Lemos, M. F. L., Félix, R., Valentão, P., & Félix, C. (2021). Marine macroalgae, a source of natural inhibitors of fungal phytopathogens. Journal of Fungi, 7(12). https://doi.org/10.3390/jof7121006
Villarruel-López, A., Ascencio, F., & Nunõ, K. (2017). Microalgae, a Potential Natural Functional Food Source- A Review. Polish Journal of Food and Nutrition Sciences, 67(4), 251–263. https://doi.org/10.1515/pjfns-2017-0017
Wang, H. M. D., Chen, C. C., Huynh, P., & Chang, J. S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355–362. https://doi.org/10.1016/j.biortech.2014.12.001
Williams, T. I., Edgington, S., Owen, A., & Gange, A. C. (2021). Evaluating the use of seaweed extracts against root knot nematodes: A meta-analytic approach. Applied Soil Ecology, 168(July), 104170. https://doi.org/10.1016/j.apsoil.2021.104170
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv PDF
dc.coverage.spatial.spa.fl_str_mv Pereira
institution Universidad Libre
bitstream.url.fl_str_mv http://repository.unilibre.edu.co/bitstream/10901/29565/3/license.txt
http://repository.unilibre.edu.co/bitstream/10901/29565/1/AUTORIZACIO%cc%81N%20PARA%20LA%20PUBLICACIO%cc%81N.pdf
http://repository.unilibre.edu.co/bitstream/10901/29565/2/Aplicaciones%20biotecnol%c3%b3gicas%20de%20las%20algas%20a%20nivel%20mundial%2c%20an%c3%a1lisis%20bibliom%c3%a9trico%201947-2022.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
c849ceed289314a72668319bb1621ca8
15d0a39948ebe29dd2ea5e619d6025a3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Unilibre
repository.mail.fl_str_mv repositorio@unilibrebog.edu.co
_version_ 1807060640929415168
spelling Alvarez Aldana, AdalucyGaviria, DuverneyLondoño Giraldo, Lina MAbril Torres, Karen DanielaPereira2024-07-25T21:11:21Z2024-07-25T21:11:21Z2024-06-12https://hdl.handle.net/10901/29565Se construyó una base de datos bibliográfica con 5.012 documentos extraídos de Scopus, la cual rastrea el surgimiento y la evolución en la investigación de las aplicaciones biotecnológicas de las algas desde el año 1947 hasta el 2022 alrededor del mundo. Este documento proporciona una revisión actualizada de los datos más relevantes en cuanto a autores, países, revistas, instituciones y artículos, mediante el uso de los softwares Bibliometrix y VOSviewer. Además, se identifican las principales corrientes de investigación de las aplicaciones biotecnológicas de las algas, resaltando su importancia en diferentes disciplinas.Universidad Libre Seccional Pereira -- Facultad de Ciencias de la Salud, Exactas y Naturales -- MicrobiologíaA bibliographic database was constructed with 5,012 documents extracted from the Scopus database, which tracks the emergence and evolution of research on the biotechnological applications of algae from 1947 to 2022 around the world. This paper provides an updated review of the most relevant data in terms of authors, countries, journals, institutions, and articles, using Bibliometrix and VOSviewer software. In addition, the main currents of research on the biotechnological applications of algae are identified, highlighting their importance in different disciplines.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Algas marinasBiotecnologíaInvestigaciónBibliometríaSeaweedBiotechnologyResearchBibliometricsAplicaciones biotecnológicas de las algas a nivel mundial: análisis bibliométrico 1947-2022Tesis de Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975.Baghel, R. S., Trivedi, N., Gupta, V., Neori, A., Reddy, C. R. K., Lali, A., & Jha, B. (2015). Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chemistry, 17(4), 2436–2443. https://doi.org/10.1039/c4gc02532fBailey, S. E., Olin, T. J., Mark Bricka, R., & Dean Adrian, D. (1999). A review of potentially low-cost sorbents for heavy metals. Water Research, 33(11), 2469–2479.Batista González, A. E., Charles, M. B., Mancini-Filho, J., & Vidal Novoa, A. (2009). Seaweeds as sources of antioxidant phytomedicines. Revista Cubana de Plantas Medicinales, 14(2), 1–18.Battacharyya, D., Babgohari, M. Z., Rathor, P., & Prithiviraj, B. (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae, 196, 39–48. https://doi.org/10.1016/j.scienta.2015.09.012Bwapwa, J. K., Jaiyeola, A. T., & Chetty, R. (2017). Bioremediation of acid mine drainage using algae strains: A review. South African Journal of Chemical Engineering, 24(June), 62–70. https://doi.org/10.1016/j.sajce.2017.06.005Castejón, N., Thorarinsdottir, K. A., Einarsdóttir, R., Kristbergsson, K., & Marteinsdóttir, G. (2021). Exploring the potential of icelandic seaweeds extracts produced by aqueous pulsed electric fields-assisted extraction for cosmetic applications. Marine Drugs, 19(12). https://doi.org/10.3390/md19120662Connor, J. O., Meaney, S., Williams, G. A., & Hayes, M. (2020). Extraction of Protein from Four Di ff erent Seaweeds Using Three Di ff erent Physical. Molecules, 25, 1–11.Cozzolino, E., Di Mola, I., Ottaiano, L., Nocerino, S., Sifola, M. I., El-Nakhel, C., Rouphael, Y., & Mori, M. (2021). Can seaweed extract improve yield and quality of brewing barley subjected to different levels of nitrogen fertilization? Agronomy, 11(12), 1–15. https://doi.org/10.3390/agronomy11122481De Jesus Raposo, M. F., De Morais, A. M. B., & De Morais, R. M. S. C. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs, 13(5), 2967–3028. https://doi.org/10.3390/md13052967Dittami, S. M., Heesch, S., Olsen, J. L., & Collén, J. (2017). Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. International Journal of Laboratory Hematology, 53(4), 731–745. https://doi.org/10.1111/ijlh.12426Duarte, B., Carreiras, J., Feijão, E., de Carvalho, R. C., Matos, A. R., Fonseca, V. F., Novais, S. C., & Lemos, M. F. L. (2021). Potential of asparagopsis armata as a biopesticide for weed control under an invasive seaweed circular-economy framework. Biology, 10(12). https://doi.org/10.3390/biology10121321Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152. https://doi.org/https://doi.org/10.1007/s11192-006-0144-7Fleitas Ramírez, P., Rodríguez Rodríguez, E. M., & Rodríguez Galdón, B. (2019). Algas En La Alimentación Humana Trabajo De Fin De Máster. Universidad de La Laguna.Gomez Zavaglia, A., Prieto Lage, M. A., Jimenez Lopez, C., Mejuto, J. C., & Simal Gandara, J. (2019). The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants, 8(9). https://doi.org/10.3390/antiox8090406Gouveia, L., Raymundo, A., Batista, A. P., Sousa, I., & Empis, J. (2006). Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 222(3–4), 362–367. https://doi.org/10.1007/s00217-005-0105-zGuiry, M. D. (2012). How many species of algae are there? Journal of Phycology, 48(5), 1057–1063. https://doi.org/10.1111/j.1529-8817.2012.01222.xHirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102(46), 16569–16572.Hu, Z., Zheng, Y., Yan, F., Xiao, B., & Liu, S. (2013). Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization. Energy, 52, 119–125. https://doi.org/10.1016/j.energy.2013.01.059Janssens, J. C. A., Steenackers, H., Robijns, S., Gellens, E., Levin, J., Zhao, H., Hermans, K., De Coster, D., Verhoeven, T. L., Marchal, K., Vanderleyden, J., De Vos, D. E., & De Keersmaecker, S. C. J. (2008). Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Applied and Environmental Microbiology, 74(21), 6639–6648. https://doi.org/10.1128/AEM.01262-08Jun, J. Y., Jung, M. J., Jeong, I. H., Yamazaki, K., Kawai, Y., & Kim, B. M. (2018). Antimicrobial and antibiofilm activities of sulfated polysaccharides from marine algae against dental plaque bacteria. Marine Drugs, 16(9). https://doi.org/10.3390/md16090301López Padrón, I., Martínez González, L., Pérez Domínguez, G., Reyes Guerrero, Y., Núñez Vázquez, M., & Cabrera Rodríguez, J. A. (2020). Las algas y sus usos en la agricultura. Una visión actualizada. Cultivos Tropicales, 41(2), 10.Omar, Hanan H, Dighriri, K. A., & Gashgary, R. M. (2019). The Benefit Roles of Micro-and Macro-Algae in Probiotics. Nature and Science, 17(11), 258–279. https://doi.org/10.7537/marsnsj171119.33.KeywordsOmar, Hanan Hafez, Al-Judaibiand, A., & El-Gendy, A. (2018). Antimicrobial, antioxidant, anticancer activity and phytochemical analysis of the red alga, laurencia papillosa. International Journal of Pharmacology, 14(4), 572–583. https://doi.org/10.3923/ijp.2018.572.583Patel, A. K., Choi, Y. Y., & Sim, S. J. (2020). Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Bioresource Technology, 300(November 2019), 122741. https://doi.org/10.1016/j.biortech.2020.122741Patel, A. K., Singhania, R. R., Awasthi, M. K., Varjani, S., Bhatia, S. K., Tsai, M. L., Hsieh, S. L., Chen, C. W., & Dong, C. Di. (2021). Emerging prospects of macro- and microalgae as prebiotic. Microbial Cell Factories, 20(1), 1–16. https://doi.org/10.1186/s12934-021-01601-7PEREA, L. N., GAVIRIA, D., & REDONDO, M. I. (2020). Bioeconomy: bibliometric analysis from 2006 to 2019. Revista Espacios, 41(45), 10–28. https://doi.org/10.48082/espacios-a20v41n43p02Perianes-Rodriguez, A., Waltman, L., & Van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195.Sudhakar, K., Mamat, R., Samykano, M., Azmi, W. H., Ishak, W. F. W., & Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews, 91(November 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100Vicente, T. F. L., Lemos, M. F. L., Félix, R., Valentão, P., & Félix, C. (2021). Marine macroalgae, a source of natural inhibitors of fungal phytopathogens. Journal of Fungi, 7(12). https://doi.org/10.3390/jof7121006Villarruel-López, A., Ascencio, F., & Nunõ, K. (2017). Microalgae, a Potential Natural Functional Food Source- A Review. Polish Journal of Food and Nutrition Sciences, 67(4), 251–263. https://doi.org/10.1515/pjfns-2017-0017Wang, H. M. D., Chen, C. C., Huynh, P., & Chang, J. S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355–362. https://doi.org/10.1016/j.biortech.2014.12.001Williams, T. I., Edgington, S., Owen, A., & Gange, A. C. (2021). Evaluating the use of seaweed extracts against root knot nematodes: A meta-analytic approach. Applied Soil Ecology, 168(July), 104170. https://doi.org/10.1016/j.apsoil.2021.104170LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/29565/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALAUTORIZACIÓN PARA LA PUBLICACIÓN.pdfAUTORIZACIÓN PARA LA PUBLICACIÓN.pdfapplication/pdf1331885http://repository.unilibre.edu.co/bitstream/10901/29565/1/AUTORIZACIO%cc%81N%20PARA%20LA%20PUBLICACIO%cc%81N.pdfc849ceed289314a72668319bb1621ca8MD51Aplicaciones biotecnológicas de las algas a nivel mundial, análisis bibliométrico 1947-2022.pdfAplicaciones biotecnológicas de las algas a nivel mundial, análisis bibliométrico 1947-2022.pdfapplication/pdf1301265http://repository.unilibre.edu.co/bitstream/10901/29565/2/Aplicaciones%20biotecnol%c3%b3gicas%20de%20las%20algas%20a%20nivel%20mundial%2c%20an%c3%a1lisis%20bibliom%c3%a9trico%201947-2022.pdf15d0a39948ebe29dd2ea5e619d6025a3MD5210901/29565oai:repository.unilibre.edu.co:10901/295652024-07-25 16:11:21.665Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=