Obtención de biocombustible a través de co-pirólisis rápida de biomasa de eucalipto y palma
En la búsqueda de alternativas energéticas sustentables y menos contaminantes, el uso de la biomasa lignocelulósica ha cobrado gran importancia, ya que no sólo es renovable, sino que se encuentra en grandes cantidades; el uso de eucalipto – palma en la obtención de biocombustibles se lleva a cabo a...
- Autores:
-
Melo Romero, Daniela Alejandra
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Libre
- Repositorio:
- RIU - Repositorio Institucional UniLibre
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unilibre.edu.co:10901/19807
- Acceso en línea:
- https://hdl.handle.net/10901/19807
- Palabra clave:
- Biocombustible
Pirólisis
Biomasa
Biofuel
Pyrolysis
Biomass
Energía biomásica
Combustibles vegetales
Gestión ambiental
Evaluación del impacto ambiental
Desarrollo sostenible -- Aspectos ambientales -- Colombia
Conversión de energía
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
RULIBRE2_63cc8a179711e278ba418b2d2a5a26d9 |
---|---|
oai_identifier_str |
oai:repository.unilibre.edu.co:10901/19807 |
network_acronym_str |
RULIBRE2 |
network_name_str |
RIU - Repositorio Institucional UniLibre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Obtención de biocombustible a través de co-pirólisis rápida de biomasa de eucalipto y palma |
title |
Obtención de biocombustible a través de co-pirólisis rápida de biomasa de eucalipto y palma |
spellingShingle |
Obtención de biocombustible a través de co-pirólisis rápida de biomasa de eucalipto y palma Biocombustible Pirólisis Biomasa Biofuel Pyrolysis Biomass Energía biomásica Combustibles vegetales Gestión ambiental Evaluación del impacto ambiental Desarrollo sostenible -- Aspectos ambientales -- Colombia Conversión de energía |
title_short |
Obtención de biocombustible a través de co-pirólisis rápida de biomasa de eucalipto y palma |
title_full |
Obtención de biocombustible a través de co-pirólisis rápida de biomasa de eucalipto y palma |
title_fullStr |
Obtención de biocombustible a través de co-pirólisis rápida de biomasa de eucalipto y palma |
title_full_unstemmed |
Obtención de biocombustible a través de co-pirólisis rápida de biomasa de eucalipto y palma |
title_sort |
Obtención de biocombustible a través de co-pirólisis rápida de biomasa de eucalipto y palma |
dc.creator.fl_str_mv |
Melo Romero, Daniela Alejandra |
dc.contributor.advisor.none.fl_str_mv |
Navarrete Rodríguez, Luisa Fernanda |
dc.contributor.author.none.fl_str_mv |
Melo Romero, Daniela Alejandra |
dc.subject.spa.fl_str_mv |
Biocombustible Pirólisis Biomasa |
topic |
Biocombustible Pirólisis Biomasa Biofuel Pyrolysis Biomass Energía biomásica Combustibles vegetales Gestión ambiental Evaluación del impacto ambiental Desarrollo sostenible -- Aspectos ambientales -- Colombia Conversión de energía |
dc.subject.subjectenglish.spa.fl_str_mv |
Biofuel Pyrolysis Biomass |
dc.subject.lemb.spa.fl_str_mv |
Energía biomásica Combustibles vegetales Gestión ambiental Evaluación del impacto ambiental Desarrollo sostenible -- Aspectos ambientales -- Colombia Conversión de energía |
description |
En la búsqueda de alternativas energéticas sustentables y menos contaminantes, el uso de la biomasa lignocelulósica ha cobrado gran importancia, ya que no sólo es renovable, sino que se encuentra en grandes cantidades; el uso de eucalipto – palma en la obtención de biocombustibles se lleva a cabo a través de co-pirólisis de en relación másica 50:50, contemplando temperatura y tiempo de contacto como variables de importancia en el proceso de transformación termoquímica. Los resultados obtenidos han permitido establecer el potencial energético que representa emplear dichas biomasas como materia prima renovable y más amigable con el medio ambiente. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-15T03:18:44Z |
dc.date.available.none.fl_str_mv |
2021-10-15T03:18:44Z |
dc.date.created.none.fl_str_mv |
2021 |
dc.type.local.spa.fl_str_mv |
Tesis de Pregrado |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10901/19807 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Libre |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Libre |
url |
https://hdl.handle.net/10901/19807 |
identifier_str_mv |
instname:Universidad Libre reponame:Repositorio Institucional Universidad Libre |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] DINCER, Ibrahim. Comprehensive Energy Systems. En: Fossil Fuels. vol.1, pp 521-567, 2018 [2] JOSHI, Girdhar. PANDEY, Jitendra. RANA, Sravendra. et al. Challenges and opportunities for the application of biofuel. En: Renewable and Sustainable Energy Reviews N° 79, pp 850-866, Oct.2017 [3] NINAWE, Gaurav. KIRAN, Seghal. SELVIN, Joseph. et al. Utilization of bioresources for sustainable biofuels: A Review. En: Renewable and Sustainable Energy Reviews N°73, pp 205-214, 2017 [4] QUISPE, Isabel. NAVIA, Rodrigo. KAHHAT Ramzy. Energy potential from rice husk through direct combustion and fast pyrolysis: A review. En: Waste Management N°59, pp 200-210, Sept, 2017 [5] DHYANI, Vaibhav. THALLADA, Bhaskar. A comprehensive review on the pyrolysis of lignocellulosic biomass En; Renewable Energy,vol. 129, pp 695-716. 2018 [6] ABNISA, Faisal. DAUD WMAW.A review on co-pyrolysis of biomass: An optional technique to obtain En; Energy Conversion and Management, vol. 87, pp 71- 85, Oct, 2014. [7] BASU. Prabi, “Biomass gasification, pyrolysis and torrefaction” chapter 1. Introduction, En; Elsevier Inc, 3rd Edition, Jun,2018. [8] BRIDGWATER, A.V. Review of fast pyrolysis of biomass and product upgrading, En; Biomass and Bioenergy., vol.38, pp 68-94, Marzo,2012. [9] KUMAR. Deepak, VINU. Ravikrishnan, Copyrolysis of Lignocellulosic Biomass with Waste Plastics for Resource Recovery, En Waste Biorefinery, pp 349-391, Ene, 2018 [10] CAI. Junmeng. HE. Yifeng, YU. Xi., et al. “Review of physicochemical properties and analytical characterization of lignocellulosic biomass. En: Renewable and Sustainable Energy Reviews., vol.76, pp, 309-322, Sept 2017 [11] FOLGUERAS, M.B. FERNÁNDEZ F.J.et al. Fast pyrolysis of Guadua angustifoliaKunt. En; Energy Procedia N°136, pp 60 – 65, Jul, 2017 [12] MESSINA. LIGurevich, BONELLI, P.R. Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion, En; Journal of Analytical and Applied Pyrolysis, vol. 113, pp 508-517, Marzo, 2015. [13] ONENC. Sermin, BREBU, Mihai, VASILE. Corneria, YANIK. Jale, Copyrolysis of scrap tires with oily wastes, En; Journal of Analytical and Applied Pyrolysis, vol. 27 94, pp, 184-189, 2012. [14] MARTINEZ. Juan, VECES. Alberto, MASTRAL. Ana, et al. Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel, En: Fuel processing Technology, vol.119, pp 263- 271, Feb, 2014. [15] REYES. Omar, REYES. Diego, Evaluación del proceso de pirolisis y co-pirolisis de cuesco de palma y neumáticos usados en una atmosfera de CO2, Bogotá, 2019, Trabajo de grado, Universidad Libre, Facultad de Ingeniería, 2019. [16] Ocampo-Durán. A, “La palma aceitera africana, un recurso de alto potencial para la producción animal en el trópico”, en línea, Disponible en: http://www.fao.org/3/v4440t/v4440t0g.htm [17] VEIRAS. Xosé, SOTO. Miguel Ángel, “La conflictividad de las plantaciones de eucalipto en España y Portugal” Greenpeace, en línea, disponible en: https://archivoes.greenpeace.org/espana/Global/espana/report/bosques/InformeEuca lipto2011.pdf [18] WOOD, Nathan. ROELICH, Katy. Tensions, capabilities, and justice in climate change mitigation of fossil fuels. Energy Research & Social Science, vol. 52, pag.114– 122, 2019. [19] X.Zhou, L.J. Broadbelt, R.Vinu, Chapter Two - Mechanistic Understanding of Thermochemical Conversion of Polymers and Lignocellulosic Biomass, Advances in Chemical Engineering, Vol. 49, Pág, 95-198, 2016. [20] AHMAD, Farah. ZHANG, Zhanying. DOHERTY, William. The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery. Renewable and Sustainable Energy Reviews, vol. 109, pag.386–411, 2019. [21] J. M. Rincón. E. E. Silva. Bioenergía: Fuentes, conversión y sustentabilidad. La Red Iberoamericana de Aprovechamiento de Residuos Orgánicos en Producción de Energía. Bogotá – Colombia, 2014 [22] DAI, Leilei. WANG, Yunpu, LIU, Yuhuan. Et al. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, vol. 107, pág. 20-36, 2019 [23] ABIOLA, Fakayode. ABOAGARIB, Elmuez, ZHOU, Cunshan, MA, Haile, Copyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar - A review, Bioresource Technology, 2019 [24] KAN, Tao. STREZOV, Vladimir. EVANS Tim. Lignocellulosic biomass pyrolylis: A review of product properties and effects of pyrolysis parameters. Renewable and 28 Sustainable Energy Reviews, vol. 57, pág. 1126-1140, 2016. [25] KUMAR, R. STREZOV, V. WELDEKIDAN, H. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of dropin fuels. Renewable and Sustainable Energy Reviews. Vol.123, 2020 [26] CHEN, Wei. CHEN, Yingquan. YANG, Haiping. Et al, Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. Bioresource Technology, 2017. [27] UZOEJINWA, Benjamin. HE, Xiuhua. WANGA, Shuang. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Conversion and Management, vol.163 pág. 468–492, 2018. [28] AHMED MJ, HAMEED BH, Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review, Journal of Cleaner Production, 2020 [29] PECHA, Brennan, GARCIA Manuel. Chapter 26 - Pyrolysis of Lignocellulosic, Biomass: Oil, Char, and Gas. Bioenergy, Biomass to biofuels, pág 413-442, 2015. [30] P. Basu, Biomass gasification, pyrolysis and torrefaction, chapter 3. Biomass characteristics, Elsevier Inc, 3rd Edition, 2018. [31] GARCÍA – NUÑEZ. Jesús, et al. Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling vol. 110, pp 99–114, 2016. [32] OREA-IGARZA. U, CORDERO MACHADO. E, et al. Estudio comparativo de la composición química de la corteza de tres especies de eucaliptos a tres alturas del fuste comercial, En: Revista redalyc, Dic. 2006 [33] SHURONG. Wang, et al. Lignocellulosic biomass pyrolysis mechanism: A stateof-the-art review. Progress in Energy and Combustion Science vol. 62, 2017 [34] BECERRA. Erika, Caracterización del desecho agroindustrial de la palma de aceite “cuesco” para el mejoramiento de las capas granulares de la estructura de pavimento, Bogotá, 2017, Especialista en ingeniería de pavimentos, Universidad Militar Nueva Granada. Facultad de Ingeniería – Dirección de Posgrados [35] MENDOZA. David, Residuos de palma africana purifican agua y aire, En; UN periódico, Nº. 177, (May. 2014) Universidad Nacional [36] FANIJO, Ebenezer. BABAFEMI, John. AROWOJOLU, Olaniyi. Performance of laterized concrete made with palm kernel shell as replacement for coarse aggregate, Construction and Building Materials, vol 250, 2020. [37] RINCÓN. Nelson, MORENO. Juan. Carlos, GIRALDO Liliana, Uso de semillas de eucalipto para descontaminar aguas residuales, núm.18, 2015, Universidad de los Andes, Facultad de Ciencias [38] CASAS, Yannay. DAZA, Karen. CEA, Juan. Et al, Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers, Journal of cleaner production, vol 249, 2020. [39] ADAK, Totan. BARIK, Nishant, PATIL, Naveenkumar. Nanoemulsion of eucalyptus oil: An alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice, Industrial Crops & Products, vol 143. 2020. [40] “La palma de aceite en Colombia” Fedepalma, en línea, Disponible en: http://web.fedepalma.org/la-palma-de-aceite-en-colombia-departamentos [41] Min de comercio Industria y Turismo, “Invierta en Colombia trabajo, compromiso, ingenio”,sep.2009, en línea, disponible en: https://www.inviertaencolombia.com.co/Adjuntos/089_Sector%20Forestal.pdf [42] Normatividad General de los Biocombustibles en Colombia, fedebiocombustibles, en línea, disponible en: http://www.fedebiocombustibles.com/v3/main-pagina-id29.htm [43] MÜLLER. Niels, TESSINI. Catherine, SEGURA. Cristina, et al, Pirólisis rápida de biomasa, En; Bioenergia & Biorrefinaria, (2013). pp.459-482 [44] MONTOYA. Jorge, CASTILLO. Edgar, ACERO. Julia, et al Pirólisis Rápida de Biomasa, Ecopetrol, Medellín, 2014, Universidad Nacional de Colombia [45] American Society for Testing and Materials, ASTM International, Estados Unidos: https://www.astm.org/ [46] VÁSQUEZ SIERRA. Erika, HERRERA Builes. Jhon Fredy, Metodología para la caracterización de combustibles sólidos maderables del área metropolitana del valle de Aburrá “amva”, Medellin Colombia, Vol. 59, núm. 2, 2015 Revista Facultad Nacional de Agronomía. [47] RINCÓN. Nelson, MORENO. Juan. Carlos, GIRALDO Liliana, Uso de semillas de eucalipto para descontaminar aguas residuales, núm.18, 2015, Universidad de los Andes, Facultad de Ciencias [48] CASAS, Yannay. DAZA, Karen. CEA, Juan. Et al, Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers, Journal of cleaner production, vol 249, 2020. [49] ADAK, Totan. BARIK, Nishant, PATIL, Naveenkumar. Nanoemulsion of 30 eucalyptus oil: An alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice, Industrial Crops & Products, vol 143. 2020. [50] “La palma de aceite en Colombia” Fedepalma, en línea, Disponible en: http://web.fedepalma.org/la-palma-de-aceite-en-colombia-departamentos [51] Min de comercio Industria y Turismo, “Invierta en Colombia trabajo, compromiso, ingenio”,sep.2009, en línea, disponible en: https://www.inviertaencolombia.com.co/Adjuntos/089_Sector%20Forestal.pdf [52] Normatividad General de los Biocombustibles en Colombia, fedebiocombustibles, en línea, disponible en: http://www.fedebiocombustibles.com/v3/main-pagina-id29.htm [53] MÜLLER. Niels, TESSINI. Catherine, SEGURA. Cristina, et al, Pirólisis rápida de biomasa, En; Bioenergia & Biorrefinaria, (2013). pp.459-482 [54] MONTOYA. Jorge, CASTILLO. Edgar, ACERO. Julia, et al Pirólisis Rápida de Biomasa, Ecopetrol, Medellín, 2014, Universidad Nacional de Colombia [55] American Society for Testing and Materials, ASTM International, Estados Unidos: https://www.astm.org/ [56] VÁSQUEZ SIERRA. Erika, HERRERA Builes. Jhon Fredy, Metodología para la caracterización de combustibles sólidos maderables del área metropolitana del valle de Aburrá “amva”, Medellin Colombia, Vol. 59, núm. 2, 2015 Revista Facultad Nacional de Agronomía. [57] ÁLVAREZ. Ana, PIZARRO. Consuelo, Belén. María, Caracterización química de biomasa y su relación con el poder calorífico, 2012, Universidad de Oviedo Dpto. de Energía. [58] AL-KASSIR. Raúl, Caracterización y preparación de residuos de biomasa con ensayos experimentales de secado térmico y combustión no contaminante,2013, Instituto Politécnico de Portoalegre. [59] Operating Instruction Manual, 1341 Oxygen Bomb Calorimeter, No. 204M [60] OCANHA, Enzo. ZINANI, Flávia. MODOLO, Regina. SANTOS, Fernando. Assesment of the effects of chemical and physical parameters in the fluidization of biomass and sand binary mixtures through statistical analysis, Energy. (2019) [61] MYTHILI, R. VENKATACHALAM, P. SUBRAMANIAN, D. Characterization of 31 bioresidues for biooil production through pyrolysis, Vol.138, Pag. 71-78, 2013. [62] SOH. Loh, Biocombustibles de segunda generación de la biomasa de palma de aceite, Palmas, vol.37 (Especial Tomo II), pp. 137-148, 2016 [63] NÚÑEZ, D. Uso de residuos agrícolas para la producción de biocombustibles en el Departamento del Meta. 2012 [64] FANTINI, M. Chapter 2 Biomass Availability, Potential and Characteristics, Biorefineries, pág. 21-54, 2017 [65] YUFU, X. XIANGUO, Hu. WENDONG, Li. YINYAN, Shi. Preparation and Characterization of Bio-Oil from Biomass, Progress in Biomass and Bioenergy Production, 2011. [66] VINICIUS, Silva. RODRIGUES, Thiago. ABREU-JUNIOR, Cassio. Et al. Influences of edaphoclimatic conditions on deep rooting and soil water availability in Brazilian Eucalyptus plantations, Forest Ecology and Management, vol. 455, (2020) [67] OJHA, D. Fast pyrolysis kinetics of lignocellulosic biomass of varying compositions, Energy Conversion and Management: X, 2021 [68] BERTERO, M. Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning, Fuel, vol 95, pp 263- 271, 2012 [69] KUMAR, R. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels, Renewable and Sustainable Energy Reviews, Vol. 123, 2020 [70] UZOEJINWA, B. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide, Energy Conversion and Management, vol. 163, pp 468-492, 2018 [71] FERREIRA, M. Generation of biofuels by slow pyrolysis of palm empty fruit bunches: Optimization of process variables and characterization of physical-chemical products, Biomass and Bioenergy, Vol.140, 2020 [72] Li, C. Interaction of the volatiles from co-pyrolysis of pig manure with cellulose/ glucose and their effects on char properties, Journal of Environmental Chemical Engineering, Vol. 8, 2020 [73] ZHANG, L. Comparative study on the two-step pyrolysis of different lignocellulosic biomass, Effects of components, Journal of Analytical and Applied Pyrolysis, 2020 [74] NGUYEN, Q. Improvement of bio-crude oil properties via co-pyrolysis of pine sawdust and waste polystyrene foam, Journal of Environmental Management, Vol, 237, pp 24-29, 2019 32 [75] SAKULKIT, P. Characteristics of pyrolysis products from pyrolysis and copyrolysis of rubber wood and oil palm trunk biomass for biofuel and value-added applications, Journal of Environmental Chemical Engineering, Vol. 8, 2020 [67] AL-MAARI, M. Co-pyrolysis of oil palm empty fruit bunch and oil palm frond with low-density polyethylene and polypropylene for bio-oil production, Arabian Journal of Chemistry, vol. 14, 2021 [66] ABDULLAH, N. Characterisation of Oil Palm Empty Fruit Bunches for Fuel Application, Journal of Physical Therapy Science, vol. 22, 2011 [68] LEAL, L. E., Juárez, V., Terán, M., Composición química de la madera de Eucalyptus grandis Hill ex Maiden, Revista de Ciencias Forestales [en linea] 2011, procedente de Finca Las Maravillas, Departamento de Orán, Salta. Quebracho [69] CHEN. Rongjie, LUN. Liyong, CONG. Kunlin, et al. Insights into pyrolysis and copyrolysis of tobacco stalk and scrap tire: Thermochemical behaviors, kinetics, and evolved gas analysis, Energy, vol. 183, pp. 25-34, 2019. [70] DA SILVA. Luis, ALMEIDA. Pedro, RIBEIRO. Carlos, An experimental assessment of Eucalyptus urosemente energy potential for bimass production in Brazil.Renewable and Sustainable Energy Reviews, vol.103, pp. 361-369, 2019 [71] POLLARD, A. Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties, Journal of Analytical and Applied Pyrolysis, Vol, 93, pp 129-138, 2012 [72]. DEWAYANTO, N. Use of palm oil decanter cake as a new substrate for the production of bio-oil by vacuum pyrolysis. Energy Conversion and Management, Vol. 86, pp 226-232, 2014 [73] BRIDGWATER, A.V. BRAMMER. J.G, The influence of feedstock drying on the performance and economics of a biomass gasifier-engine CHP system, Biomass & Bioenergy, vol.22, pp. 271-281, 200 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.license.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
PDF |
dc.coverage.spatial.spa.fl_str_mv |
Bogotá |
institution |
Universidad Libre |
bitstream.url.fl_str_mv |
http://repository.unilibre.edu.co/bitstream/10901/19807/4/TRABAJO%20DE%20GRADO%20DANIELA%20MELO.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/19807/5/AUTORIZACI%c3%93N%20TGIA.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/19807/3/license.txt http://repository.unilibre.edu.co/bitstream/10901/19807/1/TRABAJO%20DE%20GRADO%20DANIELA%20MELO.pdf http://repository.unilibre.edu.co/bitstream/10901/19807/2/AUTORIZACI%c3%93N%20TGIA.pdf |
bitstream.checksum.fl_str_mv |
43c1b672f97b5994cc81c14f217b6e52 29c105ac598e178924635f91243339d4 8a4605be74aa9ea9d79846c1fba20a33 3f20d0766a0e455b8eb80b0f99688edd 6384396a799d859fab6101a813689446 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Unilibre |
repository.mail.fl_str_mv |
repositorio@unilibrebog.edu.co |
_version_ |
1814090491994570752 |
spelling |
Navarrete Rodríguez, Luisa FernandaMelo Romero, Daniela AlejandraBogotá2021-10-15T03:18:44Z2021-10-15T03:18:44Z2021https://hdl.handle.net/10901/19807instname:Universidad Librereponame:Repositorio Institucional Universidad LibreEn la búsqueda de alternativas energéticas sustentables y menos contaminantes, el uso de la biomasa lignocelulósica ha cobrado gran importancia, ya que no sólo es renovable, sino que se encuentra en grandes cantidades; el uso de eucalipto – palma en la obtención de biocombustibles se lleva a cabo a través de co-pirólisis de en relación másica 50:50, contemplando temperatura y tiempo de contacto como variables de importancia en el proceso de transformación termoquímica. Los resultados obtenidos han permitido establecer el potencial energético que representa emplear dichas biomasas como materia prima renovable y más amigable con el medio ambiente.Universidad Libre - Facultad de Ingeniería - Ingeniería AmbientalPDFspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2BiocombustiblePirólisisBiomasaBiofuelPyrolysisBiomassEnergía biomásicaCombustibles vegetalesGestión ambientalEvaluación del impacto ambientalDesarrollo sostenible -- Aspectos ambientales -- ColombiaConversión de energíaObtención de biocombustible a través de co-pirólisis rápida de biomasa de eucalipto y palmaTesis de Pregradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesis[1] DINCER, Ibrahim. Comprehensive Energy Systems. En: Fossil Fuels. vol.1, pp 521-567, 2018[2] JOSHI, Girdhar. PANDEY, Jitendra. RANA, Sravendra. et al. Challenges and opportunities for the application of biofuel. En: Renewable and Sustainable Energy Reviews N° 79, pp 850-866, Oct.2017[3] NINAWE, Gaurav. KIRAN, Seghal. SELVIN, Joseph. et al. Utilization of bioresources for sustainable biofuels: A Review. En: Renewable and Sustainable Energy Reviews N°73, pp 205-214, 2017[4] QUISPE, Isabel. NAVIA, Rodrigo. KAHHAT Ramzy. Energy potential from rice husk through direct combustion and fast pyrolysis: A review. En: Waste Management N°59, pp 200-210, Sept, 2017[5] DHYANI, Vaibhav. THALLADA, Bhaskar. A comprehensive review on the pyrolysis of lignocellulosic biomass En; Renewable Energy,vol. 129, pp 695-716. 2018[6] ABNISA, Faisal. DAUD WMAW.A review on co-pyrolysis of biomass: An optional technique to obtain En; Energy Conversion and Management, vol. 87, pp 71- 85, Oct, 2014.[7] BASU. Prabi, “Biomass gasification, pyrolysis and torrefaction” chapter 1. Introduction, En; Elsevier Inc, 3rd Edition, Jun,2018.[8] BRIDGWATER, A.V. Review of fast pyrolysis of biomass and product upgrading, En; Biomass and Bioenergy., vol.38, pp 68-94, Marzo,2012.[9] KUMAR. Deepak, VINU. Ravikrishnan, Copyrolysis of Lignocellulosic Biomass with Waste Plastics for Resource Recovery, En Waste Biorefinery, pp 349-391, Ene, 2018[10] CAI. Junmeng. HE. Yifeng, YU. Xi., et al. “Review of physicochemical properties and analytical characterization of lignocellulosic biomass. En: Renewable and Sustainable Energy Reviews., vol.76, pp, 309-322, Sept 2017[11] FOLGUERAS, M.B. FERNÁNDEZ F.J.et al. Fast pyrolysis of Guadua angustifoliaKunt. En; Energy Procedia N°136, pp 60 – 65, Jul, 2017[12] MESSINA. LIGurevich, BONELLI, P.R. Copyrolysis of peanut shells and cassava starch mixtures: Effect of the components proportion, En; Journal of Analytical and Applied Pyrolysis, vol. 113, pp 508-517, Marzo, 2015.[13] ONENC. Sermin, BREBU, Mihai, VASILE. Corneria, YANIK. Jale, Copyrolysis of scrap tires with oily wastes, En; Journal of Analytical and Applied Pyrolysis, vol. 27 94, pp, 184-189, 2012.[14] MARTINEZ. Juan, VECES. Alberto, MASTRAL. Ana, et al. Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel, En: Fuel processing Technology, vol.119, pp 263- 271, Feb, 2014.[15] REYES. Omar, REYES. Diego, Evaluación del proceso de pirolisis y co-pirolisis de cuesco de palma y neumáticos usados en una atmosfera de CO2, Bogotá, 2019, Trabajo de grado, Universidad Libre, Facultad de Ingeniería, 2019.[16] Ocampo-Durán. A, “La palma aceitera africana, un recurso de alto potencial para la producción animal en el trópico”, en línea, Disponible en: http://www.fao.org/3/v4440t/v4440t0g.htm[17] VEIRAS. Xosé, SOTO. Miguel Ángel, “La conflictividad de las plantaciones de eucalipto en España y Portugal” Greenpeace, en línea, disponible en: https://archivoes.greenpeace.org/espana/Global/espana/report/bosques/InformeEuca lipto2011.pdf[18] WOOD, Nathan. ROELICH, Katy. Tensions, capabilities, and justice in climate change mitigation of fossil fuels. Energy Research & Social Science, vol. 52, pag.114– 122, 2019.[19] X.Zhou, L.J. Broadbelt, R.Vinu, Chapter Two - Mechanistic Understanding of Thermochemical Conversion of Polymers and Lignocellulosic Biomass, Advances in Chemical Engineering, Vol. 49, Pág, 95-198, 2016.[20] AHMAD, Farah. ZHANG, Zhanying. DOHERTY, William. The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery. Renewable and Sustainable Energy Reviews, vol. 109, pag.386–411, 2019.[21] J. M. Rincón. E. E. Silva. Bioenergía: Fuentes, conversión y sustentabilidad. La Red Iberoamericana de Aprovechamiento de Residuos Orgánicos en Producción de Energía. Bogotá – Colombia, 2014[22] DAI, Leilei. WANG, Yunpu, LIU, Yuhuan. Et al. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, vol. 107, pág. 20-36, 2019[23] ABIOLA, Fakayode. ABOAGARIB, Elmuez, ZHOU, Cunshan, MA, Haile, Copyrolysis of lignocellulosic and macroalgae biomasses for the production of biochar - A review, Bioresource Technology, 2019[24] KAN, Tao. STREZOV, Vladimir. EVANS Tim. Lignocellulosic biomass pyrolylis: A review of product properties and effects of pyrolysis parameters. Renewable and 28 Sustainable Energy Reviews, vol. 57, pág. 1126-1140, 2016.[25] KUMAR, R. STREZOV, V. WELDEKIDAN, H. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of dropin fuels. Renewable and Sustainable Energy Reviews. Vol.123, 2020[26] CHEN, Wei. CHEN, Yingquan. YANG, Haiping. Et al, Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. Bioresource Technology, 2017.[27] UZOEJINWA, Benjamin. HE, Xiuhua. WANGA, Shuang. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Conversion and Management, vol.163 pág. 468–492, 2018.[28] AHMED MJ, HAMEED BH, Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review, Journal of Cleaner Production, 2020[29] PECHA, Brennan, GARCIA Manuel. Chapter 26 - Pyrolysis of Lignocellulosic, Biomass: Oil, Char, and Gas. Bioenergy, Biomass to biofuels, pág 413-442, 2015.[30] P. Basu, Biomass gasification, pyrolysis and torrefaction, chapter 3. Biomass characteristics, Elsevier Inc, 3rd Edition, 2018.[31] GARCÍA – NUÑEZ. Jesús, et al. Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. Resources, Conservation and Recycling vol. 110, pp 99–114, 2016.[32] OREA-IGARZA. U, CORDERO MACHADO. E, et al. Estudio comparativo de la composición química de la corteza de tres especies de eucaliptos a tres alturas del fuste comercial, En: Revista redalyc, Dic. 2006[33] SHURONG. Wang, et al. Lignocellulosic biomass pyrolysis mechanism: A stateof-the-art review. Progress in Energy and Combustion Science vol. 62, 2017[34] BECERRA. Erika, Caracterización del desecho agroindustrial de la palma de aceite “cuesco” para el mejoramiento de las capas granulares de la estructura de pavimento, Bogotá, 2017, Especialista en ingeniería de pavimentos, Universidad Militar Nueva Granada. Facultad de Ingeniería – Dirección de Posgrados[35] MENDOZA. David, Residuos de palma africana purifican agua y aire, En; UN periódico, Nº. 177, (May. 2014) Universidad Nacional[36] FANIJO, Ebenezer. BABAFEMI, John. AROWOJOLU, Olaniyi. Performance of laterized concrete made with palm kernel shell as replacement for coarse aggregate, Construction and Building Materials, vol 250, 2020.[37] RINCÓN. Nelson, MORENO. Juan. Carlos, GIRALDO Liliana, Uso de semillas de eucalipto para descontaminar aguas residuales, núm.18, 2015, Universidad de los Andes, Facultad de Ciencias[38] CASAS, Yannay. DAZA, Karen. CEA, Juan. Et al, Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers, Journal of cleaner production, vol 249, 2020.[39] ADAK, Totan. BARIK, Nishant, PATIL, Naveenkumar. Nanoemulsion of eucalyptus oil: An alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice, Industrial Crops & Products, vol 143. 2020.[40] “La palma de aceite en Colombia” Fedepalma, en línea, Disponible en: http://web.fedepalma.org/la-palma-de-aceite-en-colombia-departamentos[41] Min de comercio Industria y Turismo, “Invierta en Colombia trabajo, compromiso, ingenio”,sep.2009, en línea, disponible en: https://www.inviertaencolombia.com.co/Adjuntos/089_Sector%20Forestal.pdf[42] Normatividad General de los Biocombustibles en Colombia, fedebiocombustibles, en línea, disponible en: http://www.fedebiocombustibles.com/v3/main-pagina-id29.htm[43] MÜLLER. Niels, TESSINI. Catherine, SEGURA. Cristina, et al, Pirólisis rápida de biomasa, En; Bioenergia & Biorrefinaria, (2013). pp.459-482[44] MONTOYA. Jorge, CASTILLO. Edgar, ACERO. Julia, et al Pirólisis Rápida de Biomasa, Ecopetrol, Medellín, 2014, Universidad Nacional de Colombia[45] American Society for Testing and Materials, ASTM International, Estados Unidos: https://www.astm.org/[46] VÁSQUEZ SIERRA. Erika, HERRERA Builes. Jhon Fredy, Metodología para la caracterización de combustibles sólidos maderables del área metropolitana del valle de Aburrá “amva”, Medellin Colombia, Vol. 59, núm. 2, 2015 Revista Facultad Nacional de Agronomía.[47] RINCÓN. Nelson, MORENO. Juan. Carlos, GIRALDO Liliana, Uso de semillas de eucalipto para descontaminar aguas residuales, núm.18, 2015, Universidad de los Andes, Facultad de Ciencias[48] CASAS, Yannay. DAZA, Karen. CEA, Juan. Et al, Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers, Journal of cleaner production, vol 249, 2020.[49] ADAK, Totan. BARIK, Nishant, PATIL, Naveenkumar. Nanoemulsion of 30 eucalyptus oil: An alternative to synthetic pesticides against two major storage insects (Sitophilus oryzae (L.) and Tribolium castaneum (Herbst)) of rice, Industrial Crops & Products, vol 143. 2020.[50] “La palma de aceite en Colombia” Fedepalma, en línea, Disponible en: http://web.fedepalma.org/la-palma-de-aceite-en-colombia-departamentos[51] Min de comercio Industria y Turismo, “Invierta en Colombia trabajo, compromiso, ingenio”,sep.2009, en línea, disponible en: https://www.inviertaencolombia.com.co/Adjuntos/089_Sector%20Forestal.pdf[52] Normatividad General de los Biocombustibles en Colombia, fedebiocombustibles, en línea, disponible en: http://www.fedebiocombustibles.com/v3/main-pagina-id29.htm[53] MÜLLER. Niels, TESSINI. Catherine, SEGURA. Cristina, et al, Pirólisis rápida de biomasa, En; Bioenergia & Biorrefinaria, (2013). pp.459-482[54] MONTOYA. Jorge, CASTILLO. Edgar, ACERO. Julia, et al Pirólisis Rápida de Biomasa, Ecopetrol, Medellín, 2014, Universidad Nacional de Colombia[55] American Society for Testing and Materials, ASTM International, Estados Unidos: https://www.astm.org/[56] VÁSQUEZ SIERRA. Erika, HERRERA Builes. Jhon Fredy, Metodología para la caracterización de combustibles sólidos maderables del área metropolitana del valle de Aburrá “amva”, Medellin Colombia, Vol. 59, núm. 2, 2015 Revista Facultad Nacional de Agronomía.[57] ÁLVAREZ. Ana, PIZARRO. Consuelo, Belén. María, Caracterización química de biomasa y su relación con el poder calorífico, 2012, Universidad de Oviedo Dpto. de Energía.[58] AL-KASSIR. Raúl, Caracterización y preparación de residuos de biomasa con ensayos experimentales de secado térmico y combustión no contaminante,2013, Instituto Politécnico de Portoalegre.[59] Operating Instruction Manual, 1341 Oxygen Bomb Calorimeter, No. 204M[60] OCANHA, Enzo. ZINANI, Flávia. MODOLO, Regina. SANTOS, Fernando. Assesment of the effects of chemical and physical parameters in the fluidization of biomass and sand binary mixtures through statistical analysis, Energy. (2019)[61] MYTHILI, R. VENKATACHALAM, P. SUBRAMANIAN, D. Characterization of 31 bioresidues for biooil production through pyrolysis, Vol.138, Pag. 71-78, 2013.[62] SOH. Loh, Biocombustibles de segunda generación de la biomasa de palma de aceite, Palmas, vol.37 (Especial Tomo II), pp. 137-148, 2016[63] NÚÑEZ, D. Uso de residuos agrícolas para la producción de biocombustibles en el Departamento del Meta. 2012[64] FANTINI, M. Chapter 2 Biomass Availability, Potential and Characteristics, Biorefineries, pág. 21-54, 2017[65] YUFU, X. XIANGUO, Hu. WENDONG, Li. YINYAN, Shi. Preparation and Characterization of Bio-Oil from Biomass, Progress in Biomass and Bioenergy Production, 2011.[66] VINICIUS, Silva. RODRIGUES, Thiago. ABREU-JUNIOR, Cassio. Et al. Influences of edaphoclimatic conditions on deep rooting and soil water availability in Brazilian Eucalyptus plantations, Forest Ecology and Management, vol. 455, (2020)[67] OJHA, D. Fast pyrolysis kinetics of lignocellulosic biomass of varying compositions, Energy Conversion and Management: X, 2021[68] BERTERO, M. Fuels from bio-oils: Bio-oil production from different residual sources, characterization and thermal conditioning, Fuel, vol 95, pp 263- 271, 2012[69] KUMAR, R. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels, Renewable and Sustainable Energy Reviews, Vol. 123, 2020[70] UZOEJINWA, B. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide, Energy Conversion and Management, vol. 163, pp 468-492, 2018[71] FERREIRA, M. Generation of biofuels by slow pyrolysis of palm empty fruit bunches: Optimization of process variables and characterization of physical-chemical products, Biomass and Bioenergy, Vol.140, 2020[72] Li, C. Interaction of the volatiles from co-pyrolysis of pig manure with cellulose/ glucose and their effects on char properties, Journal of Environmental Chemical Engineering, Vol. 8, 2020[73] ZHANG, L. Comparative study on the two-step pyrolysis of different lignocellulosic biomass, Effects of components, Journal of Analytical and Applied Pyrolysis, 2020[74] NGUYEN, Q. Improvement of bio-crude oil properties via co-pyrolysis of pine sawdust and waste polystyrene foam, Journal of Environmental Management, Vol, 237, pp 24-29, 2019 32[75] SAKULKIT, P. Characteristics of pyrolysis products from pyrolysis and copyrolysis of rubber wood and oil palm trunk biomass for biofuel and value-added applications, Journal of Environmental Chemical Engineering, Vol. 8, 2020[67] AL-MAARI, M. Co-pyrolysis of oil palm empty fruit bunch and oil palm frond with low-density polyethylene and polypropylene for bio-oil production, Arabian Journal of Chemistry, vol. 14, 2021[66] ABDULLAH, N. Characterisation of Oil Palm Empty Fruit Bunches for Fuel Application, Journal of Physical Therapy Science, vol. 22, 2011[68] LEAL, L. E., Juárez, V., Terán, M., Composición química de la madera de Eucalyptus grandis Hill ex Maiden, Revista de Ciencias Forestales [en linea] 2011, procedente de Finca Las Maravillas, Departamento de Orán, Salta. Quebracho[69] CHEN. Rongjie, LUN. Liyong, CONG. Kunlin, et al. Insights into pyrolysis and copyrolysis of tobacco stalk and scrap tire: Thermochemical behaviors, kinetics, and evolved gas analysis, Energy, vol. 183, pp. 25-34, 2019.[70] DA SILVA. Luis, ALMEIDA. Pedro, RIBEIRO. Carlos, An experimental assessment of Eucalyptus urosemente energy potential for bimass production in Brazil.Renewable and Sustainable Energy Reviews, vol.103, pp. 361-369, 2019[71] POLLARD, A. Characterization of bio-oil recovered as stage fractions with unique chemical and physical properties, Journal of Analytical and Applied Pyrolysis, Vol, 93, pp 129-138, 2012[72]. DEWAYANTO, N. Use of palm oil decanter cake as a new substrate for the production of bio-oil by vacuum pyrolysis. Energy Conversion and Management, Vol. 86, pp 226-232, 2014[73] BRIDGWATER, A.V. BRAMMER. J.G, The influence of feedstock drying on the performance and economics of a biomass gasifier-engine CHP system, Biomass & Bioenergy, vol.22, pp. 271-281, 200THUMBNAILTRABAJO DE GRADO DANIELA MELO.pdf.jpgTRABAJO DE GRADO DANIELA MELO.pdf.jpgimage/png59457http://repository.unilibre.edu.co/bitstream/10901/19807/4/TRABAJO%20DE%20GRADO%20DANIELA%20MELO.pdf.jpg43c1b672f97b5994cc81c14f217b6e52MD54AUTORIZACIÓN TGIA.pdf.jpgAUTORIZACIÓN TGIA.pdf.jpgIM Thumbnailimage/jpeg24756http://repository.unilibre.edu.co/bitstream/10901/19807/5/AUTORIZACI%c3%93N%20TGIA.pdf.jpg29c105ac598e178924635f91243339d4MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/19807/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALTRABAJO DE GRADO DANIELA MELO.pdfTRABAJO DE GRADO DANIELA MELO.pdfTesis de Pregradoapplication/pdf1036063http://repository.unilibre.edu.co/bitstream/10901/19807/1/TRABAJO%20DE%20GRADO%20DANIELA%20MELO.pdf3f20d0766a0e455b8eb80b0f99688eddMD51AUTORIZACIÓN TGIA.pdfAUTORIZACIÓN TGIA.pdfAutorización para la publicación digitalapplication/pdf95146http://repository.unilibre.edu.co/bitstream/10901/19807/2/AUTORIZACI%c3%93N%20TGIA.pdf6384396a799d859fab6101a813689446MD5210901/19807oai:repository.unilibre.edu.co:10901/198072024-09-05 06:01:13.871Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |