Propiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.

Esta investigación evaluó el uso de bloques de mortero fabricados con poliestireno expandido (EPS) como aglomerante en la construcción de muretes. Se implementó una metodología que incluyó la caracterización de los materiales, la fabricación de muestras, la realización de ensayos destructivos y no d...

Full description

Autores:
Álvarez García, Luisa María
Santander Pai, Yalí Karina
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Libre
Repositorio:
RIU - Repositorio Institucional UniLibre
Idioma:
OAI Identifier:
oai:repository.unilibre.edu.co:10901/29203
Acceso en línea:
https://hdl.handle.net/10901/29203
Palabra clave:
Muretes
Bloques de mortero
poliestireno expandido
Propiedades macánicas
Construcción sostenible
Parapet walls
Mortar blocks
Expanded polystyrene
Mechanical properties
Sustainable construction
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id RULIBRE2_4c32415ab7164829616742ecb3af6e1e
oai_identifier_str oai:repository.unilibre.edu.co:10901/29203
network_acronym_str RULIBRE2
network_name_str RIU - Repositorio Institucional UniLibre
repository_id_str
dc.title.spa.fl_str_mv Propiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.
title Propiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.
spellingShingle Propiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.
Muretes
Bloques de mortero
poliestireno expandido
Propiedades macánicas
Construcción sostenible
Parapet walls
Mortar blocks
Expanded polystyrene
Mechanical properties
Sustainable construction
title_short Propiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.
title_full Propiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.
title_fullStr Propiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.
title_full_unstemmed Propiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.
title_sort Propiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.
dc.creator.fl_str_mv Álvarez García, Luisa María
Santander Pai, Yalí Karina
dc.contributor.advisor.none.fl_str_mv Amariles López, Cristhian Camilo
dc.contributor.author.none.fl_str_mv Álvarez García, Luisa María
Santander Pai, Yalí Karina
dc.subject.spa.fl_str_mv Muretes
Bloques de mortero
poliestireno expandido
Propiedades macánicas
Construcción sostenible
topic Muretes
Bloques de mortero
poliestireno expandido
Propiedades macánicas
Construcción sostenible
Parapet walls
Mortar blocks
Expanded polystyrene
Mechanical properties
Sustainable construction
dc.subject.subjectenglish.spa.fl_str_mv Parapet walls
Mortar blocks
Expanded polystyrene
Mechanical properties
Sustainable construction
description Esta investigación evaluó el uso de bloques de mortero fabricados con poliestireno expandido (EPS) como aglomerante en la construcción de muretes. Se implementó una metodología que incluyó la caracterización de los materiales, la fabricación de muestras, la realización de ensayos destructivos y no destructivos, y un análisis comparativo con bloques de concreto convencionales. Los resultados demostraron que, si bien los bloques de EPS cumplieron con los requisitos de dimensiones y densidad según las normas, no lograron alcanzar la resistencia a la compresión mínima requerida para bloques estructurales y no estructurales establecida en la norma NTC 4205. No obstante, exhibieron una densidad relativamente baja en comparación con los bloques convencionales, lo que podría representar una ventaja en términos de reducción de peso. El análisis de las curvas esfuerzo-deformación reveló diferencias significativas en el comportamiento mecánico entre los distintos muretes ensayados. Los muretes M3 y M5 presentaron las mayores rigideces, indicando una mayor resistencia a la deformación, lateral, mientras que los muretes M1 y M2 mostraron las rigideces más bajas, sugiriendo una mayor susceptibilidad a la deformación lateral. Desde el punto de vista económico, el costo de producción de los bloques de EPS resultó ser significativamente mayor, con un precio unitario de $12.102,93 pesos colombianos, lo que representa un aumento del 76% en comparación con los bloques de concreto convencionales. Sin embargo, su fabricación implica un menor impacto ambiental. Si bien los bloques de EPS no cumplieron con los requisitos de resistencia estructural, su uso en la construcción sigue siendo prometedor debido a sus propiedades de aislamiento térmico y acústico, y su potencial para reducir el impacto ambiental. Se requieren futuras investigaciones y mejoras en el diseño y fabricación para incrementar su resistencia mecánica y reducir los costos de producción, aprovechando así los beneficios ambientales que ofrecen estos materiales.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-27T20:52:19Z
dc.date.available.none.fl_str_mv 2024-05-27T20:52:19Z
dc.date.created.none.fl_str_mv 2024-05-02
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis de Pregrado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10901/29203
url https://hdl.handle.net/10901/29203
dc.relation.references.spa.fl_str_mv Abdelrahman, G. E., Kawabe, S., Tsukamoto, Y., & Tatsuoka, F. (2008). Small-strain stress-strain properties of expanded polystyrene geofoam. Soils and foundations, 48(1), 61-71. https://doi.org/10.3208/sandf.48.61
Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, e00330. https://doi.org/10.1016/j.cscm.2020.e00330
Bonenberg, W., & Kapliński, O. (2018). The architect and the paradigms of sustainable development: A review of dilemmas. Sustainability (Switzerland), 10(1), 1–15. https://doi.org/10.3390/su10010100
Davila, J. M., Fortes, J. C., Jaramillo-Morilla, A., de la Torre, M., & Pancho, R. (2019). Behavior of expanded polystyrene as lightweight filler in retaining walls with intermediate slabs. Latin American Journal of Solids and Structures, 16(2), 1–16. https://doi.org/10.1590/1679-78254776
Ding, C., Xue, K., Cui, H., Xu, Z., Yang, H., Bao, X., & Yi, G. (2023). Research on fire resistance of silica fume insulation mortar. Journal of Materials Research and Technology, 25, 1273–1288. https://doi.org/10.1016/j.jmrt.2023.06.004
Dobiszewska, M., Bagcal, O., Beycioğlu, A., Goulias, D., Köksal, F., Płomiński, B., & Ürünveren, H. (2023). Utilization of rock dust as cement replacement in cement composites: An alternative approach to sustainable mortar and concrete productions. Journal of Building Engineering, 69(September 2022), 106180. https://doi.org/10.1016/j.jobe.2023.106180
Drozd, W., & Leśniak, A. (2018). Ecological wall systems as an element of sustainable development-cost issues. Sustainability (Switzerland), 10(7). https://doi.org/10.3390/su10072234
Egodagamage, H., Yapa, H. D., Samith Buddika, H. A. D., Navaratnam, S., & Nguyen, K. (2023). Effective use of biochar as an additive for alkali-activated slag mortar production. Construction and Building Materials, 370(January), 130487. https://doi.org/10.1016/j.conbuildmat.2023.130487
Feng, J., Li, Y., Wu, H., Li, X., Feng, F., & Cai, J. (2023). Seismic behavior of precast shear wall with novel bundled connections. Case Studies in Construction Materials, 18(March). https://doi.org/10.1016/j.cscm.2023.e02098
Giuliani, F., Autelitano, F., Garilli, E., & Montepara, A. (2020). Expanded polystyrene (EPS) in road construction: Twenty years of Italian experiences. Transportation Research Procedia, 45(2019), 410–417. https://doi.org/10.1016/j.trpro.2020.03.033
Gomaa, A. E., Hasan, A. M. M., Mater, Y. M., & AbdelSalam, S. S. (2023). Shell folded footings using different angles and EPS cavity filling: experimental study. International Journal of Geo-Engineering, 14(1). https://doi.org/10.1186/s40703-023-00187-w
Gutierrez-Velasquez, E. I., Monteiro, S. N., & Colorado, H. A. (2022). Characterization of expanded polystyrene waste as binder and coating material. Case Studies in Construction Materials, 16(November 2021), e00804. https://doi.org/10.1016/j.cscm.2021.e00804
Han, W., Pei, S., & Liu, F. (2022). Material characterization of the brick in the Ming Dynasty heritage wall of Pianguan County: A case study. Case Studies in Construction Materials, 16(November 2021), e00940. https://doi.org/10.1016/j.cscm.2022.e00940
Hou, L., Huang, W., & Li, X. (2019). Experimental Study on Seismic Performance of Multiple Ecological Composite Wall. IOP Conference Series: Earth and Environmental Science, 304(4), 8–12. https://doi.org/10.1088/1755-1315/304/4/042057
ICONTEC. (2001). Norma Técnica Colombiana NTC 4024 Prefabricados de concreto. muestreo y ensayo de prefabricados de concreto no reforzados, vibro compactados
ICONTEC. (2003). norma técnica ntc colombiana 3495 Método de ensayo para determinar la resistencia a la compresión de muretes de mampostería.
ICONTEC. (2009a). norma técnica ntc colombiana 4205-1 unidades de mampostería de arcilla cocida. ladrillos y bloques cerámicos. parte 1: mampostería estructural.
ICONTEC. (2009b). norma técnica ntc colombiana 4205-2 unidades de mampostería de arcilla cocida. ladrillos y bloques cerámicos. parte 2: Mampostería no estructural.
INVIAS. (2013a). Análisis granulométrico de agregados gruesos finos INV E - 213 - 13.
INVIAS. (2013b). Determinación de la gravedad específica de las partículas sólidas de los suelos y de la llenante mineral, empleando un picnómetro con agua INV E - 128.
INVIAS. (2013c). Equivalente de arena de suelos y agregados finos INV E 133 - 13.
INVIAS. (2013d). Presencia de impurezas orgánicas en arenas usadas para la preparación de morteros y concretos.
Islam, M. J., & Shahjalal, M. (2021). Effect of polypropylene plastic on concrete properties as a partial replacement of stone and brick aggregate. Case Studies in Construction Materials, 15(June), e00627. https://doi.org/10.1016/j.cscm.2021.e00627
Joshua, O., Olusola, K. O., Nduka, D. O., Ede, A. N., Olofinnade, O. M., & Job, O. F. (2020). Modified mix design development specification batched by volume from specified mix design by weight towards improved concrete production. MethodsX, 7, 100817. https://doi.org/10.1016/j.mex.2020.100817
Khoukhi, M., Abdelbaqi, S., Hassan, A., & Darsaleh, A. (2021). Impact of dynamic thermal conductivity change of EPS insulation on temperature variation through a wall assembly. Case Studies in Thermal Engineering, 25(February), 100917. https://doi.org/10.1016/j.csite.2021.100917
Kisilewicz, T., Fedorczak-Cisak, M., Sadowska, B., Ickiewicz, I., Barkanyi, T., Bomberg, M., & Gobcewicz, E. (2023). On the results of long-term winter testing of active thermal insulation. Energy and Buildings, 296(April). https://doi.org/10.1016/j.enbuild.2023.113412
Leśniak, A., & Zima, K. (2018). Cost calculation of construction projects including sustainability factors using the Case Based Reasoning (CBR) method. Sustainability (Switzerland), 10(5). https://doi.org/10.3390/su10051608
Li, L., Liu, K., Chen, B., & Wang, R. (2022). Effect of cyclic curing conditions on the tensile bond strength between the polymer modified mortar and the tile. Case Studies in Construction Materials, 17(September), e01531. https://doi.org/10.1016/j.cscm.2022.e01531
Liu, G. ping, & Zhang, Y. (2012). Research on the adobe block of the system of new compounded adobe walls. Applied Mechanics and Materials, 193–194, 553–555. https://doi.org/10.4028/www.scientific.net/AMM.193-194.553
Ma, Yuetan, Zhou, H., Jiang, X., Polaczyk, P., Xiao, R., Zhang, M., & Huang, B. (2021). The utilization of waste plastics in asphalt pavements: A review. Cleaner Materials, 2(July), 100031. https://doi.org/10.1016/j.clema.2021.100031
Ma, Yunfeng, Xu, L., & Shi, X. (2023). The multi-factor influence of frost resistance and prevention effect of tunnel thermal insulation layer in cold areas. Alexandria Engineering Journal, 78(1), 15–25. https://doi.org/10.1016/j.aej.2023.07.028
Maghfouri, M., Alimohammadi, V., Gupta, R., Saberian, M., Azarsa, P., Hashemi, M., … Roychand, R. (2022). Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete: A review. Case Studies in Construction Materials, 16(September 2021), e00919. https://doi.org/10.1016/j.cscm.2022.e00919
Martínez-Barrera, G., Martínez-López, M., del Coz-Díaz, J. J., López-Gayarre, F., & Varela-Guerrero, V. (2019). Waste polymers and gamma radiation on the mechanical improvement of polymer mortars: Experimental and calculated results. Case Studies in Construction Materials, 11. https://doi.org/10.1016/j.cscm.2019.e00273
Parracha, J. L., Santos, A. R., Lazera, R., Flores-Colen, I., Gomes, M. G., & Rodrigues, A. M. (2023). Performance of lightweight thermal insulating mortars applied on brick substrate specimens and prototype wall. Construction and Building Materials, 364(September 2022). https://doi.org/10.1016/j.conbuildmat.2022.129954
Pham, T. T., Kurihashi, Y., & Masuya, H. (2022). Impact response of reinforced concrete beam with cushion using finite-element analysis. Case Studies in Construction Materials, 17(May), e01147. https://doi.org/10.1016/j.cscm.2022.e01147
Posani, M., Veiga, R., & Freitas, V. (2023). Post-Insulating traditional massive walls in Southern Europe: A moderate thermal resistance can be more effective than you think. Energy and Buildings, 295(June). https://doi.org/10.1016/j.enbuild.2023.113299
Ren, J., & Lai, Y. (2021). Study on the durability and failure mechanism of concrete modified with nanoparticles and polypropylene fiber under freeze-thaw cycles and sulfate attack. Cold Regions Science and Technology, 188, 103301. https://doi.org/10.1016/j.coldregions.2021.103301
Salih Mohammed, A., Mahmood, W., Sarwar Qadir, W., Ghafor, K., & Kurda, R. (2023). Microstructure tests, flow, and mechanical behavior of polymerized cement mortar. Ain Shams Engineering Journal, 14(4), 101922. https://doi.org/10.1016/j.asej.2022.101922
Sanjuan, A., Errarte, A., & Bou-Ali, M. M. (2022). Analysis of thermophoresis for separation of polystyrene microparticles in microfluidic devices. International Journal of Heat and Mass Transfer, 189, 122690. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122690
Sha, A., Liu, Z., Jiang, W., Qi, L., Hu, L., Jiao, W., & Barbieri, D. M. (2021). Advances and development trends in eco-friendly pavements. Journal of Road Engineering, 1(December), 1–42. https://doi.org/10.1016/j.jreng.2021.12.002
Švajlenka, J., & Kozlovská, M. (2018). Houses based on wood as an ecological and sustainable housing alternative-Case study. Sustainability (Switzerland), 10(5). https://doi.org/10.3390/su10051502
Wibowo, A. (2019). Cyclic behaviour of expanded polystyrene (Eps) sandwich concrete walls. IOP Conference Series: Materials Science and Engineering, 620(1). https://doi.org/10.1088/1757-899X/620/1/012060
Zaragoza-Benzal, A., Ferrández, D., Atanes-Sánchez, E., & Morón, C. (2023). New lightened plaster material with dissolved recycled expanded polystyrene and end-of-life tyres fibres for building prefabricated industry. Case Studies in Construction Materials, 18(October 2022). https://doi.org/10.1016/j.cscm.2023.e02178
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv PDF
dc.coverage.spatial.spa.fl_str_mv Pereira
institution Universidad Libre
bitstream.url.fl_str_mv http://repository.unilibre.edu.co/bitstream/10901/29203/5/PROPIEDADES%20MEC%c3%81NICAS%20DE%20MURETES%20FABRICADOS%20CON%20BLOQUES%20DE%20MORTERO%20DE%20EPS%20COMO%20MATERIAL%20AGLOMERANTE%20ALVAREZ%20Y%20SANTANDER%20%281%29%20%281%29.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/29203/6/Autoriz%20%20publicaci%c3%b3n%20de%20trabajos%20en%20formato%20digital%28V5%29.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/29203/4/license.txt
http://repository.unilibre.edu.co/bitstream/10901/29203/1/PROPIEDADES%20MEC%c3%81NICAS%20DE%20MURETES%20FABRICADOS%20CON%20BLOQUES%20DE%20MORTERO%20DE%20EPS%20COMO%20MATERIAL%20AGLOMERANTE%20ALVAREZ%20Y%20SANTANDER%20%281%29%20%281%29.pdf
http://repository.unilibre.edu.co/bitstream/10901/29203/3/Autoriz%20%20publicaci%c3%b3n%20de%20trabajos%20en%20formato%20digital%28V5%29.pdf
bitstream.checksum.fl_str_mv 547a6aabedad7ce9a06a327f0522f068
63a5eabbe0e2dce38836bd0842dfc4e0
8a4605be74aa9ea9d79846c1fba20a33
b47a3f0c9a6f3f9af241d20685d5ca4c
16753739334ba80e5831ad427e50780d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Unilibre
repository.mail.fl_str_mv repositorio@unilibrebog.edu.co
_version_ 1814090588837904384
spelling Amariles López, Cristhian CamiloÁlvarez García, Luisa MaríaSantander Pai, Yalí KarinaPereira2024-05-27T20:52:19Z2024-05-27T20:52:19Z2024-05-02https://hdl.handle.net/10901/29203Esta investigación evaluó el uso de bloques de mortero fabricados con poliestireno expandido (EPS) como aglomerante en la construcción de muretes. Se implementó una metodología que incluyó la caracterización de los materiales, la fabricación de muestras, la realización de ensayos destructivos y no destructivos, y un análisis comparativo con bloques de concreto convencionales. Los resultados demostraron que, si bien los bloques de EPS cumplieron con los requisitos de dimensiones y densidad según las normas, no lograron alcanzar la resistencia a la compresión mínima requerida para bloques estructurales y no estructurales establecida en la norma NTC 4205. No obstante, exhibieron una densidad relativamente baja en comparación con los bloques convencionales, lo que podría representar una ventaja en términos de reducción de peso. El análisis de las curvas esfuerzo-deformación reveló diferencias significativas en el comportamiento mecánico entre los distintos muretes ensayados. Los muretes M3 y M5 presentaron las mayores rigideces, indicando una mayor resistencia a la deformación, lateral, mientras que los muretes M1 y M2 mostraron las rigideces más bajas, sugiriendo una mayor susceptibilidad a la deformación lateral. Desde el punto de vista económico, el costo de producción de los bloques de EPS resultó ser significativamente mayor, con un precio unitario de $12.102,93 pesos colombianos, lo que representa un aumento del 76% en comparación con los bloques de concreto convencionales. Sin embargo, su fabricación implica un menor impacto ambiental. Si bien los bloques de EPS no cumplieron con los requisitos de resistencia estructural, su uso en la construcción sigue siendo prometedor debido a sus propiedades de aislamiento térmico y acústico, y su potencial para reducir el impacto ambiental. Se requieren futuras investigaciones y mejoras en el diseño y fabricación para incrementar su resistencia mecánica y reducir los costos de producción, aprovechando así los beneficios ambientales que ofrecen estos materiales.Universidad Libre Seccional Pereira -- Facultad de Ingeniería -- Ingeniería CivilThis research evaluated the use of expanded polystyrene (EPS) mortar blocks as a binder in the construction of small walls. A methodology was implemented, which included material characterization, sample manufacturing, conducting destructive and non-destructive tests, and a comparative analysis with conventional concrete blocks. The results showed that while the EPS blocks met the dimensional and density requirements according to standards, they failed to achieve the minimum compression strength required for structural and non-structural blocks as established in the NTC 4205 standard. However, they exhibited a relatively low density compared to conventional blocks, which could represent an advantage in terms of weight reduction, Analysis of the stress-strain curves revealed significant differences in the mechanical behavior among the different tested walls. Walls M3 and M5 exhibited the highest stiffness, indicating greater resistance to lateral deformation, while walls M1 and M2 showed the lowest stiffness, suggesting higher susceptibility to lateral deformation. From an economic standpoint, the production cost of EPS blocks turned out to be significantly higher, with a unit price of $12,102.93 Colombian pesos, representing a 76% increase compared to conventional concrete blocks. However, their production entails a lower environmental impact. Although EPS blocks did not meet the requirements for structural strength, their use in construction remains promising due to their thermal and acoustic insulation properties, and their potential to reduce environmental impact. Further research and improvements in design and manufacturing are needed to increase their mechanical strength and reduce production costs, thereby harnessing the environmental benefits offered by these materials..PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2MuretesBloques de morteropoliestireno expandidoPropiedades macánicasConstrucción sostenibleParapet wallsMortar blocksExpanded polystyreneMechanical propertiesSustainable constructionPropiedades mecánicas de muretes fabricados con bloques de mortero de eps como material aglomerante.Tesis de Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAbdelrahman, G. E., Kawabe, S., Tsukamoto, Y., & Tatsuoka, F. (2008). Small-strain stress-strain properties of expanded polystyrene geofoam. Soils and foundations, 48(1), 61-71. https://doi.org/10.3208/sandf.48.61Awoyera, P. O., & Adesina, A. (2020). Plastic wastes to construction products: Status, limitations and future perspective. Case Studies in Construction Materials, 12, e00330. https://doi.org/10.1016/j.cscm.2020.e00330Bonenberg, W., & Kapliński, O. (2018). The architect and the paradigms of sustainable development: A review of dilemmas. Sustainability (Switzerland), 10(1), 1–15. https://doi.org/10.3390/su10010100Davila, J. M., Fortes, J. C., Jaramillo-Morilla, A., de la Torre, M., & Pancho, R. (2019). Behavior of expanded polystyrene as lightweight filler in retaining walls with intermediate slabs. Latin American Journal of Solids and Structures, 16(2), 1–16. https://doi.org/10.1590/1679-78254776Ding, C., Xue, K., Cui, H., Xu, Z., Yang, H., Bao, X., & Yi, G. (2023). Research on fire resistance of silica fume insulation mortar. Journal of Materials Research and Technology, 25, 1273–1288. https://doi.org/10.1016/j.jmrt.2023.06.004Dobiszewska, M., Bagcal, O., Beycioğlu, A., Goulias, D., Köksal, F., Płomiński, B., & Ürünveren, H. (2023). Utilization of rock dust as cement replacement in cement composites: An alternative approach to sustainable mortar and concrete productions. Journal of Building Engineering, 69(September 2022), 106180. https://doi.org/10.1016/j.jobe.2023.106180Drozd, W., & Leśniak, A. (2018). Ecological wall systems as an element of sustainable development-cost issues. Sustainability (Switzerland), 10(7). https://doi.org/10.3390/su10072234Egodagamage, H., Yapa, H. D., Samith Buddika, H. A. D., Navaratnam, S., & Nguyen, K. (2023). Effective use of biochar as an additive for alkali-activated slag mortar production. Construction and Building Materials, 370(January), 130487. https://doi.org/10.1016/j.conbuildmat.2023.130487Feng, J., Li, Y., Wu, H., Li, X., Feng, F., & Cai, J. (2023). Seismic behavior of precast shear wall with novel bundled connections. Case Studies in Construction Materials, 18(March). https://doi.org/10.1016/j.cscm.2023.e02098Giuliani, F., Autelitano, F., Garilli, E., & Montepara, A. (2020). Expanded polystyrene (EPS) in road construction: Twenty years of Italian experiences. Transportation Research Procedia, 45(2019), 410–417. https://doi.org/10.1016/j.trpro.2020.03.033Gomaa, A. E., Hasan, A. M. M., Mater, Y. M., & AbdelSalam, S. S. (2023). Shell folded footings using different angles and EPS cavity filling: experimental study. International Journal of Geo-Engineering, 14(1). https://doi.org/10.1186/s40703-023-00187-wGutierrez-Velasquez, E. I., Monteiro, S. N., & Colorado, H. A. (2022). Characterization of expanded polystyrene waste as binder and coating material. Case Studies in Construction Materials, 16(November 2021), e00804. https://doi.org/10.1016/j.cscm.2021.e00804Han, W., Pei, S., & Liu, F. (2022). Material characterization of the brick in the Ming Dynasty heritage wall of Pianguan County: A case study. Case Studies in Construction Materials, 16(November 2021), e00940. https://doi.org/10.1016/j.cscm.2022.e00940Hou, L., Huang, W., & Li, X. (2019). Experimental Study on Seismic Performance of Multiple Ecological Composite Wall. IOP Conference Series: Earth and Environmental Science, 304(4), 8–12. https://doi.org/10.1088/1755-1315/304/4/042057ICONTEC. (2001). Norma Técnica Colombiana NTC 4024 Prefabricados de concreto. muestreo y ensayo de prefabricados de concreto no reforzados, vibro compactadosICONTEC. (2003). norma técnica ntc colombiana 3495 Método de ensayo para determinar la resistencia a la compresión de muretes de mampostería.ICONTEC. (2009a). norma técnica ntc colombiana 4205-1 unidades de mampostería de arcilla cocida. ladrillos y bloques cerámicos. parte 1: mampostería estructural.ICONTEC. (2009b). norma técnica ntc colombiana 4205-2 unidades de mampostería de arcilla cocida. ladrillos y bloques cerámicos. parte 2: Mampostería no estructural.INVIAS. (2013a). Análisis granulométrico de agregados gruesos finos INV E - 213 - 13.INVIAS. (2013b). Determinación de la gravedad específica de las partículas sólidas de los suelos y de la llenante mineral, empleando un picnómetro con agua INV E - 128.INVIAS. (2013c). Equivalente de arena de suelos y agregados finos INV E 133 - 13.INVIAS. (2013d). Presencia de impurezas orgánicas en arenas usadas para la preparación de morteros y concretos.Islam, M. J., & Shahjalal, M. (2021). Effect of polypropylene plastic on concrete properties as a partial replacement of stone and brick aggregate. Case Studies in Construction Materials, 15(June), e00627. https://doi.org/10.1016/j.cscm.2021.e00627Joshua, O., Olusola, K. O., Nduka, D. O., Ede, A. N., Olofinnade, O. M., & Job, O. F. (2020). Modified mix design development specification batched by volume from specified mix design by weight towards improved concrete production. MethodsX, 7, 100817. https://doi.org/10.1016/j.mex.2020.100817Khoukhi, M., Abdelbaqi, S., Hassan, A., & Darsaleh, A. (2021). Impact of dynamic thermal conductivity change of EPS insulation on temperature variation through a wall assembly. Case Studies in Thermal Engineering, 25(February), 100917. https://doi.org/10.1016/j.csite.2021.100917Kisilewicz, T., Fedorczak-Cisak, M., Sadowska, B., Ickiewicz, I., Barkanyi, T., Bomberg, M., & Gobcewicz, E. (2023). On the results of long-term winter testing of active thermal insulation. Energy and Buildings, 296(April). https://doi.org/10.1016/j.enbuild.2023.113412Leśniak, A., & Zima, K. (2018). Cost calculation of construction projects including sustainability factors using the Case Based Reasoning (CBR) method. Sustainability (Switzerland), 10(5). https://doi.org/10.3390/su10051608Li, L., Liu, K., Chen, B., & Wang, R. (2022). Effect of cyclic curing conditions on the tensile bond strength between the polymer modified mortar and the tile. Case Studies in Construction Materials, 17(September), e01531. https://doi.org/10.1016/j.cscm.2022.e01531Liu, G. ping, & Zhang, Y. (2012). Research on the adobe block of the system of new compounded adobe walls. Applied Mechanics and Materials, 193–194, 553–555. https://doi.org/10.4028/www.scientific.net/AMM.193-194.553Ma, Yuetan, Zhou, H., Jiang, X., Polaczyk, P., Xiao, R., Zhang, M., & Huang, B. (2021). The utilization of waste plastics in asphalt pavements: A review. Cleaner Materials, 2(July), 100031. https://doi.org/10.1016/j.clema.2021.100031Ma, Yunfeng, Xu, L., & Shi, X. (2023). The multi-factor influence of frost resistance and prevention effect of tunnel thermal insulation layer in cold areas. Alexandria Engineering Journal, 78(1), 15–25. https://doi.org/10.1016/j.aej.2023.07.028Maghfouri, M., Alimohammadi, V., Gupta, R., Saberian, M., Azarsa, P., Hashemi, M., … Roychand, R. (2022). Drying shrinkage properties of expanded polystyrene (EPS) lightweight aggregate concrete: A review. Case Studies in Construction Materials, 16(September 2021), e00919. https://doi.org/10.1016/j.cscm.2022.e00919Martínez-Barrera, G., Martínez-López, M., del Coz-Díaz, J. J., López-Gayarre, F., & Varela-Guerrero, V. (2019). Waste polymers and gamma radiation on the mechanical improvement of polymer mortars: Experimental and calculated results. Case Studies in Construction Materials, 11. https://doi.org/10.1016/j.cscm.2019.e00273Parracha, J. L., Santos, A. R., Lazera, R., Flores-Colen, I., Gomes, M. G., & Rodrigues, A. M. (2023). Performance of lightweight thermal insulating mortars applied on brick substrate specimens and prototype wall. Construction and Building Materials, 364(September 2022). https://doi.org/10.1016/j.conbuildmat.2022.129954Pham, T. T., Kurihashi, Y., & Masuya, H. (2022). Impact response of reinforced concrete beam with cushion using finite-element analysis. Case Studies in Construction Materials, 17(May), e01147. https://doi.org/10.1016/j.cscm.2022.e01147Posani, M., Veiga, R., & Freitas, V. (2023). Post-Insulating traditional massive walls in Southern Europe: A moderate thermal resistance can be more effective than you think. Energy and Buildings, 295(June). https://doi.org/10.1016/j.enbuild.2023.113299Ren, J., & Lai, Y. (2021). Study on the durability and failure mechanism of concrete modified with nanoparticles and polypropylene fiber under freeze-thaw cycles and sulfate attack. Cold Regions Science and Technology, 188, 103301. https://doi.org/10.1016/j.coldregions.2021.103301Salih Mohammed, A., Mahmood, W., Sarwar Qadir, W., Ghafor, K., & Kurda, R. (2023). Microstructure tests, flow, and mechanical behavior of polymerized cement mortar. Ain Shams Engineering Journal, 14(4), 101922. https://doi.org/10.1016/j.asej.2022.101922Sanjuan, A., Errarte, A., & Bou-Ali, M. M. (2022). Analysis of thermophoresis for separation of polystyrene microparticles in microfluidic devices. International Journal of Heat and Mass Transfer, 189, 122690. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122690Sha, A., Liu, Z., Jiang, W., Qi, L., Hu, L., Jiao, W., & Barbieri, D. M. (2021). Advances and development trends in eco-friendly pavements. Journal of Road Engineering, 1(December), 1–42. https://doi.org/10.1016/j.jreng.2021.12.002Švajlenka, J., & Kozlovská, M. (2018). Houses based on wood as an ecological and sustainable housing alternative-Case study. Sustainability (Switzerland), 10(5). https://doi.org/10.3390/su10051502Wibowo, A. (2019). Cyclic behaviour of expanded polystyrene (Eps) sandwich concrete walls. IOP Conference Series: Materials Science and Engineering, 620(1). https://doi.org/10.1088/1757-899X/620/1/012060Zaragoza-Benzal, A., Ferrández, D., Atanes-Sánchez, E., & Morón, C. (2023). New lightened plaster material with dissolved recycled expanded polystyrene and end-of-life tyres fibres for building prefabricated industry. Case Studies in Construction Materials, 18(October 2022). https://doi.org/10.1016/j.cscm.2023.e02178THUMBNAILPROPIEDADES MECÁNICAS DE MURETES FABRICADOS CON BLOQUES DE MORTERO DE EPS COMO MATERIAL AGLOMERANTE ALVAREZ Y SANTANDER (1) (1).pdf.jpgPROPIEDADES MECÁNICAS DE MURETES FABRICADOS CON BLOQUES DE MORTERO DE EPS COMO MATERIAL AGLOMERANTE ALVAREZ Y SANTANDER (1) (1).pdf.jpgIM Thumbnailimage/jpeg18835http://repository.unilibre.edu.co/bitstream/10901/29203/5/PROPIEDADES%20MEC%c3%81NICAS%20DE%20MURETES%20FABRICADOS%20CON%20BLOQUES%20DE%20MORTERO%20DE%20EPS%20COMO%20MATERIAL%20AGLOMERANTE%20ALVAREZ%20Y%20SANTANDER%20%281%29%20%281%29.pdf.jpg547a6aabedad7ce9a06a327f0522f068MD55Autoriz publicación de trabajos en formato digital(V5).pdf.jpgAutoriz publicación de trabajos en formato digital(V5).pdf.jpgIM Thumbnailimage/jpeg28424http://repository.unilibre.edu.co/bitstream/10901/29203/6/Autoriz%20%20publicaci%c3%b3n%20de%20trabajos%20en%20formato%20digital%28V5%29.pdf.jpg63a5eabbe0e2dce38836bd0842dfc4e0MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/29203/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINALPROPIEDADES MECÁNICAS DE MURETES FABRICADOS CON BLOQUES DE MORTERO DE EPS COMO MATERIAL AGLOMERANTE ALVAREZ Y SANTANDER (1) (1).pdfPROPIEDADES MECÁNICAS DE MURETES FABRICADOS CON BLOQUES DE MORTERO DE EPS COMO MATERIAL AGLOMERANTE ALVAREZ Y SANTANDER (1) (1).pdfarticulo principalapplication/pdf847682http://repository.unilibre.edu.co/bitstream/10901/29203/1/PROPIEDADES%20MEC%c3%81NICAS%20DE%20MURETES%20FABRICADOS%20CON%20BLOQUES%20DE%20MORTERO%20DE%20EPS%20COMO%20MATERIAL%20AGLOMERANTE%20ALVAREZ%20Y%20SANTANDER%20%281%29%20%281%29.pdfb47a3f0c9a6f3f9af241d20685d5ca4cMD51Autoriz publicación de trabajos en formato digital(V5).pdfAutoriz publicación de trabajos en formato digital(V5).pdfapplication/pdf307330http://repository.unilibre.edu.co/bitstream/10901/29203/3/Autoriz%20%20publicaci%c3%b3n%20de%20trabajos%20en%20formato%20digital%28V5%29.pdf16753739334ba80e5831ad427e50780dMD5310901/29203oai:repository.unilibre.edu.co:10901/292032024-05-28 06:01:30.027Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=