Uso del aprendizaje de máquina en diferentes sectores industriales

En la actualidad, la confiabilidad y eficiencia de las empresas están estrechamente relacionadas con su capacidad para resolver problemas de manera efectiva. El aprendizaje automático (Machine Learning) ha emergido como una herramienta clave para lograr esta eficiencia, facilitando la optimización d...

Full description

Autores:
Duarte Vargas, Ciro Adrian
Castillo Marquez, David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Libre
Repositorio:
RIU - Repositorio Institucional UniLibre
Idioma:
OAI Identifier:
oai:repository.unilibre.edu.co:10901/30203
Acceso en línea:
https://hdl.handle.net/10901/30203
Palabra clave:
redes neuronales artificiales
aprendizaje profundo
inteligencia artificial
aprendizaje automático
industria 4.0
artificial neural network
deep learning
artificial intelligence
machine learning
industry 4.0
Industria
Machine Learning
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id RULIBRE2_3f921c1670a478398498884067eac50e
oai_identifier_str oai:repository.unilibre.edu.co:10901/30203
network_acronym_str RULIBRE2
network_name_str RIU - Repositorio Institucional UniLibre
repository_id_str
dc.title.spa.fl_str_mv Uso del aprendizaje de máquina en diferentes sectores industriales
dc.title.alternative.spa.fl_str_mv Use of Machine Learning in different industrial sectors
title Uso del aprendizaje de máquina en diferentes sectores industriales
spellingShingle Uso del aprendizaje de máquina en diferentes sectores industriales
redes neuronales artificiales
aprendizaje profundo
inteligencia artificial
aprendizaje automático
industria 4.0
artificial neural network
deep learning
artificial intelligence
machine learning
industry 4.0
Industria
Machine Learning
title_short Uso del aprendizaje de máquina en diferentes sectores industriales
title_full Uso del aprendizaje de máquina en diferentes sectores industriales
title_fullStr Uso del aprendizaje de máquina en diferentes sectores industriales
title_full_unstemmed Uso del aprendizaje de máquina en diferentes sectores industriales
title_sort Uso del aprendizaje de máquina en diferentes sectores industriales
dc.creator.fl_str_mv Duarte Vargas, Ciro Adrian
Castillo Marquez, David
dc.contributor.advisor.none.fl_str_mv Villamizar Estrada, Avilio
dc.contributor.author.none.fl_str_mv Duarte Vargas, Ciro Adrian
Castillo Marquez, David
dc.subject.spa.fl_str_mv redes neuronales artificiales
aprendizaje profundo
inteligencia artificial
aprendizaje automático
industria 4.0
topic redes neuronales artificiales
aprendizaje profundo
inteligencia artificial
aprendizaje automático
industria 4.0
artificial neural network
deep learning
artificial intelligence
machine learning
industry 4.0
Industria
Machine Learning
dc.subject.subjectenglish.spa.fl_str_mv artificial neural network
deep learning
artificial intelligence
machine learning
industry 4.0
dc.subject.lemb.spa.fl_str_mv Industria
Machine Learning
description En la actualidad, la confiabilidad y eficiencia de las empresas están estrechamente relacionadas con su capacidad para resolver problemas de manera efectiva. El aprendizaje automático (Machine Learning) ha emergido como una herramienta clave para lograr esta eficiencia, facilitando la optimización de procesos en una variedad de sectores industriales. El artículo explora cómo el aprendizaje automático está revolucionando múltiples industrias al mejorar la automatización de tareas, el análisis de datos y la toma de decisiones. Al integrar inteligencia artificial (IA) y redes neuronales artificiales (Artificial Neural Networks), el aprendizaje automático está contribuyendo significativamente a la creación de procesos más eficientes y adaptativos, avanzando así hacia la Industria 4.0. Además, el artículo presenta varios casos de éxito donde el aprendizaje automático ha sido esencial para alcanzar mejoras destacadas en diferentes sectores. Estos ejemplos demuestran el impacto positivo de esta tecnología en la optimización de operaciones y en la capacidad de las empresas para adaptarse y prosperar en un entorno cada vez más digitalizado.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-15T15:36:44Z
dc.date.available.none.fl_str_mv 2024-10-15T15:36:44Z
dc.date.created.none.fl_str_mv 2024-10-09
dc.type.local.spa.fl_str_mv Tesis de Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10901/30203
url https://hdl.handle.net/10901/30203
dc.relation.references.spa.fl_str_mv Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. http://arxiv.org/abs/1605.08695
Abraham, A. (2020). Handbook of measuring system design. Wiley. softcomputing.net
Alamro, H., Mtouaa, W., Aljameel, S., Salama, A. S., Hamza, M. A., & Othman, A. Y. (2023). Automated Android Malware Detection Using Optimal Ensemble Learning Approach for Cybersecurity. IEEE Access, 11, 72509–72517. https://doi.org/10.1109/ACCESS.2023.3294263
Ali Abdulalem, S. H. O. T. A. E. E. (2022). MDPI Financial Fraud Detection Based on Machine Learning A. https://www.mdpi.com/2076-3417/12/19/9637
Aljabri, M., Altamimi, H. S., Albelali, S. A., Al-Harbi, M., Alhuraib, H. T., Alotaibi, N. K., Alahmadi, A. A., AlHaidari, F., Mohammad, R. M. A., & Salah, K. (2022). Detecting Malicious URLs Using Machine Learning Techniques: Review and Research Directions. IEEE Access, 10, 121395–121417. https://doi.org/10.1109/ACCESS.2022.3222307
Aracena, C., Villena, F., Arias, F., & Dunstan, J. (2022). Applications of machine learning in healthcare. Revista Medica Clinica Las Condes, 33(6), 568–575. https://doi.org/10.1016/j.rmclc.2022.10.001
Basáez, E., & Mora, J. (2021). 556 I N F O R M A C I Ó N D E L A R T Í C U L O Salud e inteligencia artificial: ¿cómo hemos evolucionado? Artificial intelligence in health: where are we in 2022? https://doi.org/
Bhuiyan, M. R., & Wree, P. (2023). Animal Behavior for Chicken Identification and Monitoring the Health Condition Using Computer Vision: A Systematic Review. IEEE Access, 11, 126601–126610. https://doi.org/10.1109/access.2023.3331092
Castrillon, S. O., Maria, L., Marín, G., Horacio, H., Villegas, J., César, C., & Escobar, P. (2021). Machine learning aplicado en la clasificación y predicción de la depresión: Una revisión sistemática.
Cortés, Y., Berenice, C., Landeta, I., Manuel, J., Chacón, B., Guadalupe, J., Pereyra, A., & Osorio, L. (2017). PDF generado a partir de XML-JATS4R por Redalyc Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto El Entorno de la Industria 4.0: Implicaciones y Perspectivas Futuras. https://www.redalyc.org/articulo.oa?id=94454631006
Donepudi, P. K. (2019). Automation and Machine Learning in Transforming the Financial Industry. Asian Business Review, 9. https://doi.org/10.18034/abr.v9i3.494
Elbasi, E., Mostafa, N., Alarnaout, Z., Zreikat, A. I., Cina, E., Varghese, G., Shdefat, A., Topcu, A. E., Abdelbaki, W., Mathew, S., & Zaki, C. (2023). Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review. In IEEE Access (Vol. 11, pp. 171–202). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2022.3232485
González-García, C. (2018). En qué consiste el aprendizaje automático (machine learning) y qué está aportando a la Neurociencia Cognitiva. Cienc. Cogn, 12(2), 48-50.
Gutiérrez, C., & López, M. (2022). Health in the digital age. Revista Medica Clinica Las Condes, 33(6), 562–567. https://doi.org/10.1016/j.rmclc.2022.11.001
Halbouni, A., Gunawan, T. S., Habaebi, M. H., Halbouni, M., Kartiwi, M., & Ahmad, R. (2022). Machine Learning and Deep Learning Approaches for CyberSecurity: A Review. In IEEE Access (Vol. 10, pp. 19572–19585). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2022.3151248
Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. https://doi.org/10.1007/s12525-021-00475-2/Published
Kumar, V., Saheb, S. S., Preeti, Ghayas, A., Kumari, S., Chandel, J. K., Pandey, S. K., & Kumar, S. (2023). AI-Based Hybrid Models for Predicting Loan Risk in the Banking Sector. Big Data Mining and Analytics, 6(4), 478–490. https://doi.org/10.26599/BDMA.2022.9020037
Leo, M., Sharma, S., & Maddulety, K. (2019). Machine learning in banking risk management: A literature review. Risks, 7(1). https://doi.org/10.3390/risks7010029
Masna, N. V. R., Chen, C., Mandal, S., & Bhunia, S. (2019). Robust Authentication of Consumables With Extrinsic Tags and Chemical Fingerprinting. IEEE Access, 7, 14396–14409. https://doi.org/10.1109/ACCESS.2019.2893518
Met, I., Erkoc, A., & Seker, S. E. (2023). Performance, Efficiency, and Target Setting for Bank Branches: Time Series With Automated Machine Learning. IEEE Access, 11, 1000–1010. https://doi.org/10.1109/ACCESS.2022.3233529
NetSec. (2024, 28 mayo). Microsoft 365 Email Spam Filtering. NetSec.News. https://www.netsec.news/microsoft-365-email-spam-filtering/
Ordóñez, H., Cobos, C., & Bucheli, V. (2020). Modelo de machine learning para la predicción de las tendencias de hurto en Colombia Machine learning model for predicting theft trends in Colombia. https://www.proquest.com/openview/fb8bfe36673b48be2d035ee8a035c307/1?pq-origsite=gscholar&cbl=1006393
Panch, T., Szolovits, P., & Atun, R. (2018). Artificial intelligence, machine learning and health systems. Journal of global health, 8(2).
PayPal. (2023). Harnessing the power of machine learning for payment fraud detection. PayPal. https://paypal.com/us/brc/article/payment-fraud-detection-machine-learning
Pedrero Victor, Cortez Erick, Grandon Katiuska, & Ureta Joaquin. (2021). Generalidades del Machine Learning y su aplicación en la gestión sanitaria en Servicios de Urgencia. Rev Med Chile, 248–254. https://www.scielo.cl/scielo.php?pid=S0034-98872021000200248&script=sci_arttext
Pineda, J. M. (2022). Predictive models in health based on machine learning. Revista Medica Clinica Las Condes, 33(6), 583–590. https://doi.org/10.1016/j.rmclc.2022.11.002
Rashid, M., Bari, B. S., Yusup, Y., Kamaruddin, M. A., & Khan, N. (2021). A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches with Special Emphasis on Palm Oil Yield Prediction. In IEEE Access (Vol. 9, pp. 63406–63439). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2021.3075159
Rosero-Montalvo, P. D., Gordillo-Gordillo, C. A., & Hernandez, W. (2023). Smart Farming Robot for Detecting Environmental Conditions in a Greenhouse. IEEE Access, 11, 57843–57853. https://doi.org/10.1109/ACCESS.2023.3283986
Sandoval, L. (2018). ENERO-DICIEMBRE 2018 Derechos Reservados • Escuela Especializada en Ingeniería ITCA-FEPADE (Vol. 11). http://redicces.org.sv/jspui/handle/10972/3626
Shu Yee, O., Sagadevan, S., & Hashimah Ahamed Hassain Malim, N. (2018). Credit Card Fraud Detection Using Machine Learning As Data Mining Technique. 10. https://jtec.utem.edu.my/jtec/article/view/3571
Siemens Healthineers. (2021) Aritificial Intelligence in radiology. https://www.siemens-healthineers.com/medical-imaging/digital-transformation-of-radiology/ai-in-radiology
Wijaya, D. R., Syarwan, N. F., Nugraha, M. A., Ananda, D., Fahrudin, T., & Handayani, R. (2023). Seafood Quality Detection Using Electronic Nose and Machine Learning Algorithms With Hyperparameter Optimization. IEEE Access, 11, 62484–62495. https://doi.org/10.1109/ACCESS.2023.3286980
Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., & Wang, C. (2018). Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access, 6, 35365–35381. https://doi.org/10.1109/ACCESS.2018.2836950
Zaytsev, A. (2023, octubre 28). Case study: How Cargill leverages AI to transform its global operations. AIX | AI Expert Network; AIX. https://aiexpert.network/case-study-how-cargill-leverages-ai-to-transform-its-global-operations/
Zhang, S., Xie, X., & Xu, Y. (2020). A Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity. IEEE Access, 8, 128250–128263. https://doi.org/10.1109/ACCESS.2020.3008433
Zhao, G., Jia, P., Huang, C., Zhou, A., & Fang, Y. (2020). A Machine Learning Based Framework for Identifying Influential Nodes in Complex Networks. IEEE Access, 8, 65462–65471. https://doi.org/10.1109/ACCESS.2020.2984286
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv PDF
dc.coverage.spatial.spa.fl_str_mv Cúcuta
institution Universidad Libre
bitstream.url.fl_str_mv http://repository.unilibre.edu.co/bitstream/10901/30203/10/Portada.jpg
http://repository.unilibre.edu.co/bitstream/10901/30203/9/license.txt
http://repository.unilibre.edu.co/bitstream/10901/30203/2/Uso%20del%20aprendizaje%20de%20m%c3%a1quina%20en%20diferentes%20sectores%20industriales.pdf
http://repository.unilibre.edu.co/bitstream/10901/30203/3/RESUMEN.pdf
http://repository.unilibre.edu.co/bitstream/10901/30203/5/Resolucion%20David.pdf
http://repository.unilibre.edu.co/bitstream/10901/30203/6/Resolucio%cc%81n%20Ciro.pdf
http://repository.unilibre.edu.co/bitstream/10901/30203/8/Autorizaci%c3%b3n%20repositorio.pdf
bitstream.checksum.fl_str_mv 81ac477a70ab6affe954c5a2fea899fc
8a4605be74aa9ea9d79846c1fba20a33
8c34aa00c608f3f027c575e969758d9a
90b3906d96d1a59d042d35227a5220fe
d57b30110d71de9bb13624c193eead2e
74d0b71d9c203ff341cdb33b7b36c53b
cf57734400df92d89a23a9d4a0f6b0b9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Unilibre
repository.mail.fl_str_mv repositorio@unilibrebog.edu.co
_version_ 1814090599969587200
spelling Villamizar Estrada, AvilioDuarte Vargas, Ciro AdrianCastillo Marquez, DavidCúcuta2024-10-15T15:36:44Z2024-10-15T15:36:44Z2024-10-09https://hdl.handle.net/10901/30203En la actualidad, la confiabilidad y eficiencia de las empresas están estrechamente relacionadas con su capacidad para resolver problemas de manera efectiva. El aprendizaje automático (Machine Learning) ha emergido como una herramienta clave para lograr esta eficiencia, facilitando la optimización de procesos en una variedad de sectores industriales. El artículo explora cómo el aprendizaje automático está revolucionando múltiples industrias al mejorar la automatización de tareas, el análisis de datos y la toma de decisiones. Al integrar inteligencia artificial (IA) y redes neuronales artificiales (Artificial Neural Networks), el aprendizaje automático está contribuyendo significativamente a la creación de procesos más eficientes y adaptativos, avanzando así hacia la Industria 4.0. Además, el artículo presenta varios casos de éxito donde el aprendizaje automático ha sido esencial para alcanzar mejoras destacadas en diferentes sectores. Estos ejemplos demuestran el impacto positivo de esta tecnología en la optimización de operaciones y en la capacidad de las empresas para adaptarse y prosperar en un entorno cada vez más digitalizado.Universidad Libre - Facultad de Ingenierías - Ingeniería en Tecnologías de la Información y las ComunicacionesCurrently, the reliability and efficiency of companies are increasingly tied to their ability to solve problems effectively within their respective sectors. Machine Learning has emerged as a crucial tool to achieve this efficiency, driving process optimization across various industrial sectors. The article highlights how machine learning is transforming multiple industries by enhancing task automation, data analysis, and decision-making. By leveraging artificial intelligence (AI) and artificial neural networks, machine learning facilitates the creation of more efficient and adaptive processes, significantly contributing to the evolution towards Industry 4.0. The article also presents several success stories where machine learning has been fundamental in achieving notable improvements in different sectors. These examples illustrate the positive impact of this technology on optimizing operations and enhancing the ability of companies to adapt and thrive in an increasingly digitalized environment.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2redes neuronales artificialesaprendizaje profundointeligencia artificialaprendizaje automáticoindustria 4.0artificial neural networkdeep learningartificial intelligencemachine learningindustry 4.0IndustriaMachine LearningUso del aprendizaje de máquina en diferentes sectores industrialesUse of Machine Learning in different industrial sectorsTesis de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisAbadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. http://arxiv.org/abs/1605.08695Abraham, A. (2020). Handbook of measuring system design. Wiley. softcomputing.netAlamro, H., Mtouaa, W., Aljameel, S., Salama, A. S., Hamza, M. A., & Othman, A. Y. (2023). Automated Android Malware Detection Using Optimal Ensemble Learning Approach for Cybersecurity. IEEE Access, 11, 72509–72517. https://doi.org/10.1109/ACCESS.2023.3294263Ali Abdulalem, S. H. O. T. A. E. E. (2022). MDPI Financial Fraud Detection Based on Machine Learning A. https://www.mdpi.com/2076-3417/12/19/9637Aljabri, M., Altamimi, H. S., Albelali, S. A., Al-Harbi, M., Alhuraib, H. T., Alotaibi, N. K., Alahmadi, A. A., AlHaidari, F., Mohammad, R. M. A., & Salah, K. (2022). Detecting Malicious URLs Using Machine Learning Techniques: Review and Research Directions. IEEE Access, 10, 121395–121417. https://doi.org/10.1109/ACCESS.2022.3222307Aracena, C., Villena, F., Arias, F., & Dunstan, J. (2022). Applications of machine learning in healthcare. Revista Medica Clinica Las Condes, 33(6), 568–575. https://doi.org/10.1016/j.rmclc.2022.10.001Basáez, E., & Mora, J. (2021). 556 I N F O R M A C I Ó N D E L A R T Í C U L O Salud e inteligencia artificial: ¿cómo hemos evolucionado? Artificial intelligence in health: where are we in 2022? https://doi.org/Bhuiyan, M. R., & Wree, P. (2023). Animal Behavior for Chicken Identification and Monitoring the Health Condition Using Computer Vision: A Systematic Review. IEEE Access, 11, 126601–126610. https://doi.org/10.1109/access.2023.3331092Castrillon, S. O., Maria, L., Marín, G., Horacio, H., Villegas, J., César, C., & Escobar, P. (2021). Machine learning aplicado en la clasificación y predicción de la depresión: Una revisión sistemática.Cortés, Y., Berenice, C., Landeta, I., Manuel, J., Chacón, B., Guadalupe, J., Pereyra, A., & Osorio, L. (2017). PDF generado a partir de XML-JATS4R por Redalyc Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto El Entorno de la Industria 4.0: Implicaciones y Perspectivas Futuras. https://www.redalyc.org/articulo.oa?id=94454631006Donepudi, P. K. (2019). Automation and Machine Learning in Transforming the Financial Industry. Asian Business Review, 9. https://doi.org/10.18034/abr.v9i3.494Elbasi, E., Mostafa, N., Alarnaout, Z., Zreikat, A. I., Cina, E., Varghese, G., Shdefat, A., Topcu, A. E., Abdelbaki, W., Mathew, S., & Zaki, C. (2023). Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review. In IEEE Access (Vol. 11, pp. 171–202). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2022.3232485González-García, C. (2018). En qué consiste el aprendizaje automático (machine learning) y qué está aportando a la Neurociencia Cognitiva. Cienc. Cogn, 12(2), 48-50.Gutiérrez, C., & López, M. (2022). Health in the digital age. Revista Medica Clinica Las Condes, 33(6), 562–567. https://doi.org/10.1016/j.rmclc.2022.11.001Halbouni, A., Gunawan, T. S., Habaebi, M. H., Halbouni, M., Kartiwi, M., & Ahmad, R. (2022). Machine Learning and Deep Learning Approaches for CyberSecurity: A Review. In IEEE Access (Vol. 10, pp. 19572–19585). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2022.3151248Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. https://doi.org/10.1007/s12525-021-00475-2/PublishedKumar, V., Saheb, S. S., Preeti, Ghayas, A., Kumari, S., Chandel, J. K., Pandey, S. K., & Kumar, S. (2023). AI-Based Hybrid Models for Predicting Loan Risk in the Banking Sector. Big Data Mining and Analytics, 6(4), 478–490. https://doi.org/10.26599/BDMA.2022.9020037Leo, M., Sharma, S., & Maddulety, K. (2019). Machine learning in banking risk management: A literature review. Risks, 7(1). https://doi.org/10.3390/risks7010029Masna, N. V. R., Chen, C., Mandal, S., & Bhunia, S. (2019). Robust Authentication of Consumables With Extrinsic Tags and Chemical Fingerprinting. IEEE Access, 7, 14396–14409. https://doi.org/10.1109/ACCESS.2019.2893518Met, I., Erkoc, A., & Seker, S. E. (2023). Performance, Efficiency, and Target Setting for Bank Branches: Time Series With Automated Machine Learning. IEEE Access, 11, 1000–1010. https://doi.org/10.1109/ACCESS.2022.3233529NetSec. (2024, 28 mayo). Microsoft 365 Email Spam Filtering. NetSec.News. https://www.netsec.news/microsoft-365-email-spam-filtering/Ordóñez, H., Cobos, C., & Bucheli, V. (2020). Modelo de machine learning para la predicción de las tendencias de hurto en Colombia Machine learning model for predicting theft trends in Colombia. https://www.proquest.com/openview/fb8bfe36673b48be2d035ee8a035c307/1?pq-origsite=gscholar&cbl=1006393Panch, T., Szolovits, P., & Atun, R. (2018). Artificial intelligence, machine learning and health systems. Journal of global health, 8(2).PayPal. (2023). Harnessing the power of machine learning for payment fraud detection. PayPal. https://paypal.com/us/brc/article/payment-fraud-detection-machine-learningPedrero Victor, Cortez Erick, Grandon Katiuska, & Ureta Joaquin. (2021). Generalidades del Machine Learning y su aplicación en la gestión sanitaria en Servicios de Urgencia. Rev Med Chile, 248–254. https://www.scielo.cl/scielo.php?pid=S0034-98872021000200248&script=sci_arttextPineda, J. M. (2022). Predictive models in health based on machine learning. Revista Medica Clinica Las Condes, 33(6), 583–590. https://doi.org/10.1016/j.rmclc.2022.11.002Rashid, M., Bari, B. S., Yusup, Y., Kamaruddin, M. A., & Khan, N. (2021). A Comprehensive Review of Crop Yield Prediction Using Machine Learning Approaches with Special Emphasis on Palm Oil Yield Prediction. In IEEE Access (Vol. 9, pp. 63406–63439). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2021.3075159Rosero-Montalvo, P. D., Gordillo-Gordillo, C. A., & Hernandez, W. (2023). Smart Farming Robot for Detecting Environmental Conditions in a Greenhouse. IEEE Access, 11, 57843–57853. https://doi.org/10.1109/ACCESS.2023.3283986Sandoval, L. (2018). ENERO-DICIEMBRE 2018 Derechos Reservados • Escuela Especializada en Ingeniería ITCA-FEPADE (Vol. 11). http://redicces.org.sv/jspui/handle/10972/3626Shu Yee, O., Sagadevan, S., & Hashimah Ahamed Hassain Malim, N. (2018). Credit Card Fraud Detection Using Machine Learning As Data Mining Technique. 10. https://jtec.utem.edu.my/jtec/article/view/3571Siemens Healthineers. (2021) Aritificial Intelligence in radiology. https://www.siemens-healthineers.com/medical-imaging/digital-transformation-of-radiology/ai-in-radiologyWijaya, D. R., Syarwan, N. F., Nugraha, M. A., Ananda, D., Fahrudin, T., & Handayani, R. (2023). Seafood Quality Detection Using Electronic Nose and Machine Learning Algorithms With Hyperparameter Optimization. IEEE Access, 11, 62484–62495. https://doi.org/10.1109/ACCESS.2023.3286980Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., & Wang, C. (2018). Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access, 6, 35365–35381. https://doi.org/10.1109/ACCESS.2018.2836950Zaytsev, A. (2023, octubre 28). Case study: How Cargill leverages AI to transform its global operations. AIX | AI Expert Network; AIX. https://aiexpert.network/case-study-how-cargill-leverages-ai-to-transform-its-global-operations/Zhang, S., Xie, X., & Xu, Y. (2020). A Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity. IEEE Access, 8, 128250–128263. https://doi.org/10.1109/ACCESS.2020.3008433Zhao, G., Jia, P., Huang, C., Zhou, A., & Fang, Y. (2020). A Machine Learning Based Framework for Identifying Influential Nodes in Complex Networks. IEEE Access, 8, 65462–65471. https://doi.org/10.1109/ACCESS.2020.2984286THUMBNAILPortada.jpgPortada.jpgPortadaimage/jpeg79655http://repository.unilibre.edu.co/bitstream/10901/30203/10/Portada.jpg81ac477a70ab6affe954c5a2fea899fcMD510LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/30203/9/license.txt8a4605be74aa9ea9d79846c1fba20a33MD59ORIGINALUso del aprendizaje de máquina en diferentes sectores industriales.pdfUso del aprendizaje de máquina en diferentes sectores industriales.pdfArticuloapplication/pdf418662http://repository.unilibre.edu.co/bitstream/10901/30203/2/Uso%20del%20aprendizaje%20de%20m%c3%a1quina%20en%20diferentes%20sectores%20industriales.pdf8c34aa00c608f3f027c575e969758d9aMD52RESUMEN.pdfRESUMEN.pdfapplication/pdf59570http://repository.unilibre.edu.co/bitstream/10901/30203/3/RESUMEN.pdf90b3906d96d1a59d042d35227a5220feMD53Resolucion David.pdfResolucion David.pdfapplication/pdf750939http://repository.unilibre.edu.co/bitstream/10901/30203/5/Resolucion%20David.pdfd57b30110d71de9bb13624c193eead2eMD55Resolución Ciro.pdfResolución Ciro.pdfapplication/pdf807498http://repository.unilibre.edu.co/bitstream/10901/30203/6/Resolucio%cc%81n%20Ciro.pdf74d0b71d9c203ff341cdb33b7b36c53bMD56Autorización repositorio.pdfAutorización repositorio.pdfapplication/pdf2394349http://repository.unilibre.edu.co/bitstream/10901/30203/8/Autorizaci%c3%b3n%20repositorio.pdfcf57734400df92d89a23a9d4a0f6b0b9MD5810901/30203oai:repository.unilibre.edu.co:10901/302032024-10-15 10:43:09.891Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=