Evaluación de los escenarios de amenaza y riesgo del Sistema de Acueducto del Municipio de Mistrató, Risaralda

La prestación de los servicios públicos domiciliarios se constituye en uno de los elementos sustanciales de la planificación territorial y de la gestión del riesgo de desastres. A partir de dicha consideración y en virtud de los impactos y efectos sobre los grupos poblacionales y el desarrollo local...

Full description

Autores:
Ocampo Méndez, David
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Libre
Repositorio:
RIU - Repositorio Institucional UniLibre
Idioma:
OAI Identifier:
oai:repository.unilibre.edu.co:10901/28176
Acceso en línea:
https://hdl.handle.net/10901/28176
Palabra clave:
riesgo
acueducto
mistrato
deslizamiento
risk
aqueduct
mistrato
slide
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id RULIBRE2_0d94526934ccbc3ad9ee9e85d5cc88f2
oai_identifier_str oai:repository.unilibre.edu.co:10901/28176
network_acronym_str RULIBRE2
network_name_str RIU - Repositorio Institucional UniLibre
repository_id_str
dc.title.spa.fl_str_mv Evaluación de los escenarios de amenaza y riesgo del Sistema de Acueducto del Municipio de Mistrató, Risaralda
title Evaluación de los escenarios de amenaza y riesgo del Sistema de Acueducto del Municipio de Mistrató, Risaralda
spellingShingle Evaluación de los escenarios de amenaza y riesgo del Sistema de Acueducto del Municipio de Mistrató, Risaralda
riesgo
acueducto
mistrato
deslizamiento
risk
aqueduct
mistrato
slide
title_short Evaluación de los escenarios de amenaza y riesgo del Sistema de Acueducto del Municipio de Mistrató, Risaralda
title_full Evaluación de los escenarios de amenaza y riesgo del Sistema de Acueducto del Municipio de Mistrató, Risaralda
title_fullStr Evaluación de los escenarios de amenaza y riesgo del Sistema de Acueducto del Municipio de Mistrató, Risaralda
title_full_unstemmed Evaluación de los escenarios de amenaza y riesgo del Sistema de Acueducto del Municipio de Mistrató, Risaralda
title_sort Evaluación de los escenarios de amenaza y riesgo del Sistema de Acueducto del Municipio de Mistrató, Risaralda
dc.creator.fl_str_mv Ocampo Méndez, David
dc.contributor.advisor.none.fl_str_mv alzate buitrago, alejandro
dc.contributor.author.none.fl_str_mv Ocampo Méndez, David
dc.subject.spa.fl_str_mv riesgo
acueducto
mistrato
deslizamiento
topic riesgo
acueducto
mistrato
deslizamiento
risk
aqueduct
mistrato
slide
dc.subject.subjectenglish.spa.fl_str_mv risk
aqueduct
mistrato
slide
description La prestación de los servicios públicos domiciliarios se constituye en uno de los elementos sustanciales de la planificación territorial y de la gestión del riesgo de desastres. A partir de dicha consideración y en virtud de los impactos y efectos sobre los grupos poblacionales y el desarrollo local, que generaría la suspensión temporal o definitiva de la prestación del servicio de acueducto, los gobiernos locales y regionales, en el marco de las políticas nacionales y la legislación sectorial, deben ejecutar los estudios diagnósticos necesarios e implementar las políticas, estrategias, programas, proyectos y acciones necesarias para garantizar la continuidad de la prestación de los servicios públicos ante la eventual ocurrencia de algún evento de origen natural o antrópico que pueda comprometer la prestación oportuna y eficiente de los mismos. Cabe entonces precisar que las particularidades de cada territorio y las capacidades locales orientarán la respuesta ante los escenarios probables de amenaza/riesgo, reconociendo que cada operador, a partir de sus experiencias y realidades territoriales, reconoce sus fortalezas y limitaciones técnicas, operativas, financieras y administrativas, pero que de igual forma identifica las estrategias y acciones mínimas que le permiten garantizar la prestación de los servicios que opera. El municipio de Mistrató, a través del accionar de su empresa prestadora de servicios públicos, debe velar por la prestación eficiente del sistema de acueducto y garantizar que los niveles de vulnerabilidad (exposición y fragilidad) de cada uno de sus componentes sean bajos/aceptables ante la potencial ocurrencia de amenazas que puedan generar escenarios de riesgo de alta complejidad técnica y financiera.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-26T23:48:18Z
dc.date.available.none.fl_str_mv 2024-01-26T23:48:18Z
dc.date.created.none.fl_str_mv 2024-01-18
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis de Pregrado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10901/28176
url https://hdl.handle.net/10901/28176
dc.relation.references.spa.fl_str_mv Alam, M. (2019). Decision Support on Risk Reduction Alternatives in Drinking Water Systems A multi-criteria analysis for making risk management decisions. August.
Alshamsi, H. (2017). Managing Major Emergencies: Recommendations to develop effective contingency planning in the United Arab Emirates (Issue December)
Bata, M. T. H., Carriveau, R., & Ting, D. S. K. (2022). Urban water supply systems’ resilience under earthquake scenario. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598-022-23126-8
Behzadi, F., Wasti, A., Steissberg, T. E., & Ray, P. A. (2022). Vulnerability assessment of drinking water supply under climate uncertainty using a river contamination risk (RANK) model. Environmental Modelling and Software, 150, 105294. https://doi.org/10.1016/j.envsoft.2021.105294
Bristow, E., Kanta, L., & Brumbelow, K. (2007). Coupled assessment of water and fire systems damages under attack and disaster scenarios. Examining the Confluence of Environmental and Water Concerns - Proceedings of the World Environmental and Water Resources Congress 2006. https://doi.org/10.1061/40856(200)29
Bruce, J. P. (1999). Disaster loss mitigation as an adaptation to climate variability and change. Mitigation and Adaptation Strategies for Global Change, 4(3–4), 295–306. https://doi.org/10.1023/a:1009615721957
Chang, S. E. (2003). Infrastructure Systems. Resilience Engineering, 4(4), 31–42. https://doi.org/10.1017/cbo9781139026772.003
Chung, A. Q. H. (2014). Emergency Preparedness and Response Planning : A Value-Based Approach to Preparing Coastal Communities for Sea Level Rise. 212.
Cimellaro, G. P., Tinebra, A., Renschler, C., & Fragiadakis, M. (2016). New Resilience Index for Urban Water Distribution Networks. Journal of Structural Engineering, 142(8), 1–13. https://doi.org/10.1061/(asce)st.1943-541x.0001433
Epstein, A. L., & Harding, G. H. (2019). Disaster planning and emergency preparedness. In Clinical Engineering Handbook, Second Edition (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813467-2.00099-7
Eriksson, K., & McConnell, A. (2011). Contingency planning for crisis management: Recipe for success or political fantasy? Policy and Society, 30(2), 89–99. https://doi.org/10.1016/j.polsoc.2011.03.004
Garrick, D., & Hall, J. W. (2014). Water security and society: Risks, metrics, and pathways. Annual Review of Environment and Resources, 39, 611–639. https://doi.org/10.1146/annurev-environ-013012-093817
Gill, T. (2014). Building Resilience: Social Capital in Post-Disaster Recovery. Social Science Japan Journal, 17(1), 118–122. https://doi.org/10.1093/ssjj/jyt046
Gonzáles, H. (1993). Mapa Geológico del departamento de Risaralda Geología y recursos Minerales. Bogotá: Ingeominas
Grigg, N. S. (2003). Water utility security: Multiple hazards and multiple barriers. Journal of Infrastructure Systems, 9(2), 81–88. https://doi.org/10.1061/(ASCE)1076- 0342(2003)9:2(81)
Guikema, S. D. (2009). Natural disaster risk analysis for critical infrastructure systems: An approach based on statistical learning theory. Reliability Engineering and System Safety, 94(4), 855–860. https://doi.org/10.1016/j.ress.2008.09.003
Hartmann, J., van der Aa, M., Wuijts, S., de Roda Husman, A. M., & van der Hoek, J. P. (2018). Risk governance of potential emerging risks to drinking water quality: Analysing current practices. Environmental Science and Policy, 84(February), 97–104. https://doi.org/10.1016/j.envsci.2018.02.01
Heegaard, P. E., Helvik, B. E., Trivedi, K. S., & Machida, F. (2015). Survivability as a generalization of recovery. 2015 11th International Conference on the Design of Reliable Communication Networks, DRCN 2015, 133–140. https://doi.org/10.1109/DRCN.2015.7149004
Kamaludin, T. M., Rusdin, A., Nirmalawati, Fadjar, A., & Wahab, A. (2022). Risk Management in the Development of a Regional Drinking Water Supply System. IOP Conference Series: Earth and Environmental Science, 1075(1). https://doi.org/10.1088/1755-1315/1075/1/012038
Kaneberg, E. (2018). Emergency preparedness management and civil defence in Sweden : An all-hazards approach for developed countries’ supply chains (Issue 121)
LeBlanc, R. M. (2015). Building Resilience: Social Capital in Post-disaster Recovery by Daniel P. Aldrich. The Journal of Japanese Studies, 41(1), 185–189. https://doi.org/10.1353/jjs.2015.0015
Li, H., & Uk, A. (2007). Hierarchical Risk Assessment of Water Supply Systems CORE View metadata, citation and similar papers at core. March.
Lindhe, A., Rosén, L., & Hokstad, P. (2010). Risk evaluation and decision support for drinking water systems. Risk (Quality), 3000(December), 4000.
Marques, J. R., & Da Conceição Cunha, M. (2011). Infrastructure management methodologies in risk situations. International Journal of Sustainable Development and Planning, 6(1), 1–12. https://doi.org/10.2495/SDP-V6-N1-1-12
Mottahedi, A., Sereshki, F., Ataei, M., Qarahasanlou, A. N., & Barabadi, A. (2021). The resilience of critical infrastructure systems: A systematic literature review. In Energies (Vol. 14, Issue 6). https://doi.org/10.3390/en14061571
Pagano, A., Giordano, R., Portoghese, I., Fratino, U., & Vurro, M. (2014). A Bayesian vulnerability assessment tool for drinking water mains under extreme events. Natural Hazards, 74(3), 2193–2227. https://doi.org/10.1007/s11069-014-1302-5
Pagano, A., Pluchinotta, I., Giordano, R., & Vurro, M. (2017). Drinking water supply in resilient cities: Notes from L’Aquila earthquake case study. Sustainable Cities and Society, 28, 435–449. https://doi.org/10.1016/j.scs.2016.09.005
Rak, J. R., Tchórzewska-Cieślak, B., & Pietrucha-Urbanik, K. (2019). A hazard assessment method for waterworks systems operating in self-government units. International Journal of Environmental Research and Public Health, 16(5), 1–12. https://doi.org/10.3390/ijerph16050767
Rucka, J. A. N., & Juhanak, T. (2006). Risk Analysis of Water Distribution Systems. 169– 182
Sathurshan, M., Saja, A., Thamboo, J., Haraguchi, M., & Navaratnam, S. (2022). Resilience of Critical Infrastructure Systems: A Systematic Literature Review of Measurement Frameworks. In Infrastructures (Vol. 7, Issue 5). https://doi.org/10.3390/infrastructures7050067
Tchórzewska-Cieślak, B., Pietrucha-Urbanik, K., & Eid, M. (2021). Functional safety concept to support hazard assessment and risk management in water-supply systems. Energies, 14(4). https://doi.org/10.3390/en14040947
Tramullas, J. (2013). Capítulo Iii Marco. Journal of Chemical Information and Modeling, 53(9), 1689–1699. http://virtual.urbe.edu/tesispub/0106891/cap03.pdf
Tuhov, L., & Ru, J. (2007). Hazard Identification and Risk Analysis. Guidelines for Risk Based Process Safety, 209–242. https://doi.org/10.1002/9780470925119.ch9
Vassiljev, A., Koppel, T., & Puust, R. (2012). Use of error analysis for calibration of water distribution systems. Water Distribution Systems Analysis 2010 - Proceedings of the 12th International Conference, WDSA 2010, 1256–1269. https://doi.org/10.1061/41203(425)113
Wang, Y., Au, S. K., & Fu, Q. (2010). Seismic risk assessment and mitigation of water supply systems. Earthquake Spectra, 26(1), 257–274. https://doi.org/10.1193/1.3276900
Wu, D., Wang, H., Mohammed, H., & Seidu, R. (2020). Quality Risk Analysis for Sustainable Smart Water Supply Using Data Perception. IEEE Transactions on Sustainable Computing, 5(3), 377–388. https://doi.org/10.1109/TSUSC.2019.2929953
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv PDF
dc.coverage.spatial.spa.fl_str_mv Pereira
institution Universidad Libre
bitstream.url.fl_str_mv http://repository.unilibre.edu.co/bitstream/10901/28176/7/ProyectoDavidOcampo%28Diciembre1de2023%29.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/28176/8/david%20felipe%20Ocampo%20mendez.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/28176/6/license.txt
http://repository.unilibre.edu.co/bitstream/10901/28176/1/ProyectoDavidOcampo%28Diciembre1de2023%29.pdf
http://repository.unilibre.edu.co/bitstream/10901/28176/5/david%20felipe%20Ocampo%20mendez.pdf
bitstream.checksum.fl_str_mv 2e35a9a969becb8c33cc122695192457
1c3cfc64cbd1948b4d4a44b322de911f
8a4605be74aa9ea9d79846c1fba20a33
2a59e5111dcfc693636ea421e1685d12
f0ebaed6f8a9605eb88491c57893bac7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Unilibre
repository.mail.fl_str_mv repositorio@unilibrebog.edu.co
_version_ 1814090575789424640
spelling alzate buitrago, alejandroOcampo Méndez, DavidPereira2024-01-26T23:48:18Z2024-01-26T23:48:18Z2024-01-18https://hdl.handle.net/10901/28176La prestación de los servicios públicos domiciliarios se constituye en uno de los elementos sustanciales de la planificación territorial y de la gestión del riesgo de desastres. A partir de dicha consideración y en virtud de los impactos y efectos sobre los grupos poblacionales y el desarrollo local, que generaría la suspensión temporal o definitiva de la prestación del servicio de acueducto, los gobiernos locales y regionales, en el marco de las políticas nacionales y la legislación sectorial, deben ejecutar los estudios diagnósticos necesarios e implementar las políticas, estrategias, programas, proyectos y acciones necesarias para garantizar la continuidad de la prestación de los servicios públicos ante la eventual ocurrencia de algún evento de origen natural o antrópico que pueda comprometer la prestación oportuna y eficiente de los mismos. Cabe entonces precisar que las particularidades de cada territorio y las capacidades locales orientarán la respuesta ante los escenarios probables de amenaza/riesgo, reconociendo que cada operador, a partir de sus experiencias y realidades territoriales, reconoce sus fortalezas y limitaciones técnicas, operativas, financieras y administrativas, pero que de igual forma identifica las estrategias y acciones mínimas que le permiten garantizar la prestación de los servicios que opera. El municipio de Mistrató, a través del accionar de su empresa prestadora de servicios públicos, debe velar por la prestación eficiente del sistema de acueducto y garantizar que los niveles de vulnerabilidad (exposición y fragilidad) de cada uno de sus componentes sean bajos/aceptables ante la potencial ocurrencia de amenazas que puedan generar escenarios de riesgo de alta complejidad técnica y financiera.universidad libre seccional pereira- facultad de ingenieria-ingenieria civilPDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2riesgoacueductomistratodeslizamientoriskaqueductmistratoslideEvaluación de los escenarios de amenaza y riesgo del Sistema de Acueducto del Municipio de Mistrató, RisaraldaTesis de Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAlam, M. (2019). Decision Support on Risk Reduction Alternatives in Drinking Water Systems A multi-criteria analysis for making risk management decisions. August.Alshamsi, H. (2017). Managing Major Emergencies: Recommendations to develop effective contingency planning in the United Arab Emirates (Issue December)Bata, M. T. H., Carriveau, R., & Ting, D. S. K. (2022). Urban water supply systems’ resilience under earthquake scenario. Scientific Reports, 12(1), 1–14. https://doi.org/10.1038/s41598-022-23126-8Behzadi, F., Wasti, A., Steissberg, T. E., & Ray, P. A. (2022). Vulnerability assessment of drinking water supply under climate uncertainty using a river contamination risk (RANK) model. Environmental Modelling and Software, 150, 105294. https://doi.org/10.1016/j.envsoft.2021.105294Bristow, E., Kanta, L., & Brumbelow, K. (2007). Coupled assessment of water and fire systems damages under attack and disaster scenarios. Examining the Confluence of Environmental and Water Concerns - Proceedings of the World Environmental and Water Resources Congress 2006. https://doi.org/10.1061/40856(200)29Bruce, J. P. (1999). Disaster loss mitigation as an adaptation to climate variability and change. Mitigation and Adaptation Strategies for Global Change, 4(3–4), 295–306. https://doi.org/10.1023/a:1009615721957Chang, S. E. (2003). Infrastructure Systems. Resilience Engineering, 4(4), 31–42. https://doi.org/10.1017/cbo9781139026772.003Chung, A. Q. H. (2014). Emergency Preparedness and Response Planning : A Value-Based Approach to Preparing Coastal Communities for Sea Level Rise. 212.Cimellaro, G. P., Tinebra, A., Renschler, C., & Fragiadakis, M. (2016). New Resilience Index for Urban Water Distribution Networks. Journal of Structural Engineering, 142(8), 1–13. https://doi.org/10.1061/(asce)st.1943-541x.0001433Epstein, A. L., & Harding, G. H. (2019). Disaster planning and emergency preparedness. In Clinical Engineering Handbook, Second Edition (Second Edi). Elsevier Inc. https://doi.org/10.1016/B978-0-12-813467-2.00099-7Eriksson, K., & McConnell, A. (2011). Contingency planning for crisis management: Recipe for success or political fantasy? Policy and Society, 30(2), 89–99. https://doi.org/10.1016/j.polsoc.2011.03.004Garrick, D., & Hall, J. W. (2014). Water security and society: Risks, metrics, and pathways. Annual Review of Environment and Resources, 39, 611–639. https://doi.org/10.1146/annurev-environ-013012-093817Gill, T. (2014). Building Resilience: Social Capital in Post-Disaster Recovery. Social Science Japan Journal, 17(1), 118–122. https://doi.org/10.1093/ssjj/jyt046Gonzáles, H. (1993). Mapa Geológico del departamento de Risaralda Geología y recursos Minerales. Bogotá: IngeominasGrigg, N. S. (2003). Water utility security: Multiple hazards and multiple barriers. Journal of Infrastructure Systems, 9(2), 81–88. https://doi.org/10.1061/(ASCE)1076- 0342(2003)9:2(81)Guikema, S. D. (2009). Natural disaster risk analysis for critical infrastructure systems: An approach based on statistical learning theory. Reliability Engineering and System Safety, 94(4), 855–860. https://doi.org/10.1016/j.ress.2008.09.003Hartmann, J., van der Aa, M., Wuijts, S., de Roda Husman, A. M., & van der Hoek, J. P. (2018). Risk governance of potential emerging risks to drinking water quality: Analysing current practices. Environmental Science and Policy, 84(February), 97–104. https://doi.org/10.1016/j.envsci.2018.02.01Heegaard, P. E., Helvik, B. E., Trivedi, K. S., & Machida, F. (2015). Survivability as a generalization of recovery. 2015 11th International Conference on the Design of Reliable Communication Networks, DRCN 2015, 133–140. https://doi.org/10.1109/DRCN.2015.7149004Kamaludin, T. M., Rusdin, A., Nirmalawati, Fadjar, A., & Wahab, A. (2022). Risk Management in the Development of a Regional Drinking Water Supply System. IOP Conference Series: Earth and Environmental Science, 1075(1). https://doi.org/10.1088/1755-1315/1075/1/012038Kaneberg, E. (2018). Emergency preparedness management and civil defence in Sweden : An all-hazards approach for developed countries’ supply chains (Issue 121)LeBlanc, R. M. (2015). Building Resilience: Social Capital in Post-disaster Recovery by Daniel P. Aldrich. The Journal of Japanese Studies, 41(1), 185–189. https://doi.org/10.1353/jjs.2015.0015Li, H., & Uk, A. (2007). Hierarchical Risk Assessment of Water Supply Systems CORE View metadata, citation and similar papers at core. March.Lindhe, A., Rosén, L., & Hokstad, P. (2010). Risk evaluation and decision support for drinking water systems. Risk (Quality), 3000(December), 4000.Marques, J. R., & Da Conceição Cunha, M. (2011). Infrastructure management methodologies in risk situations. International Journal of Sustainable Development and Planning, 6(1), 1–12. https://doi.org/10.2495/SDP-V6-N1-1-12Mottahedi, A., Sereshki, F., Ataei, M., Qarahasanlou, A. N., & Barabadi, A. (2021). The resilience of critical infrastructure systems: A systematic literature review. In Energies (Vol. 14, Issue 6). https://doi.org/10.3390/en14061571Pagano, A., Giordano, R., Portoghese, I., Fratino, U., & Vurro, M. (2014). A Bayesian vulnerability assessment tool for drinking water mains under extreme events. Natural Hazards, 74(3), 2193–2227. https://doi.org/10.1007/s11069-014-1302-5Pagano, A., Pluchinotta, I., Giordano, R., & Vurro, M. (2017). Drinking water supply in resilient cities: Notes from L’Aquila earthquake case study. Sustainable Cities and Society, 28, 435–449. https://doi.org/10.1016/j.scs.2016.09.005Rak, J. R., Tchórzewska-Cieślak, B., & Pietrucha-Urbanik, K. (2019). A hazard assessment method for waterworks systems operating in self-government units. International Journal of Environmental Research and Public Health, 16(5), 1–12. https://doi.org/10.3390/ijerph16050767Rucka, J. A. N., & Juhanak, T. (2006). Risk Analysis of Water Distribution Systems. 169– 182Sathurshan, M., Saja, A., Thamboo, J., Haraguchi, M., & Navaratnam, S. (2022). Resilience of Critical Infrastructure Systems: A Systematic Literature Review of Measurement Frameworks. In Infrastructures (Vol. 7, Issue 5). https://doi.org/10.3390/infrastructures7050067Tchórzewska-Cieślak, B., Pietrucha-Urbanik, K., & Eid, M. (2021). Functional safety concept to support hazard assessment and risk management in water-supply systems. Energies, 14(4). https://doi.org/10.3390/en14040947Tramullas, J. (2013). Capítulo Iii Marco. Journal of Chemical Information and Modeling, 53(9), 1689–1699. http://virtual.urbe.edu/tesispub/0106891/cap03.pdfTuhov, L., & Ru, J. (2007). Hazard Identification and Risk Analysis. Guidelines for Risk Based Process Safety, 209–242. https://doi.org/10.1002/9780470925119.ch9Vassiljev, A., Koppel, T., & Puust, R. (2012). Use of error analysis for calibration of water distribution systems. Water Distribution Systems Analysis 2010 - Proceedings of the 12th International Conference, WDSA 2010, 1256–1269. https://doi.org/10.1061/41203(425)113Wang, Y., Au, S. K., & Fu, Q. (2010). Seismic risk assessment and mitigation of water supply systems. Earthquake Spectra, 26(1), 257–274. https://doi.org/10.1193/1.3276900Wu, D., Wang, H., Mohammed, H., & Seidu, R. (2020). Quality Risk Analysis for Sustainable Smart Water Supply Using Data Perception. IEEE Transactions on Sustainable Computing, 5(3), 377–388. https://doi.org/10.1109/TSUSC.2019.2929953THUMBNAILProyectoDavidOcampo(Diciembre1de2023).pdf.jpgProyectoDavidOcampo(Diciembre1de2023).pdf.jpgIM Thumbnailimage/jpeg23484http://repository.unilibre.edu.co/bitstream/10901/28176/7/ProyectoDavidOcampo%28Diciembre1de2023%29.pdf.jpg2e35a9a969becb8c33cc122695192457MD57david felipe Ocampo mendez.pdf.jpgdavid felipe Ocampo mendez.pdf.jpgIM Thumbnailimage/jpeg29321http://repository.unilibre.edu.co/bitstream/10901/28176/8/david%20felipe%20Ocampo%20mendez.pdf.jpg1c3cfc64cbd1948b4d4a44b322de911fMD58LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/28176/6/license.txt8a4605be74aa9ea9d79846c1fba20a33MD56ORIGINALProyectoDavidOcampo(Diciembre1de2023).pdfProyectoDavidOcampo(Diciembre1de2023).pdfapplication/pdf429800http://repository.unilibre.edu.co/bitstream/10901/28176/1/ProyectoDavidOcampo%28Diciembre1de2023%29.pdf2a59e5111dcfc693636ea421e1685d12MD51david felipe Ocampo mendez.pdfdavid felipe Ocampo mendez.pdfapplication/pdf1707863http://repository.unilibre.edu.co/bitstream/10901/28176/5/david%20felipe%20Ocampo%20mendez.pdff0ebaed6f8a9605eb88491c57893bac7MD5510901/28176oai:repository.unilibre.edu.co:10901/281762024-01-29 06:01:06.222Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=