Inspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo AUA/DRONE
Los puentes son estructuras fundamentales para el desarrollo y sostenimiento de la vida humana, ya que permiten la conectividad y el flujo de personas y bienes, sin embargo, a lo largo de los años, uno de los mayores retos ha sido llevar a cabo estudios patológicos eficaces, debido a que la detecció...
- Autores:
-
Aguirre Gil, Jeferson Camilo
Gallego Lopez, Juan Felipe
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Libre
- Repositorio:
- RIU - Repositorio Institucional UniLibre
- Idioma:
- OAI Identifier:
- oai:repository.unilibre.edu.co:10901/30548
- Acceso en línea:
- https://hdl.handle.net/10901/30548
- Palabra clave:
- Atirantado
Drone
Estructura
Inspeccion visual
Mantenimiento
Patologia
Tratamiento
Visibilidad
Cable Stayed
Drone
Structure
Visual Inspeccion
Maintenance
Pathology
Treatment
Visibility
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
RULIBRE2_056ff1e43d168ecbb69b19b1c908d94f |
---|---|
oai_identifier_str |
oai:repository.unilibre.edu.co:10901/30548 |
network_acronym_str |
RULIBRE2 |
network_name_str |
RIU - Repositorio Institucional UniLibre |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Inspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo AUA/DRONE |
dc.title.alternative.spa.fl_str_mv |
Visual inspection of Cesar Gaviria Trujillo Viaduct in the city of Pereira, Risaralda, by AUS/DRONE |
title |
Inspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo AUA/DRONE |
spellingShingle |
Inspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo AUA/DRONE Atirantado Drone Estructura Inspeccion visual Mantenimiento Patologia Tratamiento Visibilidad Cable Stayed Drone Structure Visual Inspeccion Maintenance Pathology Treatment Visibility |
title_short |
Inspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo AUA/DRONE |
title_full |
Inspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo AUA/DRONE |
title_fullStr |
Inspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo AUA/DRONE |
title_full_unstemmed |
Inspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo AUA/DRONE |
title_sort |
Inspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo AUA/DRONE |
dc.creator.fl_str_mv |
Aguirre Gil, Jeferson Camilo Gallego Lopez, Juan Felipe |
dc.contributor.advisor.none.fl_str_mv |
Amariles Lopez, Cristhian |
dc.contributor.author.none.fl_str_mv |
Aguirre Gil, Jeferson Camilo Gallego Lopez, Juan Felipe |
dc.subject.spa.fl_str_mv |
Atirantado Drone Estructura Inspeccion visual Mantenimiento Patologia Tratamiento Visibilidad |
topic |
Atirantado Drone Estructura Inspeccion visual Mantenimiento Patologia Tratamiento Visibilidad Cable Stayed Drone Structure Visual Inspeccion Maintenance Pathology Treatment Visibility |
dc.subject.subjectenglish.spa.fl_str_mv |
Cable Stayed Drone Structure Visual Inspeccion Maintenance Pathology Treatment Visibility |
description |
Los puentes son estructuras fundamentales para el desarrollo y sostenimiento de la vida humana, ya que permiten la conectividad y el flujo de personas y bienes, sin embargo, a lo largo de los años, uno de los mayores retos ha sido llevar a cabo estudios patológicos eficaces, debido a que la detección de patologías a menudo ocurre cuando la estructura ya está cerca del colapso o ha colapsado, lo que incrementa el riesgo para la vida humana, es por eso, que en estructuras de grandes dimensiones, como los puentes atirantados, el acceso para realizar mediciones y evaluaciones es limitado, dificultando la detección temprana de grietas y otras anomalías. y a pesar de que la industria de la construcción no ha avanzado al mismo ritmo que otras tecnologías en las últimas décadas, el uso de drones o vehículos aéreos no tripulados (UAV) ha surgido como una solución innovadora que facilita la inspección visual, especialmente en zonas de difícil acceso. Estos drones, equipados con cámaras 4K y sensores de proximidad, permiten obtener imágenes en tiempo real de las estructuras, aumentando la seguridad y eficiencia de las inspecciones, por tanto, en Colombia, los drones están autorizados a volar a una altitud máxima de 120 metros, y con un alcance horizontal de hasta 1200 metros, cumpliendo con las regulaciones aeronáuticas. En este estudio se emplearon drones para la inspección visual del Viaducto César Gaviria Trujillo, un puente atirantado en Pereira, Risaralda, que presenta una luz principal de 211 metros y pilones de 96 y 105 metros de altura, Se ha verificado que la utilización de esta tecnología permite una mejora significativa en los tiempos de inspección y en la precisión del diagnóstico de posibles fallas estructurales, cumpliendo con los lineamientos establecidos por el Manual de Inspección Visual de Puentes de INVIAS; entonces, este enfoque no solo mejora la seguridad y eficiencia del proceso, sino que representa un avance en la práctica ingenieril al integrar tecnologías emergentes para abordar los desafíos inherentes a las grandes infraestructuras. |
publishDate |
2024 |
dc.date.created.none.fl_str_mv |
2024-12-16 |
dc.date.accessioned.none.fl_str_mv |
2025-01-31T19:44:24Z |
dc.date.available.none.fl_str_mv |
2025-01-31T19:44:24Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.local.spa.fl_str_mv |
Tesis de Pregrado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10901/30548 |
url |
https://hdl.handle.net/10901/30548 |
dc.relation.references.spa.fl_str_mv |
Alejandrino, J., Concepcion, R., Lauguico, S., Almero, V. J., De Guia, J., Flores, R., Bandala, A., & Dadios, E. (2020, diciembre 3). Structural Health Fuzzy Classification of Bridge based on Subjective and Objective Inspections. 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2020. https://doi.org/10.1109/HNICEM51456.2020.9400054 Aliyari, M., Droguett, E. L., & Ayele, Y. Z. (2021). Uav-based bridge inspection via transfer learning. Sustainability (Switzerland), 13(20). https://doi.org/10.3390/su132011359 Alsharqawi, M., Zayed, T., & Abu Dabous, S. (2018). Integrated condition rating and forecasting method for bridge decks using Visual Inspection and Ground Penetrating Radar. Automation in Construction, 89, 135–145. https://doi.org/10.1016/j.autcon.2018.01.016 Ayele, Y. Z., Aliyari, M., Griffths, D., & Droguett, E. L. (2020). Automatic crack segmentation for uav-assisted bridge inspection. Energies, 13(23). https://doi.org/10.3390/en13236250 Beskopylny, A. N., Vernezi, N. L., Veremeenko, A. A., & Arakelyan, R. M. (2019). Experience non-destructive testing of the metal of bridge structures. IOP Conference Series: Materials Science and Engineering, 698(6). https://doi.org/10.1088/1757-899X/698/6/066001 Bolourian, N., & Hammad, A. (2020). LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection. Automation in Construction, 117. https://doi.org/10.1016/j.autcon.2020.103250 Borin, P., & Cavazzini, F. (2019). CONDITION ASSESSMENT of RC BRIDGES. INTEGRATING MACHINE LEARNING, PHOTOGRAMMETRY and BIM. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W15), 201–208. https://doi.org/10.5194/isprs-archives-XLII-2-W15-201-2019 Castellani, M., A., M., E., G.-M., F., A., & F., U. (2024). UAV photogrammetry and laser scanning of bridges: a new methodology and its application to a case study. Procedia Structural Integrity, 62, 193–200. https://doi.org/10.1016/j.prostr.2024.09.033 Falorca, J. F., Miraldes, J. P. N. D., & Lanzinha, J. C. G. (2021). New trends in visual inspection of buildings and structures: Study for the use of drones. Open Engineering, 11(1), 734–743. https://doi.org/10.1515/eng-2021-0071 Funabora, Y., Maeda, K., Doki, kae, & Doki, S. (2018). Flight Path Planning of Multiple UAVs for Robust Localization near Infrastructure Facilities* (A. Japan, Ed.). Institute of Electrical and Electronics Engineers. Godart, B. (2015). Pathology, appraisal, repair and management of old prestressed concrete beam and slab bridges. Structure and Infrastructure Engineering, 11(4), 501–518. https://doi.org/10.1080/15732479.2014.951865 Gomez-Cardenas, C., Sbartaï, Z. M., Balayssac, J. P., Garnier, V., & Breysse, D. (2015). New optimization algorithm for optimal spatial sampling during non-destructive testing of concrete structures. Engineering Structures, 88, 92–99. https://doi.org/10.1016/j.engstruct.2015.01.014 Gómez-Soberón, M. C., Pérez, E., Salas, D., & De León-Escobedo, D. (2022). Seismic vulnerability through drift assessment for bridges with geometrical irregularities. European Journal of Environmental and Civil Engineering, 26(3), 919–932. https://doi.org/10.1080/19648189.2019.1686428 Gonçalves Cardoso, M. (2008). Engenharia Civil Inspeção de ponte ferroviária metálica: verificação da capacidade de carga da “Ponte da Barra” em Ouro Preto/MG (Inspection of steel bridge railway verification of carrying capacity of the “Bridge of Barra” in Ouro Preto/MG) Luiz Cláudio Cândido (Vol. 61, Número 2). Guo li Gaoxiong da xue, IEEE Computer Society, & Institute of Electrical and Electronics Engineers. (2019). Proceedings, the 2019 International Conference on Technologies and Applications of Artificial Intelligence : TAAI 2019 : Kaohsiung, Taiwan, Nov. 21-23, 2019. Hartung, R., Naraniecki, H., Klemt-Albert, K., & Marx, S. (2020). Konzept zur BIM-basierten Instandhaltung von Ingenieurbauwerken mit Monitoringsystemen. Bautechnik, 97(12), 826–835. https://doi.org/10.1002/bate.202000095 Huang, I. F., & Chen, P. H. (2020). Automated steel bridge coating rust defect recognition method based on U-net fully convolutional networks. 2nd IEEE International Conference on Architecture, Construction, Environment and Hydraulics 2020, ICACEH 2020, 18–21. https://doi.org/10.1109/ICACEH51803.2020.9366258 Jafari, F., & Dorafshan, S. (2021). Bridge inspection and defect recognition with using impact echo data, probability, and naive bayes classifiers. Infrastructures, 6(9). https://doi.org/10.3390/infrastructures6090132 Jin Lim, H., Hwang, S., Kim, H., & Sohn, H. (2021). Steel bridge corrosion inspection with combined vision and thermographic images. Structural Health Monitoring, 20(6), 3424–3435. https://doi.org/10.1177/1475921721989407 Kao, S. P., Wang, F. L., Lin, J. S., Tsai, J., Chu, Y. De, & Hung, P. S. (2022). Bridge Crack Inspection Efficiency of an Unmanned Aerial Vehicle System with a Laser Ranging Module. Sensors, 22(12). https://doi.org/10.3390/s22124469 Lallam, M., Mammeri, A., & Djebli, A. (2021). Fuzzy analytical hierarchy processes for damage state assessment of arch masonry bridge. Civil Engineering Journal (Iran), 7(11), 1933–1946. https://doi.org/10.28991/cej-2021-03091770 Larsson Ivanov, O., Björnsson, I., Honfi, D., & Leander, J. (2022). The practical value of structural health information for time dependence in bridge maintenance. Structure and Infrastructure Engineering, 18(4), 476–491. https://doi.org/10.1080/15732479.2021.1890141 Laureano Gómez, P. (2006). ESTUDIO E INVESTIGACIÓN DEL ESTADO ACTUAL DE LAS OBRAS DE LA RED NACIONAL DE CARRETERAS CONVENIO INTERADMINISTRATIVO 0587-03 MANUAL PARA LA INSPECCIÓN VISUAL DE PUENTES Y PONTONES REPÚBLICA DE COLOMBIA MINISTERIO DE TRANSPORTE INSTITUTO NACIONAL DE VÍAS. www.invias.gov.co Liao, M., Ding, X., & Qin, X. (2018). Capturing the Deformation Characteristics of Cable- stayed Bridges with Multi-temporal SAR Interferometry. Institute of Electrical and Electronics Engineers. Liu, J.-S., Soong, R.-T., & Huang, Y.-T. (2019). UAV System Integration of Real-time Sensing and Flight Task Control for Autonomous Building Inspection Task. Conference Publishing Services, IEEE Computer Society. Matlekovic, L., Juric, F., & Schneider-Kamp, P. (2022). Microservices for autonomous UAV inspection with UAV simulation as a service. Simulation Modelling Practice and Theory, 119. https://doi.org/10.1016/j.simpat.2022.102548 Metni, N., & Hamel, T. (2007). A UAV for bridge inspection: Visual servoing control law with orientation limits. Automation in Construction, 17(1), 3–10. https://doi.org/10.1016/j.autcon.2006.12.010 Metni, N., Hamel, T., & Derkx, F. (2004). A UAV for bridges’ inspection: Visual servoing control law with orientation limits. IFAC Proceedings Volumes (IFAC-PapersOnline), 37(8), 454–459. https://doi.org/10.1016/s1474-6670(17)32018-9 Napolitano, R., Hess, M., & Glisic, B. (2020). Quantifying the Differences in Documentation and Modeling Levels for Building Pathology and Diagnostics. Archives of Computational Methods in Engineering, 27(4), 1135–1152. https://doi.org/10.1007/s11831-019-09350-y Oliveros-Esco, J., Gracia-Villa, L., & López-Mesa, B. (2022). 2D image-based crack monitoring: an affordable, sufficient and non-invasive technique for the democratization of preventive conservation of listed buildings. Heritage Science, 10(1). https://doi.org/10.1186/s40494-022-00780-9 Peng, X., Zhong, X., Zhao, C., Chen, A., & Zhang, T. (2021). A UAV-based machine vision method for bridge crack recognition and width quantification through hybrid feature learning. Construction and Building Materials, 299. https://doi.org/10.1016/j.conbuildmat.2021.123896 Perry, B. J., Guo, Y., Atadero, R., & van de Lindt, J. W. (2020). Streamlined bridge inspection system utilizing unmanned aerial vehicles (UAVs) and machine learning. Measurement: Journal of the International Measurement Confederation, 164. https://doi.org/10.1016/j.measurement.2020.108048 Qin, X., Ding, X., & Liao, M. (2018). 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications : 2-4 July 2018, Duisburg, Germany. Institute of Electrical and Electronics Engineers. Rau, J. Y., Hsiao, K. W., Jhan, J. P., Wang, S. H., Fang, W. C., & Wang, J. L. (2017). Bridge crack detection using multi-rotary UAV and object-base image analysis. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2W6), 311–318. https://doi.org/10.5194/isprs-archives-XLII-2-W6-311-2017 Sokolović, N. M., Petrović, M., Kontić, A., Koprivica, S., & Šekularac, N. (2021). Inspection and assessment of masonry arch bridges: Ivanjica case study. Sustainability (Switzerland), 13(23). https://doi.org/10.3390/su132313363 Stevens, N. A., Lydon, M., Marshall, A. H., & Taylor, S. (2020). Identification of bridge key performance indicators using survival analysis for future network-wide structural health monitoring. Sensors (Switzerland), 20(23), 1–15. https://doi.org/10.3390/s20236894 Sun, Y., Huang, P., Su, J., & Wang, T. (2018). Depth estimation of surface-opening crack in concrete beams using impact-echo and non-contact video-based methods. Eurasip Journal on Image and Video Processing, 2018(1). https://doi.org/10.1186/s13640-018-0382-7 Tan, Y., Yi, W., Chen, P., & Zou, Y. (2024). An adaptive crack inspection method for building surface based on BIM, UAV and edge computing. Automation in Construction, 157. https://doi.org/10.1016/j.autcon.2023.105161 Tang, L. (2021). Maintenance and inspection of fiber-reinforced polymer (Frp) bridges: A review of methods. Materials, 14(24). https://doi.org/10.3390/ma14247826 |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
PDF |
dc.coverage.spatial.spa.fl_str_mv |
Pereira |
institution |
Universidad Libre |
bitstream.url.fl_str_mv |
http://repository.unilibre.edu.co/bitstream/10901/30548/4/Inspecci%c3%b3n%20visual%20del%20Viaducto%20Cesar%20Gaviria%20Trujillo%20en%20la%20ciudad%20de%20Pereira%2c%20Risaralda%2c%20por%20medio%20de%20dispositivo%20.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/30548/5/Autoriz%20%20publicaci%c3%b3n%20de%20trabajos%20en%20formato%20digital%28V5%29.pdf.jpg http://repository.unilibre.edu.co/bitstream/10901/30548/3/license.txt http://repository.unilibre.edu.co/bitstream/10901/30548/1/Inspecci%c3%b3n%20visual%20del%20Viaducto%20Cesar%20Gaviria%20Trujillo%20en%20la%20ciudad%20de%20Pereira%2c%20Risaralda%2c%20por%20medio%20de%20dispositivo%20.pdf http://repository.unilibre.edu.co/bitstream/10901/30548/2/Autoriz%20%20publicaci%c3%b3n%20de%20trabajos%20en%20formato%20digital%28V5%29.pdf |
bitstream.checksum.fl_str_mv |
b88f528e823e2597a0e06df8b1aad5cd 671740de992a9ac49e12aee46fc4d903 8a4605be74aa9ea9d79846c1fba20a33 b3f2d5ec2179b11a6ef2fbc5d1f52c01 a2b64a634237057082dc4d1132b54f22 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Unilibre |
repository.mail.fl_str_mv |
repositorio@unilibrebog.edu.co |
_version_ |
1831929213749297152 |
spelling |
Amariles Lopez, CristhianAguirre Gil, Jeferson CamiloGallego Lopez, Juan FelipePereira2025-01-31T19:44:24Z2025-01-31T19:44:24Z2024-12-16https://hdl.handle.net/10901/30548Los puentes son estructuras fundamentales para el desarrollo y sostenimiento de la vida humana, ya que permiten la conectividad y el flujo de personas y bienes, sin embargo, a lo largo de los años, uno de los mayores retos ha sido llevar a cabo estudios patológicos eficaces, debido a que la detección de patologías a menudo ocurre cuando la estructura ya está cerca del colapso o ha colapsado, lo que incrementa el riesgo para la vida humana, es por eso, que en estructuras de grandes dimensiones, como los puentes atirantados, el acceso para realizar mediciones y evaluaciones es limitado, dificultando la detección temprana de grietas y otras anomalías. y a pesar de que la industria de la construcción no ha avanzado al mismo ritmo que otras tecnologías en las últimas décadas, el uso de drones o vehículos aéreos no tripulados (UAV) ha surgido como una solución innovadora que facilita la inspección visual, especialmente en zonas de difícil acceso. Estos drones, equipados con cámaras 4K y sensores de proximidad, permiten obtener imágenes en tiempo real de las estructuras, aumentando la seguridad y eficiencia de las inspecciones, por tanto, en Colombia, los drones están autorizados a volar a una altitud máxima de 120 metros, y con un alcance horizontal de hasta 1200 metros, cumpliendo con las regulaciones aeronáuticas. En este estudio se emplearon drones para la inspección visual del Viaducto César Gaviria Trujillo, un puente atirantado en Pereira, Risaralda, que presenta una luz principal de 211 metros y pilones de 96 y 105 metros de altura, Se ha verificado que la utilización de esta tecnología permite una mejora significativa en los tiempos de inspección y en la precisión del diagnóstico de posibles fallas estructurales, cumpliendo con los lineamientos establecidos por el Manual de Inspección Visual de Puentes de INVIAS; entonces, este enfoque no solo mejora la seguridad y eficiencia del proceso, sino que representa un avance en la práctica ingenieril al integrar tecnologías emergentes para abordar los desafíos inherentes a las grandes infraestructuras.Universidad Libre Seccional Pereira -- Facultad de Ingeniería -- Ingeniería CivilBridges are fundamental structures for the development and sustainment of human life, since they allow connectivity and the flow of people and goods. However, over the years, one of the biggest challenges has been to carry out effective pathological studies, because the detection of pathologies often occurs when the structure is already close to collapse or has collapsed, which increases the risk to human life. In large structures, such as cable-stayed bridges, access for measurement and assessment is limited, making early detection of cracks and other anomalies difficult. Although the construction industry has not advanced at the same pace as other technologies in recent decades, the use of drones or unmanned aerial vehicles (UAVs) has emerged as an innovative solution that facilitates visual inspection, especially in hard-to-reach areas. These drones, equipped with 4K cameras and proximity sensors, allow real-time images of structures to be obtained, increasing the safety and efficiency of inspections. In Colombia, drones are authorized to fly at a maximum altitude of 120 meters, and with a horizontal range of up to 1200 meters, in compliance with aeronautical regulations. In this study, drones were used for the visual inspection of the César Gaviria Trujillo Viaduct, a cable-stayed bridge in Pereira, Risaralda, which has a main span of 211 meters and pylons of 96 and 105 meters in height. The use of this technology allowed a significant improvement in inspection times and in the accuracy of the diagnosis of possible structural failures, complying with the guidelines established by the INVIAS Manual for Visual Inspection of Bridges. This approach not only improves the safety and efficiency of the process, but also represents an advance in engineering practice by integrating emerging technologies to address the challenges inherent to large infrastructures.PDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2AtirantadoDroneEstructuraInspeccion visualMantenimientoPatologiaTratamientoVisibilidadCable StayedDroneStructureVisual InspeccionMaintenancePathologyTreatmentVisibilityInspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo AUA/DRONEVisual inspection of Cesar Gaviria Trujillo Viaduct in the city of Pereira, Risaralda, by AUS/DRONETesis de Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAlejandrino, J., Concepcion, R., Lauguico, S., Almero, V. J., De Guia, J., Flores, R., Bandala, A., & Dadios, E. (2020, diciembre 3). Structural Health Fuzzy Classification of Bridge based on Subjective and Objective Inspections. 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management, HNICEM 2020. https://doi.org/10.1109/HNICEM51456.2020.9400054Aliyari, M., Droguett, E. L., & Ayele, Y. Z. (2021). Uav-based bridge inspection via transfer learning. Sustainability (Switzerland), 13(20). https://doi.org/10.3390/su132011359Alsharqawi, M., Zayed, T., & Abu Dabous, S. (2018). Integrated condition rating and forecasting method for bridge decks using Visual Inspection and Ground Penetrating Radar. Automation in Construction, 89, 135–145. https://doi.org/10.1016/j.autcon.2018.01.016Ayele, Y. Z., Aliyari, M., Griffths, D., & Droguett, E. L. (2020). Automatic crack segmentation for uav-assisted bridge inspection. Energies, 13(23). https://doi.org/10.3390/en13236250Beskopylny, A. N., Vernezi, N. L., Veremeenko, A. A., & Arakelyan, R. M. (2019). Experience non-destructive testing of the metal of bridge structures. IOP Conference Series: Materials Science and Engineering, 698(6). https://doi.org/10.1088/1757-899X/698/6/066001Bolourian, N., & Hammad, A. (2020). LiDAR-equipped UAV path planning considering potential locations of defects for bridge inspection. Automation in Construction, 117. https://doi.org/10.1016/j.autcon.2020.103250Borin, P., & Cavazzini, F. (2019). CONDITION ASSESSMENT of RC BRIDGES. INTEGRATING MACHINE LEARNING, PHOTOGRAMMETRY and BIM. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W15), 201–208. https://doi.org/10.5194/isprs-archives-XLII-2-W15-201-2019Castellani, M., A., M., E., G.-M., F., A., & F., U. (2024). UAV photogrammetry and laser scanning of bridges: a new methodology and its application to a case study. Procedia Structural Integrity, 62, 193–200. https://doi.org/10.1016/j.prostr.2024.09.033Falorca, J. F., Miraldes, J. P. N. D., & Lanzinha, J. C. G. (2021). New trends in visual inspection of buildings and structures: Study for the use of drones. Open Engineering, 11(1), 734–743. https://doi.org/10.1515/eng-2021-0071Funabora, Y., Maeda, K., Doki, kae, & Doki, S. (2018). Flight Path Planning of Multiple UAVs for Robust Localization near Infrastructure Facilities* (A. Japan, Ed.). Institute of Electrical and Electronics Engineers.Godart, B. (2015). Pathology, appraisal, repair and management of old prestressed concrete beam and slab bridges. Structure and Infrastructure Engineering, 11(4), 501–518. https://doi.org/10.1080/15732479.2014.951865Gomez-Cardenas, C., Sbartaï, Z. M., Balayssac, J. P., Garnier, V., & Breysse, D. (2015). New optimization algorithm for optimal spatial sampling during non-destructive testing of concrete structures. Engineering Structures, 88, 92–99. https://doi.org/10.1016/j.engstruct.2015.01.014Gómez-Soberón, M. C., Pérez, E., Salas, D., & De León-Escobedo, D. (2022). Seismic vulnerability through drift assessment for bridges with geometrical irregularities. European Journal of Environmental and Civil Engineering, 26(3), 919–932. https://doi.org/10.1080/19648189.2019.1686428Gonçalves Cardoso, M. (2008). Engenharia Civil Inspeção de ponte ferroviária metálica: verificação da capacidade de carga da “Ponte da Barra” em Ouro Preto/MG (Inspection of steel bridge railway verification of carrying capacity of the “Bridge of Barra” in Ouro Preto/MG) Luiz Cláudio Cândido (Vol. 61, Número 2).Guo li Gaoxiong da xue, IEEE Computer Society, & Institute of Electrical and Electronics Engineers. (2019). Proceedings, the 2019 International Conference on Technologies and Applications of Artificial Intelligence : TAAI 2019 : Kaohsiung, Taiwan, Nov. 21-23, 2019.Hartung, R., Naraniecki, H., Klemt-Albert, K., & Marx, S. (2020). Konzept zur BIM-basierten Instandhaltung von Ingenieurbauwerken mit Monitoringsystemen. Bautechnik, 97(12), 826–835. https://doi.org/10.1002/bate.202000095Huang, I. F., & Chen, P. H. (2020). Automated steel bridge coating rust defect recognition method based on U-net fully convolutional networks. 2nd IEEE International Conference on Architecture, Construction, Environment and Hydraulics 2020, ICACEH 2020, 18–21. https://doi.org/10.1109/ICACEH51803.2020.9366258Jafari, F., & Dorafshan, S. (2021). Bridge inspection and defect recognition with using impact echo data, probability, and naive bayes classifiers. Infrastructures, 6(9). https://doi.org/10.3390/infrastructures6090132Jin Lim, H., Hwang, S., Kim, H., & Sohn, H. (2021). Steel bridge corrosion inspection with combined vision and thermographic images. Structural Health Monitoring, 20(6), 3424–3435. https://doi.org/10.1177/1475921721989407Kao, S. P., Wang, F. L., Lin, J. S., Tsai, J., Chu, Y. De, & Hung, P. S. (2022). Bridge Crack Inspection Efficiency of an Unmanned Aerial Vehicle System with a Laser Ranging Module. Sensors, 22(12). https://doi.org/10.3390/s22124469Lallam, M., Mammeri, A., & Djebli, A. (2021). Fuzzy analytical hierarchy processes for damage state assessment of arch masonry bridge. Civil Engineering Journal (Iran), 7(11), 1933–1946. https://doi.org/10.28991/cej-2021-03091770Larsson Ivanov, O., Björnsson, I., Honfi, D., & Leander, J. (2022). The practical value of structural health information for time dependence in bridge maintenance. Structure and Infrastructure Engineering, 18(4), 476–491. https://doi.org/10.1080/15732479.2021.1890141Laureano Gómez, P. (2006). ESTUDIO E INVESTIGACIÓN DEL ESTADO ACTUAL DE LAS OBRAS DE LA RED NACIONAL DE CARRETERAS CONVENIO INTERADMINISTRATIVO 0587-03 MANUAL PARA LA INSPECCIÓN VISUAL DE PUENTES Y PONTONES REPÚBLICA DE COLOMBIA MINISTERIO DE TRANSPORTE INSTITUTO NACIONAL DE VÍAS. www.invias.gov.coLiao, M., Ding, X., & Qin, X. (2018). Capturing the Deformation Characteristics of Cable- stayed Bridges with Multi-temporal SAR Interferometry. Institute of Electrical and Electronics Engineers.Liu, J.-S., Soong, R.-T., & Huang, Y.-T. (2019). UAV System Integration of Real-time Sensing and Flight Task Control for Autonomous Building Inspection Task. Conference Publishing Services, IEEE Computer Society.Matlekovic, L., Juric, F., & Schneider-Kamp, P. (2022). Microservices for autonomous UAV inspection with UAV simulation as a service. Simulation Modelling Practice and Theory, 119. https://doi.org/10.1016/j.simpat.2022.102548Metni, N., & Hamel, T. (2007). A UAV for bridge inspection: Visual servoing control law with orientation limits. Automation in Construction, 17(1), 3–10. https://doi.org/10.1016/j.autcon.2006.12.010Metni, N., Hamel, T., & Derkx, F. (2004). A UAV for bridges’ inspection: Visual servoing control law with orientation limits. IFAC Proceedings Volumes (IFAC-PapersOnline), 37(8), 454–459. https://doi.org/10.1016/s1474-6670(17)32018-9Napolitano, R., Hess, M., & Glisic, B. (2020). Quantifying the Differences in Documentation and Modeling Levels for Building Pathology and Diagnostics. Archives of Computational Methods in Engineering, 27(4), 1135–1152. https://doi.org/10.1007/s11831-019-09350-yOliveros-Esco, J., Gracia-Villa, L., & López-Mesa, B. (2022). 2D image-based crack monitoring: an affordable, sufficient and non-invasive technique for the democratization of preventive conservation of listed buildings. Heritage Science, 10(1). https://doi.org/10.1186/s40494-022-00780-9Peng, X., Zhong, X., Zhao, C., Chen, A., & Zhang, T. (2021). A UAV-based machine vision method for bridge crack recognition and width quantification through hybrid feature learning. Construction and Building Materials, 299. https://doi.org/10.1016/j.conbuildmat.2021.123896Perry, B. J., Guo, Y., Atadero, R., & van de Lindt, J. W. (2020). Streamlined bridge inspection system utilizing unmanned aerial vehicles (UAVs) and machine learning. Measurement: Journal of the International Measurement Confederation, 164. https://doi.org/10.1016/j.measurement.2020.108048Qin, X., Ding, X., & Liao, M. (2018). 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications : 2-4 July 2018, Duisburg, Germany. Institute of Electrical and Electronics Engineers.Rau, J. Y., Hsiao, K. W., Jhan, J. P., Wang, S. H., Fang, W. C., & Wang, J. L. (2017). Bridge crack detection using multi-rotary UAV and object-base image analysis. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2W6), 311–318. https://doi.org/10.5194/isprs-archives-XLII-2-W6-311-2017Sokolović, N. M., Petrović, M., Kontić, A., Koprivica, S., & Šekularac, N. (2021). Inspection and assessment of masonry arch bridges: Ivanjica case study. Sustainability (Switzerland), 13(23). https://doi.org/10.3390/su132313363Stevens, N. A., Lydon, M., Marshall, A. H., & Taylor, S. (2020). Identification of bridge key performance indicators using survival analysis for future network-wide structural health monitoring. Sensors (Switzerland), 20(23), 1–15. https://doi.org/10.3390/s20236894Sun, Y., Huang, P., Su, J., & Wang, T. (2018). Depth estimation of surface-opening crack in concrete beams using impact-echo and non-contact video-based methods. Eurasip Journal on Image and Video Processing, 2018(1). https://doi.org/10.1186/s13640-018-0382-7Tan, Y., Yi, W., Chen, P., & Zou, Y. (2024). An adaptive crack inspection method for building surface based on BIM, UAV and edge computing. Automation in Construction, 157. https://doi.org/10.1016/j.autcon.2023.105161Tang, L. (2021). Maintenance and inspection of fiber-reinforced polymer (Frp) bridges: A review of methods. Materials, 14(24). https://doi.org/10.3390/ma14247826THUMBNAILInspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo .pdf.jpgInspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo .pdf.jpgIM Thumbnailimage/jpeg20442http://repository.unilibre.edu.co/bitstream/10901/30548/4/Inspecci%c3%b3n%20visual%20del%20Viaducto%20Cesar%20Gaviria%20Trujillo%20en%20la%20ciudad%20de%20Pereira%2c%20Risaralda%2c%20por%20medio%20de%20dispositivo%20.pdf.jpgb88f528e823e2597a0e06df8b1aad5cdMD54Autoriz publicación de trabajos en formato digital(V5).pdf.jpgAutoriz publicación de trabajos en formato digital(V5).pdf.jpgIM Thumbnailimage/jpeg28692http://repository.unilibre.edu.co/bitstream/10901/30548/5/Autoriz%20%20publicaci%c3%b3n%20de%20trabajos%20en%20formato%20digital%28V5%29.pdf.jpg671740de992a9ac49e12aee46fc4d903MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/30548/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALInspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo .pdfInspección visual del Viaducto Cesar Gaviria Trujillo en la ciudad de Pereira, Risaralda, por medio de dispositivo .pdfapplication/pdf1435496http://repository.unilibre.edu.co/bitstream/10901/30548/1/Inspecci%c3%b3n%20visual%20del%20Viaducto%20Cesar%20Gaviria%20Trujillo%20en%20la%20ciudad%20de%20Pereira%2c%20Risaralda%2c%20por%20medio%20de%20dispositivo%20.pdfb3f2d5ec2179b11a6ef2fbc5d1f52c01MD51Autoriz publicación de trabajos en formato digital(V5).pdfAutoriz publicación de trabajos en formato digital(V5).pdfapplication/pdf332319http://repository.unilibre.edu.co/bitstream/10901/30548/2/Autoriz%20%20publicaci%c3%b3n%20de%20trabajos%20en%20formato%20digital%28V5%29.pdfa2b64a634237057082dc4d1132b54f22MD5210901/30548oai:repository.unilibre.edu.co:10901/305482025-02-02 06:01:40.939Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |