Diseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre seccional Socorro

Se presentan los resultados del proyecto “Diseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre Seccional Socorro” que tuvo como propósito diseñar una construcción sostenible a nivel de materiales y de consumo energético. Dicha construcción se...

Full description

Autores:
Rentería Moreno, Ailyn Dayana
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Libre
Repositorio:
RIU - Repositorio Institucional UniLibre
Idioma:
OAI Identifier:
oai:repository.unilibre.edu.co:10901/23915
Acceso en línea:
https://hdl.handle.net/10901/23915
Palabra clave:
Construcción sostenible
Energías renovables
Sostenibilidad
Construcción sostenible -- Materiales
Sustainable construction
Renewable energy
Sustainability
Sustainable construction -- Material
Construcción sostenible
Energías renovables
Sostenibilidad
Construcción sostenible -- Materiale
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id RULIBRE2_0450aed633ddc2706193fab742e78c79
oai_identifier_str oai:repository.unilibre.edu.co:10901/23915
network_acronym_str RULIBRE2
network_name_str RIU - Repositorio Institucional UniLibre
repository_id_str
dc.title.spa.fl_str_mv Diseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre seccional Socorro
title Diseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre seccional Socorro
spellingShingle Diseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre seccional Socorro
Construcción sostenible
Energías renovables
Sostenibilidad
Construcción sostenible -- Materiales
Sustainable construction
Renewable energy
Sustainability
Sustainable construction -- Material
Construcción sostenible
Energías renovables
Sostenibilidad
Construcción sostenible -- Materiale
title_short Diseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre seccional Socorro
title_full Diseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre seccional Socorro
title_fullStr Diseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre seccional Socorro
title_full_unstemmed Diseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre seccional Socorro
title_sort Diseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre seccional Socorro
dc.creator.fl_str_mv Rentería Moreno, Ailyn Dayana
dc.contributor.advisor.none.fl_str_mv Gómez Cardona, Juan Pablo
dc.contributor.author.none.fl_str_mv Rentería Moreno, Ailyn Dayana
dc.subject.spa.fl_str_mv Construcción sostenible
Energías renovables
Sostenibilidad
Construcción sostenible -- Materiales
topic Construcción sostenible
Energías renovables
Sostenibilidad
Construcción sostenible -- Materiales
Sustainable construction
Renewable energy
Sustainability
Sustainable construction -- Material
Construcción sostenible
Energías renovables
Sostenibilidad
Construcción sostenible -- Materiale
dc.subject.subjectenglish.spa.fl_str_mv Sustainable construction
Renewable energy
Sustainability
Sustainable construction -- Material
dc.subject.lemb.spa.fl_str_mv Construcción sostenible
Energías renovables
Sostenibilidad
Construcción sostenible -- Materiale
description Se presentan los resultados del proyecto “Diseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre Seccional Socorro” que tuvo como propósito diseñar una construcción sostenible a nivel de materiales y de consumo energético. Dicha construcción se diseñó bajo la metodología de desarrollo de nuevos productos. Los resultados presentados son: en primer lugar, un análisis basado en criterios de sostenibilidad a través de una matriz de despliegue de la función de calidad (Quality Function Deployment QFD), de una encuesta a la comunidad universitaria donde se indagó sobre sus expectativas y necesidades, así como, la frecuencia de carga de sus dispositivos móviles dentro del campus. En segundo lugar, tres prototipos que fueron diseñados basados en los resultados de dicho análisis, y posteriormente sometidos a votación. En el tercer resultado se listan los materiales elegidos para ser usados en la construcción tras realizar la consulta y evaluación de sus características. Por último, se presenta el diseño del sistema solar fotovoltaico, acorde a la demanda energética. El modelo de construcción sostenible, resultado de este proyecto, de llegar a construirse, podría llegar a tener un impacto significativo en la forma como actualmente se realizan las construcciones en la región. Asimismo, de implementarse, podría constituirse como un proyecto piloto con potencial para acceder a un sello LEED de construcción sostenible. Una estructura eco-amigable a modo de prueba piloto en la Universidad podría ayudar a promover mejores prácticas de construcción en la región repercutiendo en impactos positivos a nivel social (cultura en torno al tema), ambiental (disminución emisiones CO2) y económico.
publishDate 2022
dc.date.created.none.fl_str_mv 2022-09-07
dc.date.accessioned.none.fl_str_mv 2023-01-17T16:36:25Z
dc.date.available.none.fl_str_mv 2023-01-17T16:36:25Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis de Pregrado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10901/23915
url https://hdl.handle.net/10901/23915
dc.relation.references.spa.fl_str_mv 7 reasons why we should build straw houses and live in them. (2015, enero 29). LifeGate. https://www.lifegate.com/7-reasons-why-build-straw-houses-to-live-in
11 Colombian Houses That Feature Exposed Brick. (2020, mayo 20). ArchDaily. https://www.archdaily.com/939644/11-colombian-houses-that-feature-exposed-brick
A House Made of Corn Cobs. (s. f.). Recuperado 5 de septiembre de 2021, de https://earthpowernews.com/a-house-made-of-corn-cobs/
Abdellatef, Y., & Kavgic, M. (2020). Thermal, microstructural and numerical analysis of hempcrete-microencapsulated phase change material composites. Applied Thermal Engineering, 178. Scopus. https://doi.org/10.1016/j.applthermaleng.2020.115520
Abed, M. S., Resan, S. F., & Zemam, S. K. (2022). Developing knotted slender reinforced concrete column based on bamboo culm biomimicry. Asian Journal of Civil Engineering, 23(1), 99-111. Scopus. https://doi.org/10.1007/s42107-021-00411-x
Abessolo, D., Biwole, A. B., Fokwa, D., Ganou Koungang, B. M., & Yembe, B. B. A. A. H. (2022). Physical, Mechanical and Hygroscopic Behaviour of Compressed Earth Blocks Stabilized with Cement and Reinforced with Bamboo Fibres. International Journal of Engineering Research in Africa, 59, 29-41. Scopus. https://doi.org/10.4028/p-spbskv
Adamová, T., Hradecký, J., & Prajer, M. (2019). VOC emissions from spruce strands and hemp shive: In search for a low emission raw material for bio-based construction materials. Materials, 12(12). Scopus. https://doi.org/10.3390/ma12122026
Adell, J., Bedoya, C., Ayllón, J. H., Humero, A., & Lombana, E. (2018). Brick façade of a main historic building to be preserved by reinforced and panelled, to disassemble and reassemble fixed on a new structure. 0(222279), 871-882. Scopus.
Ahmadi, R., Souri, B., & Ebrahimi, M. (2020). Evaluation of wheat straw to insulate fired clay hollow bricks as a construction material. Journal of Cleaner Production, 254. Scopus. https://doi.org/10.1016/j.jclepro.2020.120043
Alarcón, L., & Montero-Fernández, F. (2018). Nature in the city: Open space and ruin. RA Revista de Arquitectura, 20, 104-117+279 and283. Scopus. https://doi.org/10.15581/014.20.104-117
AlShuhail, K., Aldawoud, A., Syarif, J., & Abdoun, I. A. (2021). Enhancing the performance of compressed soil bricks with natural additives: Wood chips and date palm fibers. Construction and Building Materials, 295, 123611. https://doi.org/10.1016/j.conbuildmat.2021.123611
Alyousef, R., Ahmad, W., Ahmad, A., Aslam, F., Joyklad, P., & Alabduljabbar, H. (2021). Potential use of recycled plastic and rubber aggregate in cementitious materials for sustainable construction: A review. Journal of Cleaner Production, 329. Scopus. https://doi.org/10.1016/j.jclepro.2021.129736
Antivil-Marinao, W., & Orellana-Yaez, I. (2020). Sustainable Concepts Reflected in Mapuche Constructions. 503(1). Scopus. https://doi.org/10.1088/1755-1315/503/1/012054
Application of Coconut Fibres as Outer Eco-insulation to Control Solar Heat Radiation on Horizontal Concrete Slab Rooftop. (2015). Procedia Engineering, 125, 765-772. https://doi.org/10.1016/j.proeng.2015.11.129
Arehart, J. H., Nelson, W. S., & Srubar, W. V., III. (2020). On the theoretical carbon storage and carbon sequestration potential of hempcrete. Journal of Cleaner Production, 266. Scopus. https://doi.org/10.1016/j.jclepro.2020.121846
Arquitectura con tierra, las casas de Barichara en Colombia. (s. f.). Recuperado 5 de septiembre de 2021, de https://revistaaxxis.com.co/arquitectura/casa-sostenible-barichara/
Asare, B. J., & Danyuo, Y. (2020). Mechanical Characterization of Earth-Based Composites Materials Reinforced with Treated Bamboo Fibres for Affordable Housing. MRS Advances, 5(25), 1313-1321. Scopus. https://doi.org/10.1557/adv.2020.214
Aurrekoexea, I., & Cultrone, G. (2020). Chemical, mineralogical and physical characterization of lightweight bricks with the addition of sawdust for use in construction and preservation of architectural heritage. 94-101. Scopus.
author/lauren-shanesy. (2016, diciembre 5). Insulating Homes with Natural Sheep’s Wool. Builder. https://www.builderonline.com/products/building-materials/insulating-homes-with-natural-sheeps-wool_o
Awoyera, P. O., Nworgu, T. A., Shanmugam, B., Arunachalam, K. P., Mansouri, I., Romero, L. M. B., & Hu, J.-W. (2021). Structural retrofitting of corroded reinforced concrete beams using bamboo fiber laminate. Materials, 14(21). Scopus. https://doi.org/10.3390/ma14216711
Bakhoum, E. S., Garas, G. L., & Allam, M. E. (2015). Sustainability analysis of conventional and eco-friendly materials: A step towards green building. ARPN Journal of Engineering and Applied Sciences, 10(2), 788-796. Scopus.
Bamboo Treehouse in Colombia. (s. f.). Guadua Bamboo. Recuperado 5 de septiembre de 2021, de https://www.guaduabamboo.com/blog/bamboo-treehouse
BambooU. (s. f.). Bamboo U Home. Recuperado 10 de junio de 2022, de https://www.bamboou.com/?r_done=1&utm_medium=website&utm_source=archdaily.co
Barnaure, M., Bonnet, S., & Poullain, P. (2021). Earth buildings with local materials: Assessing the variability of properties measured using non-destructive methods. Construction and Building Materials, 281, 122613. https://doi.org/10.1016/j.conbuildmat.2021.122613
Barreca, F., Martinez Gabarron, A., Flores Yepes, J. A., & Pastor Pérez, J. J. (2019). Innovative use of giant reed and cork residues for panels of buildings in Mediterranean area. Resources, Conservation and Recycling, 140, 259-266. Scopus. https://doi.org/10.1016/j.resconrec.2018.10.005
Basak, M., Dutta, S., Biswas, S., Chakraborty, S., Sarkar, A., Rahaman, T., Dey, S., Biswas, P., & Das, M. (2021). Genomic insights into growth and development of bamboos: What have we learnt and what more to discover? Trees - Structure and Function, 35(6), 1771-1791. Scopus. https://doi.org/10.1007/s00468-021-02197-6
Best Solar Inverters 2021. (s. f.). CLEAN ENERGY REVIEWS. Recuperado 7 de septiembre de 2021, de https://www.cleanenergyreviews.info/blog/best-grid-connect-solar-inverters-sma-fronius-solaredge-abb
Birjukovs, M., Sinka, M., Jakovics, A., & Bajare, D. (2022). Combined in situ and in silico validation of a material model for hempcrete. Construction and Building Materials, 321. Scopus. https://doi.org/10.1016/j.conbuildmat.2021.126051
Bleiel, J., Bogue, J., & Troy, A.-J. (2011). New product development for functional foods: Focusing on mega-trends to increase consumer acceptance. Agro Food Industry Hi-Tech, 22(5), 20-22. Scopus.
Bonnefin, I. (s. f.). Emerging Materials: Mycelium Brick. Recuperado 5 de septiembre de 2021, de https://www.certifiedenergy.com.au/emerging-materials/emerging-materials-mycelium-brick
Bonoli, A., Rizzo, S., & Chiavetta, C. (2014). Straw as construction material for sustainable buildings: Life Cycle Assessment of a post-earthquake reconstruction. En Vernacular Architecture: Towards a Sustainable Future (pp. 143-146). Scopus. https://doi.org/10.1201/b17393
Bracho, L., & Martinez, P. (2020). Diagnosis of the Generation of Solid Waste in the Construction of a Building under the Approach of Industrial Ecology. 503(1). Scopus. https://doi.org/10.1088/1755-1315/503/1/012023
Briede W., J. C., & Alarcón C., J. (2012). Sustainable strategies applied to regional context: Design of wooden and unconventional raw materials boards for decorative finishing. Interciencia, 37(12), 927-933. Scopus.
Bukhari, H., Musarat, M. A., Alaloul, W. S., & Riaz, M. (2021). Hempcrete as a Sustainable Building Material: A Review. 633-635. Scopus. https://doi.org/10.1109/DASA53625.2021.9682411
Cabina de caza—JD Composites. (s. f.). Recuperado 5 de septiembre de 2021, de https://jdcomposites.ca/portfolio/hunting-cabin/
Casa de corcho. (s. f.). Recuperado 5 de septiembre de 2021, de https://www.architecture.com/awards-and-competitions-landing-page/awards/riba-regional-awards/riba-south-award-winners/2019/cork-house
Cascone, S., Rapisarda, R., & Cascone, D. (2019). Physical properties of straw bales as a construction material: A review. Sustainability (Switzerland), 11(12). Scopus. https://doi.org/10.3390/SU11123388
Chaurasia, D. (2019). «Bamboo» with reference to Indian context: Potential sustainable building material and awareness. 2158. Scopus. https://doi.org/10.1063/1.5127128
Chaussinand, A., Scartezzini, J. L., & Nik, V. (2015). Straw bale: A waste from agriculture, a new construction material for sustainable buildings. 78, 297-302. Scopus. https://doi.org/10.1016/j.egypro.2015.11.646
Chen, L., & Yang, M. (2021). The impact of the use of new environmentally friendly materials on the management of construction projects: Taking straw fiber materials as an example. 2011(1). Scopus. https://doi.org/10.1088/1742-6596/2011/1/012019
Chen, R., Zhang, W., Guan, L., Gu, J., Lin, W., & Hu, C. (2018). Manufacturing technology of composite particleboard using waste newspaper and wood particles. Journal of South China Agricultural University, 39(6), 85-90. Scopus. https://doi.org/10.7671/j.issn.1001-411X.2018.06.013
Chen, Z.-S., Martínez, L., Chang, J.-P., Wang, X.-J., Xionge, S.-H., & Chin, K.-S. (2019). Sustainable building material selection: A QFD- and ELECTRE III-embedded hybrid MCGDM approach with consensus building. Engineering Applications of Artificial Intelligence, 85, 783-807. https://doi.org/10.1016/j.engappai.2019.08.006
Chiou, Y.-C., Shen, M.-Y., Chiang, C.-L., Li, Y.-L., & Lai, W.-M. (2022). Effects of Environmental Aging on the Durability of Wood-Flour Filled Recycled PET/PA6 Wood Plastic Composites. Journal of Polymers and the Environment, 30(4), 1300-1313. Scopus. https://doi.org/10.1007/s10924-021-02268-2
Chotikhun, A., Kittijaruwattana, J., Arsyad, W. O. M., Salca, E.-A., Hadi, Y. S., & Hiziroglu, S. (2022). Some Properties of Wood Plastic Composites Made from Rubberwood, Recycled Plastic and Silica. Forests, 13(3). Scopus. https://doi.org/10.3390/f13030427
Chowdhury, F. I., Islam, J., Haldar, S. S., & Zabed, H. M. (2022). Recycled wood plastic biocomposites and development of new materials. En Recycled Plastic Biocomposites (pp. 119-145). Scopus. https://doi.org/10.1016/B978-0-323-88653-6.00011-0
Contributor, T. R., Rise. (2020, octubre 16). Building with Hempcrete. Rise. https://www.buildwithrise.com/stories/building-with-hempcrete
Cuccurullo, A., Gallipoli, D., Bruno, A. W., Augarde, C., Hughes, P., & La Borderie, C. (2020). Earth stabilisation via carbonate precipitation by plant-derived urease for building applications. Geomechanics for Energy and the Environment, 100230. https://doi.org/10.1016/j.gete.2020.100230
Dias, P. P., Jayasinghe, L. B., & Waldmann, D. (2021). Investigation of Mycelium-Miscanthus composites as building insulation material. Results in Materials, 10. Scopus. https://doi.org/10.1016/j.rinma.2021.100189
Dotelli, G., Moletti, C., Aversa, P., Sabbadini, S., Marzo, A., Tripepi, C., Lauriola, P., & Luprano, V. A. M. (2020). Hempcrete Buildings: Environmental Sustainability and Durabilityof Two Case-Studiesin North and South Italy. 1007-1014. Scopus. https://doi.org/10.23967/dbmc.2020.213
Dueñas, M. E., & Vera, A. I. (2017). Construction of a floor tile prototype using PET recycled plastics and rice husk, an innovation in Ecuador. 2017-July. Scopus. https://doi.org/10.18687/LACCEI2017.1.1.120
Effect of Treatments on Properties of Cement-fiber Bricks Utilizing Rice Husk, Corncob and Coconut Coir. (2017). Procedia Engineering, 180, 1266-1273. https://doi.org/10.1016/j.proeng.2017.04.288
Eid, J., Taibi, S., Fleureau, J. M., & Hattab, M. (2015). Drying, cracks and shrinkage evolution of a natural silt intended for a new earth building material. Impact of reinforcement. Construction and Building Materials, 86, 120-132. https://doi.org/10.1016/j.conbuildmat.2015.03.115
Eleftheriadis, S., Duffour, P., & Mumovic, D. (2018). Participatory decision-support model in the context of building structural design embedding BIM with QFD. Advanced Engineering Informatics, 38, 695-711. https://doi.org/10.1016/j.aei.2018.10.001
Enfrin, M., & Giustozzi, F. (2022). Recent advances in the construction of sustainable asphalt roads with recycled plastic. Polymer International. Scopus. https://doi.org/10.1002/pi.6405
Enviro Board Corporation | Una solución de construcción natural globalmente sostenible. (s. f.). Recuperado 5 de septiembre de 2021, de http://enviroboard.com/
Enviroboards. (s. f.). Total Building Materials. Recuperado 17 de mayo de 2022, de https://totalbm.com/enviroboards/
Erika, L., Martina, N., & Miriam, O. (2018). Comparison of materials for building construction and their innovations in terms of sustainable growth. 177-184. Scopus.
Fan, Y., Li, S., Li, Y., Liang, H., Tang, M., Huang, K., & Zhu, L. (2021). Recycling of municipal solid waste incineration fly ash in foam ceramic materials for exterior building walls. Journal of Building Engineering, 44. Scopus. https://doi.org/10.1016/j.jobe.2021.103427
Fardos de paja: Un residuo de la agricultura, un nuevo material de construcción para edificios sostenibles—ScienceDirect. (s. f.). Recuperado 9 de julio de 2021, de https://www-sciencedirect-com.sibulgem.unilibre.edu.co/science/article/pii/S1876610215023784
Faris, F., & Adi, A. D. (2022). HEIGHT RELIABILITY-BASED ANALYSIS OF WOVEN BAMBOO MAT REINFORCED MECHANICALLY STABILIZED EARTH WALL IN TEMPORARY RAILWAY EMBANKMENT. ASEAN Engineering Journal, 12(1), 189-196. Scopus. https://doi.org/10.11113/aej.v12.17320
Fatourehchi, D., & Zarghami, E. (2020). Social sustainability assessment framework for managing sustainable construction in residential buildings. Journal of Building Engineering, 101761. https://doi.org/10.1016/j.jobe.2020.101761
Foti, D., Voulgaridou, E. E., Karastergiou, S., Taghiyari, H. R., & Papadopoulos, A. N. (2022). Physical and mechanical properties of eco-friendly composites made from wood dust and recycled polystyrene. Journal of Renewable Materials, 10(1), 75-88. Scopus. https://doi.org/10.32604/jrm.2022.017759
Fuentes-García, R., Valverde-Palacios, I., & Valverde-Espinosa, I. (2015a). A new procedure to adapt any type of soil for the consolidation and construction of earthen structures: Projected earth system. Materiales de Construccion, 65(319). Scopus. https://doi.org/10.3989/mc.2015.06614
Govindan, B., Ramasamy, V., Panneerselvam, B., & Rajan, D. (2022). Performance assessment on bamboo reinforced concrete beams. Innovative Infrastructure Solutions, 7(1). Scopus. https://doi.org/10.1007/s41062-021-00616-8
Grewal, N., Escallon, M., Chaudhary, A., & Hramyka, A. (2019). INFRASONIC A mycelium-based, earthquake-resistant building proposal in Kathmandu, Nepal. 234-245. Scopus.
Grillo, C. C., & Saron, C. (2022). Wood-plastic from Pennisetum Purpureum Fibers and Recycled Low-density Polyethylene. Journal of Natural Fibers, 19(3), 858-871. Scopus. https://doi.org/10.1080/15440478.2020.1764436
Grow.me by Mediavine. (s. f.). Recuperado 5 de septiembre de 2021, de https://app.grow.me/
Guillen, J., & Rojas-Valencia, M. N. (2019). Study of the properties of the Echerhirhu-Block made with Opuntia ficus mucilage for use in the construction industry. Case Studies in Construction Materials, 10. Scopus. https://doi.org/10.1016/j.cscm.2019.e00216
Gutiérrez, L. M. D. (2017). Definición de criterios sostenibles para la selección de materiales de viviendas en Bogotá [Trabajo de Grado Maestría, Universidad Católica de Colombia]. https://repository.ucatolica.edu.co/bitstream/10983/15397/1/Monica%20Duran_Definicion%20de%20Criterios%20de%20Sosteniblidad%20.pdf
Hall, M. R., Lindsay, R., & Krayenhoff, M. (2012). Overview of modern earth building. En Modern Earth Buildings: Materials, Engineering, Constructions and Applications (pp. 3-16). Scopus. https://doi.org/10.1533/9780857096166.1.3
Hamard, E., Cazacliu, B., Razakamanantsoa, A., & Morel, J.-C. (2016). Cob, a vernacular earth construction process in the context of modern sustainable building. Building and Environment, 106, 103-119. https://doi.org/10.1016/j.buildenv.2016.06.009
Hamard, E., Cazacliu, B., Razakamanantsoa, A., & Morel, J.-C. (2016). Cob, a vernacular earth construction process in the context of modern sustainable building. Building and Environment, 106, 103-119. https://doi.org/10.1016/j.buildenv.2016.06.009
Harja, M., Gencel, O., Sarı, A., Sutcu, M., Erdogmus, E., & Hekimoglu, G. (2022). Production and characterization of natural clay-free green building brick materials using water treatment sludge and oak wood ash. Archives of Civil and Mechanical Engineering, 22(2). Scopus. https://doi.org/10.1007/s43452-022-00400-0
Hoier, P., Hammersberg, P., Klement, U., & Krajnik, P. (2021). On assessing grindability of recycled and ore-based crankshaft steel: An approach combining data analysis with material science. 104, 1601-1606. Scopus. https://doi.org/10.1016/j.procir.2021.11.270
Home. (s. f.). Kodiak Steel Homes. Recuperado 5 de septiembre de 2021, de https://kodiaksteelhomes.com/
Hossain, Md. U., Sohail, A., & Ng, S. T. (2019). Developing a GHG-based methodological approach to support the sourcing of sustainable construction materials and products. Resources, Conservation and Recycling, 145, 160-169. https://doi.org/10.1016/j.resconrec.2019.02.030
How Is Ferrock Made? (2020, agosto 9). BuilderSpace. https://www.builderspace.com/how-is-ferrock-made
How solar power works—On-grid, off-grid and hybrid systems. (s. f.). CLEAN ENERGY REVIEWS. Recuperado 7 de septiembre de 2021, de https://www.cleanenergyreviews.info/blog/2014/5/4/how-solar-works
How to choose a quality solar panel. (s. f.). CLEAN ENERGY REVIEWS. Recuperado 7 de septiembre de 2021, de https://www.cleanenergyreviews.info/blog/best-quality-solar-panels-manufacturers
Innovation for a Sustainable Low Carbon Built Environment. (2017). Procedia Engineering, 180, 16-32. https://doi.org/10.1016/j.proeng.2017.04.161
Is There an Eco-friendly Spray Foam Insulation? (2015, octubre 14). BuildDirect Blog: Life at Home. https://www.builddirect.com/blog/is-there-an-eco-friendly-spray-foam-insulation/
Iždinský, J., Vidholdová, Z., & Reinprecht, L. (2021). Particleboards from recycled thermally modified wood. Forests, 12(11). Scopus. https://doi.org/10.3390/f12111462
Johnson, C. (2016, octubre 4). Timbercrete: An Innovative Building Material to Offset Emissions. Build Abroad. https://buildabroad.org/2016/10/04/timbercrete/
Karthika, S., Rose, A. L., & Priyadarshini, G. (2021). Sustainable development on Ferrock mortar cubes. 2040(1). Scopus. https://doi.org/10.1088/1742-6596/2040/1/012020
Kavgic, M., & Abdellatef, Y. (2021). Temperature control to improve performance of hempcrete‐ phase change material wall assemblies in a cold climate. Energies, 14(17). Scopus. https://doi.org/10.3390/en14175343
Kerroum, N., Nouibat, B., Benyahia, A., & Redjem, A. (2018). Study of the performance of adobe brick coated for sustainable construction in the Algerian Sahara. Materiaux et Techniques, 106(4). Scopus. https://doi.org/10.1051/mattech/2018041
Keshav, L., Srisanthi, V. G., & Rajkumar, N. (2012). Eco friendly and earthquake resistant building constructed using earth block-an experimental study. Ecology, Environment and Conservation, 18(4), 915-923. Scopus.
Koh, C. H. (Alex), & Kraniotis, D. (2020). A review of material properties and performance of straw bale as building material. Construction and Building Materials, 259, 120385. https://doi.org/10.1016/j.conbuildmat.2020.120385
Kumar, P., Gautam, P., Kaur, S., Chaudhary, M., Afreen, A., & Mehta, T. (2021). Bamboo as reinforcement in structural concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.04.342
La construcción con muros de tierra. (2021, febrero 24). EcoHabitar. https://ecohabitar.org/la-construccion-con-muros-de-tierra/
Li, L., Liu, W., You, Q., Chen, M., & Zeng, Q. (2020). Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials. Journal of Cleaner Production, 259, 120853. https://doi.org/10.1016/j.jclepro.2020.120853
Li, Z., Liu, K., Demartino, C., & Xiao, Y. (2022). Use of Bamboo in Constructions. Springer Tracts in Civil Engineering, 15-27. Scopus. https://doi.org/10.1007/978-3-030-91990-0_2
Liu, L., Zou, S., Li, H., Deng, L., Bai, C., Zhang, X., Wang, S., & Li, N. (2019). Experimental physical properties of an eco-friendly bio-insulation material based on wheat straw for buildings. Energy and Buildings, 201, 19-36. Scopus. https://doi.org/10.1016/j.enbuild.2019.07.037
Lysyannikov, A. V., Egorov, A. V., Lysyannikova, N. N., Shram, V. G., Kovaleva, M. A., Lynev, A. S., & Kaizer, Y. F. (2019). Polymer materials from recycled plastic in road construction. 1399(4). Scopus. https://doi.org/10.1088/1742-6596/1399/4/044064
Maia, S. F. D., & Melo, M. B. F. V. (2013). Use of the recycled plastic roof main beam in the construction of popular houses: Impact on laborer’s health. 109-112. Scopus.
Malchiodi, B., Marchetti, R., Barbieri, L., & Pozzi, P. (2022). Recovery of Cork Manufacturing Waste within Mortar and Polyurethane: Feasibility of Use and Physical, Mechanical, Thermal Insulating Properties of the Final Green Composite Construction Materials. Applied Sciences (Switzerland), 12(8). Scopus. https://doi.org/10.3390/app12083844
Marzouk, M., Metawie, M., Hisham, M., Al-Sulahi, I., Kamal, M., & Al-Gahtani, K. (2014). Modeling sustainable building materials in Saudi Arabia. 1546-1553. Scopus. https://doi.org/10.1061/9780784413616.192
Massicotte, H. B., Melville, L. H., & Peterson, R. L. (2005). Building a basidiocarp: A case study of Laccaria spp. fruitbodies in the extraradical mycelium of Pinus ectomycorrhizas. Mycologist, 19(4), 141-149. Scopus. https://doi.org/10.1017/S0269915X05004027
McClain, J., Wohlt, J. E., McKeever, K. H., & Ward, P. L. (1997). Horse hair coat cleanliness is affected by bedding material: A comparison of clean and used wheat straw, wood shavings and pelleted newspaper. Journal of Equine Veterinary Science, 17(3), 156-160. Scopus. https://doi.org/10.1016/S0737-0806(97)80308-5
Mercader-Moyano, P., Requena García-de-la-Cruz, M. V., & Yajnes, M. E. (2017). Development of new eco-efficient cement-based construction materials and recycled fine aggregates and EPS from CDW. Open Construction and Building Technology Journal, 11, 381-394. Scopus. https://doi.org/10.2174/1874836801711010381
Mills, H. F., Gonzalez, M. G., & Buchhorn, H. (2022). Ternary Shed: An Exemplar Design for Bamboo Construction. Springer Tracts in Civil Engineering, 187-198. Scopus. https://doi.org/10.1007/978-3-030-91990-0_15
Morley, M. (2017). Investigating the use of earth tubes for passive cooling and ventilation through thermal modelling. 1, 330-339. Scopus. https://doi.org/10.26868/25222708.2017.771
Nanostead | Pequeño | Simple | Sostenible. (s. f.). Recuperado 5 de septiembre de 2021, de https://nanostead.com/
Nassar, M. A., Abdelwahab, N. A., & Elhalawany, N. R. (2009). Contributions of polystyrene to the mechanical properties of blended mixture of old newspaper and wood pulp. Carbohydrate Polymers, 76(3), 417-421. Scopus. https://doi.org/10.1016/j.carbpol.2008.11.039
Nguyen, T.-D., Bui, T.-T., Limam, A., Bui, T.-L., & Bui, Q.-B. (2021). Evaluation of seismic performance of rammed earth building and improvement solutions. Journal of Building Engineering, 43. Scopus. https://doi.org/10.1016/j.jobe.2021.103113
Niveditha, M., Manjunath, Y. M., & Prasanna, S. H. S. (2020). Ferrock: A carbon negative sustainable concrete. International Journal of Sustainable Construction Engineering and Technology, 11(4), 90-98. Scopus. https://doi.org/10.30880/ijscet.2021.11.04.008
Ofuyatan, O., Olowofoyeku, A., Adaramaja, G., Oluwafemi, J., & Edeki, S. (2020). Potential use of coconut stem as reinforcement in concrete slab. Case Studies in Construction Materials, 13, e00355. https://doi.org/10.1016/j.cscm.2020.e00355
Özdemir, E., Saeidi, N., Javadian, A., Rossi, A., Nolte, N., Ren, S., Dwan, A., Acosta, I., Hebel, D. E., Wurm, J., & Eversmann, P. (2022). Wood-Veneer-Reinforced Mycelium Composites for Sustainable Building Components. Biomimetics, 7(2). Scopus. https://doi.org/10.3390/biomimetics7020039
Parlato, M. C. M., & Porto, S. M. C. (2020). Organized framework of main possible applications of sheep wool fibers in building components. Sustainability (Switzerland), 12(3). Scopus. https://doi.org/10.3390/su12030761
Pelé-Peltier, A., Fabbri, A., Morel, J.-C., Hamard, E., & Lhenry, M. (2022). A similitude relation to assessing the compressive strength of rammed earth from scale-down samples. Case Studies in Construction Materials, 16. Scopus. https://doi.org/10.1016/j.cscm.2022.e00921
Potente panel solar casero | Maxeon 5 | SunPower Australia. (s. f.). Recuperado 7 de septiembre de 2021, de https://sunpower.maxeon.com/au/solar-panel-products/ac-modules/maxeon-5-ac-modules
Potkány, M., Krajčírová, L., & Stasiak-Betlejewska, R. (2021). Use of Target Costing methodology in the construction of wood-aluminium windows—Case study. Engineering Management in Production and Services, 13(4), 148-159. Scopus. https://doi.org/10.2478/emj-2021-0037
Prašnikar, J., & Škerlj, T. (2006). New product development process and time-to-market in the generic pharmaceutical industry. Industrial Marketing Management, 35(6), 690-702. https://doi.org/10.1016/j.indmarman.2005.06.001
Proceedings of the 1996 Conference on the Use of Recycled Wood and Paper in Building Applications. (1996). Proceedings of the Conference on the Use of Recycled Wood and Paper in Building Applications. Scopus.
Programa LEED® en Colombia – Consejo Colombiano de Construcción Sostenible – CCCS. (s. f.). Recuperado 17 de abril de 2020, de https://www.cccs.org.co/wp/capacitacion/talleres-de-preparacion-leed/
Properties of Coconut, Oil Palm and Bagasse Fibres: As Potential Building Materials. (2017). Procedia Engineering, 200, 1-9. https://doi.org/10.1016/j.proeng.2017.07.002
Qureshi, L. A., Ali, B., & Ali, A. (2020). Combined effects of supplementary cementitious materials (silica fume, GGBS, fly ash and rice husk ash) and steel fiber on the hardened properties of recycled aggregate concrete. Construction and Building Materials, 263. Scopus. https://doi.org/10.1016/j.conbuildmat.2020.120636
Raamets, J., Lokko, L., Ruus, A., Kalamees, T., & Muoni, K. (2021). Assessment of moisture and mould of hempcrete and straw panels. 2069(1). Scopus. https://doi.org/10.1088/1742-6596/2069/1/012194
Raavi, S. S. D., & Tripura, D. D. (2022). Evaluating the flexural strength and failure patterns of cement stabilized rammed earth wallettes reinforced with coir, bamboo and steel. Materials and Structures/Materiaux et Constructions, 55(2). Scopus. https://doi.org/10.1617/s11527-022-01896-x
Rahman, N. A., Rong, C. L., & Pin, L. H. (2022). Bamboo Reinforced Concrete Beam. Lecture Notes in Civil Engineering, 215, 497-509. Scopus. https://doi.org/10.1007/978-981-16-7924-7_32
Reinprecht, L., & Iždinský, J. (2022). Composites from recycled and modified woods—Technology, properties, application. Forests, 13(1). Scopus. https://doi.org/10.3390/f13010006
Resilience by Design: Can Innovative Processes Deliver More? (2017). Procedia Engineering, 180, 7-15. https://doi.org/10.1016/j.proeng.2017.04.160
Rodríguez, F., & Fernández, G. (2010). Sustainable engineering: New objectives for construction projects. Revista Ingenieria de Construccion, 25(2), 147-160. Scopus.
Rojas-Valencia, M. N., & Bolaños, E. A. (2016). Sustainable adobe bricks with construction wastes. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 169(4), 158-165. Scopus. https://doi.org/10.1680/jwarm.16.00014
Roy, M., & Mandal, S. (2020). Constructing a PV-Integrated Permanent Bamboo Building – An Experience. En S. Hashmi & I. A. Choudhury (Eds.), Encyclopedia of Renewable and Sustainable Materials (pp. 50-57). Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.11663-7
Samadi, M., Huseien, G. F., Mohammadhosseini, H., Lee, H. S., Abdul Shukor Lim, N. H., Tahir, M. M., & Alyousef, R. (2020a). Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. Journal of Cleaner Production, 266, 121825. https://doi.org/10.1016/j.jclepro.2020.121825
Samadi, M., Huseien, G. F., Mohammadhosseini, H., Lee, H. S., Abdul Shukor Lim, N. H., Tahir, M. M., & Alyousef, R. (2020b). Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. Journal of Cleaner Production, 266, 121825. https://doi.org/10.1016/j.jclepro.2020.121825
Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258. Scopus. https://doi.org/10.1016/j.jclepro.2020.120556
Santi, S., Pierobon, F., Corradini, G., Cavalli, R., & Zanetti, M. (2016). Massive wood material for sustainable building design: The Massiv–Holz–Mauer wall system. Journal of Wood Science, 62(5), 416-428. Scopus. https://doi.org/10.1007/s10086-016-1570-7
Schneider, H., & Samaniego, J. (s. f.). La huella del carbono en la producción, distribución y consumo de bienes y servicios. 46.
Scopus—Document details. (s. f.-a). Recuperado 31 de agosto de 2020, de https://www-scopus-com.sibulgem.unilibre.edu.co/record/display.uri?eid=2-s2.0-85077823418&origin=resultslist&sort=plf-f&src=s&st1=sustainable+building+material&nlo=&nlr=&nls=&sid=564719cba0bf0c787a0af9d92a00abd4&sot=b&sdt=b&sl=36&s=TITLE%28sustainable+building+material%29&relpos=23&citeCnt=0&searchTerm=
Scopus—Document details. (s. f.-b). Recuperado 31 de agosto de 2020, de https://www-scopus-com.sibulgem.unilibre.edu.co/record/display.uri?eid=2-s2.0-85070406019&origin=resultslist&sort=plf-f&src=s&st1=sustainable+building+material&nlo=&nlr=&nls=&sid=564719cba0bf0c787a0af9d92a00abd4&sot=b&sdt=b&sl=36&s=TITLE%28sustainable+building+material%29&relpos=35&citeCnt=0&searchTerm=
Scopus—Document details. (s. f.-c). Recuperado 31 de agosto de 2020, de https://www-scopus-com.sibulgem.unilibre.edu.co/record/display.uri?eid=2-s2.0-85089019925&origin=resultslist&sort=plf-f&src=s&st1=sustainable+building+material&nlo=&nlr=&nls=&sid=564719cba0bf0c787a0af9d92a00abd4&sot=b&sdt=b&sl=36&s=TITLE%28sustainable+building+material%29&relpos=46&citeCnt=0&searchTerm=
Scopus—Document details. (s. f.-d). Recuperado 31 de agosto de 2020, de https://www-scopus-com.sibulgem.unilibre.edu.co/record/display.uri?eid=2-s2.0-85055740038&origin=resultslist&sort=plf-f&src=s&st1=sustainable+building+material&nlo=&nlr=&nls=&sid=564719cba0bf0c787a0af9d92a00abd4&sot=b&sdt=b&sl=36&s=TITLE%28sustainable+building+material%29&relpos=29&citeCnt=1&searchTerm=
Scopus—Document details—Recycling of raw corn cob residues as an agricultural waste material for ammonium removal: Kinetics, isotherms, and mechanisms. (s. f.). Recuperado 17 de mayo de 2022, de https://www-scopus-com.sibulgem.unilibre.edu.co/record/display.uri?eid=2-s2.0-84896965649&origin=resultslist&sort=plf-f&src=s&st1=agricultural+residue+waste+material&sid=11122215f6190335c9c7f6410512758b&sot=b&sdt=b&sl=42&s=TITLE%28agricultural+residue+waste+material%29&relpos=0&citeCnt=4&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1
Scopus—Document details—Study on application of straw as landscape wall construction material. (s. f.). Recuperado 17 de mayo de 2022, de https://www-scopus-com.sibulgem.unilibre.edu.co/record/display.uri?eid=2-s2.0-85009080453&origin=resultslist&sort=plf-f&src=s&st1=construction+material+straw&sid=94d888d211539eb0165d23f9c465ab2c&sot=b&sdt=b&sl=34&s=TITLE%28construction+material+straw%29&relpos=9&citeCnt=0&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1
Shantveerayya, K., Mahesh, K. C. L., Shwetha, K. G., Jima, F., & Fufa, K. (2022). Performance Evaluation of Hollow Concrete Blocks Made with Sawdust Replacement of Sand: Case Study of Adama, Ethiopia. International Journal of Engineering Transactions C: Aspects, 35(6). Scopus. https://doi.org/10.5829/ije.2022.35.06c.03
Shi, S. Q. (2013). Wood, the best material for sustainable building design. Wood and Fiber Science, 45(3), 235-236. Scopus.
Silva, E. J. da, Marques, M. L., Velasco, F. G., Fornari Junior, C., Luzardo, F. M., & Tashima, M. M. (2017). A new treatment for coconut fibers to improve the properties of cement-based composites – Combined effect of natural latex/pozzolanic materials. Sustainable Materials and Technologies, 12, 44-51. https://doi.org/10.1016/j.susmat.2017.04.003
Silvestre, J. D., Pargana, N., De Brito, J., Pinheiro, M. D., & Durão, V. (2016). Insulation cork boards-environmental life cycle assessment of an organic construction material. Materials, 9(5). Scopus. https://doi.org/10.3390/ma9050394
Solahuddin, B. A. (2022). A Review on Structural Performance of Bamboo Reinforced Concrete. Materials Science Forum, 1056 MSF, 75-80. Scopus. https://doi.org/10.4028/p-dx1x87
Solar Panels | Guide to Buying Solar. (s. f.). CLEAN ENERGY REVIEWS. Recuperado 7 de septiembre de 2021, de https://www.cleanenergyreviews.info/solar-panels
Sridhar, J., Gobinath, R., & Kırgız, M. S. (2022). Comparative study for efficacy of chemically treated jute fiber and bamboo fiber on the properties of reinforced concrete beams. Journal of Natural Fibers. Scopus. https://doi.org/10.1080/15440478.2022.2054894
Straw bale: A Waste from Agriculture, a New Construction Material for Sustainable Buildings. (2015). Energy Procedia, 78, 297-302. https://doi.org/10.1016/j.egypro.2015.11.646
SunPower Solar Panels Review 2021. (s. f.). CLEAN ENERGY REVIEWS. Recuperado 7 de septiembre de 2021, de https://www.cleanenergyreviews.info/blog/sunpower-solar-panels-review
Tahmoorian, F., & Yeaman, J. (2018). Utilizing plastic for pretreating recycled construction aggregate to eliminate binder absorption in asphalt mixture. 5(2). Scopus.
Tang, Z., Li, W., Tam, V. W. Y., & Xue, C. (2020). Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resources, Conservation & Recycling: X, 6, 100036. https://doi.org/10.1016/j.rcrx.2020.100036
Temga, J. P., Mazzù, A., Nguetnkam, J. P., Palazzini, D., Ndjouenkeu, R., & Vitali, F. (2014). Valorisation of crude earth as sustainable building material: A case of international cooperation in the Logone Valley (Chad-Cameroon). International Journal of Sustainable Engineering, 7(3), 222-234. Scopus. https://doi.org/10.1080/19397038.2013.807886
Terai, M. (2022). AGING OF BAMBOO-REINFORCED CONCRETE AFTER 10-YEAR OUTDOOR AND UNDER-GROUND EXPOSURE. AIJ Journal of Technology and Design, 28(68), 30-35. Scopus. https://doi.org/10.3130/aijt.28.30
The house made of hemp. (2010, diciembre 1). New Atlas. https://newatlas.com/first-us-hemp-house/17115/
Tiza, T. M., Singh, S. K., Kumar, L., Shettar, M. P., & Singh, S. P. (2021). Assessing the potentials of Bamboo and sheep wool fiber as sustainable construction materials: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.05.322
Tola, A. (2014). Bio-construction and renewable raw materials: The case of cork. En Pathways to Environmental Sustainability: Methodologies and Experiences (pp. 137-146). Scopus. https://doi.org/10.1007/978-3-319-03826-1_14
Top 10 Solar Panels—Latest Technology 2021. (s. f.). CLEAN ENERGY REVIEWS. Recuperado 7 de septiembre de 2021, de https://www.cleanenergyreviews.info/blog/2017/9/11/best-solar-panels-top-modules-review
Tripura, D. D., Gupta, S., Debbarma, B., & Deep, R. S. S. (2020). Flexural strength and failure trend of bamboo and coir reinforced cement stabilized rammed earth wallettes. Construction and Building Materials, 242. Scopus. https://doi.org/10.1016/j.conbuildmat.2019.117986
Tu, J. (2018). Application of recycled plastic building materials in modern home design. Hecheng Shuzhi Ji Suliao/China Synthetic Resin and Plastics, 35(6), 100-102. Scopus.
Umniati, B. S., Sulton, M., Sulaksitaningrum, R., Abdullah, M. M. A. B., & Muhtadi, S. (2021). Mechanical characteristics of bamboo reinforced concrete precast column, a numerical analysis. 2447. Scopus. https://doi.org/10.1063/5.0072834
Unterrainer, W. (2018). Wood – A sustainable building material? 216379. Scopus. https://doi.org/10.5176/2301-394X_ACE18.43
Vallas, T., & Courard, L. (2017). Using nature in architecture: Building a living house with mycelium and trees. Frontiers of Architectural Research, 6(3), 318-328. Scopus. https://doi.org/10.1016/j.foar.2017.05.003
Venkatarama Reddy, B. V., & Sri Bhanupratap Rathod, R. (2022). Influence of interlayer shear studs on the behaviour of cement stabilised rammed earth under compression, tension and shear. Journal of Building Engineering, 49. Scopus. https://doi.org/10.1016/j.jobe.2022.104096
Vijayan, D. S., Dineshkumar, Arvindan, S., & Janarthanan, T. S. (2020). Evaluation of ferrock: A greener substitute to cement. 22, 781-787. Scopus. https://doi.org/10.1016/j.matpr.2019.10.147
Vitolina, S., Shulga, G., Neiberte, B., Jaunslavietis, J., Verovkins, A., & Betkers, T. (2022). Characteristics of the Waste Wood Biomass and Its Effect on the Properties of Wood Sanding Dust/Recycled PP Composite. Polymers, 14(3). Scopus. https://doi.org/10.3390/polym14030468
Wairagade, V. R., & Sonar, I. P. (2022). Bamboo-Reinforced Concrete Lintel—A Sustainable Approach. Lecture Notes in Civil Engineering, 172, 317-328. Scopus. https://doi.org/10.1007/978-981-16-4396-5_29
Wang, Y., Feng, Y., Zhang, B., & Yang, Y. (2021). Experimental study on seismic performance of bamboo mesh and cement mortar reinforced rammed earth wall. World Earthquake Engineering, 37(3), 104-110. Scopus.
Ward, P. L., Wohlt, J. E., & Katz, S. E. (2001). Chemical, physical, and environmental properties of pelleted newspaper compared to wheat straw and wood shavings as bedding for horses. Journal of Animal Science, 79(6), 1359-1369. Scopus. https://doi.org/10.2527/2001.7961359x
Ward, P. L., Wohlt, J. E., Zajac, P. K., & Cooper, K. R. (2000). Chemical and physical properties of processed newspaper compared to wheat straw and wood shavings as animal bedding. Journal of Dairy Science, 83(2), 359-367. Scopus. https://doi.org/10.3168/jds.S0022-0302(00)74887-9
Wongsa, A., Kunthawatwong, R., Naenudon, S., Sata, V., & Chindaprasirt, P. (2020). Natural fiber reinforced high calcium fly ash geopolymer mortar. Construction and Building Materials, 241, 118143. https://doi.org/10.1016/j.conbuildmat.2020.118143
Xing, Y., Brewer, M., El-Gharabawy, H., Griffith, G., & Jones, P. (2018). Growing and testing mycelium bricks as building insulation materials. 121(2). Scopus. https://doi.org/10.1088/1755-1315/121/2/022032
Xu, X., Xu, P., Zhu, J., Li, H., & Xiong, Z. (2022). Bamboo construction materials: Carbon storage and potential to reduce associated CO2 emissions. Science of the Total Environment, 814. Scopus. https://doi.org/10.1016/j.scitotenv.2021.152697
Yamasue, E., Minamino, R., Tanikawa, H., Daigo, I., Okumura, H., Ishihara, K. N., & Brunner, P. H. (2013). Quality evaluation of steel, aluminum, and road material recycled from end-of-life urban buildings in Japan in terms of total material requirement. Journal of Industrial Ecology, 17(4), 555-565. Scopus. https://doi.org/10.1111/jiec.12014
Yathushan, K., Kishok, S., Thevarajah, B. E., & Nithurshan, M. (2021). Bamboo cane as an alternative reinforcement in reinforced concrete beam. 154-159. Scopus. https://doi.org/10.1109/MERCon52712.2021.9525805
Zaffar, S., Kumar, A., Memon, N. A., Kumar, R., & Saand, A. (2022). Investigating Optimum Conditions for Developing Pozzolanic Ashes from Organic Wastes as Cement Replacing Materials. Materials, 15(6). Scopus. https://doi.org/10.3390/ma15062320
Zhang, X., Hu, J., Fan, X., & Yu, X. (2022). Naturally grown mycelium-composite as sustainable building insulation materials. Journal of Cleaner Production, 342. Scopus. https://doi.org/10.1016/j.jclepro.2022.130784
Zheng, B., Hu, C., Guan, L., Gu, J., Guo, H., & Zhang, W. (2019). Structural characterization and analysis of high-strength laminated composites from recycled newspaper and HDPE. Polymers, 11(8). Scopus. https://doi.org/10.3390/polym11081311
Zimele, Z., Irbe, I., Grinins, J., Bikovens, O., Verovkins, A., & Bajare, D. (2020). Novel mycelium-based biocomposites (Mbb) as building materials. Journal of Renewable Materials, 8(9), 1067-1076. Scopus. https://doi.org/10.32604/jrm.2020.09646web
Biblioteca digital. (s/f). Edu.Co Adaptado de https://repository.cesa.edu.co/
Consejo Colombiano de Construcción Sostenible – CCCS – Liderando el desarrollo sostenible de la industria de la construcción. (s/f). Org.co Adaptado de https://www.cccs.org.co/
Eficiencia energética y energía solar en Colombia. (s/f). Celsia.com Adaptado de https://blog.celsia.com/new/
enero. (s/f). Solución Solar & Led. Blogspot.com Adaptado de https://solucionsolarled.blogspot.com/
Environmental XPRT - the Environmental Industry online. (s/f). Environmental-expert.com Adaptado de http://www.environmental-expert.com/
Le proporcionamos las herramientas cómodas y gratuitas para publicar y compartir la información. (s/f).
Docplayer.Es Adaptado de http://docplayer.es/
Revistas Universidad Externado de Colombia. (s/f). Edu.co Adaptado de https://revistas.uexternado.edu.co
Universidad El Bosque. (s/f). Repositorio institucional. Universidad El Bosque Adaptado de https://repositorio.unbosque.edu.co/
Universidad Sergio Arboleda. (s/f). Universidad Sergio Arboleda Adaptado de https://www.usergioarboleda.edu.co/
(S/f). Blogspot.com Adaptado de http://dhticsalumnos.blogspot.com/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.license.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.spa.fl_str_mv PDF
dc.coverage.spatial.spa.fl_str_mv Socorro
institution Universidad Libre
bitstream.url.fl_str_mv http://repository.unilibre.edu.co/bitstream/10901/23915/5/Trabajo%20de%20grado.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/23915/6/Autorizaci%c3%b3n.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/23915/7/Turnitin.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/23915/4/license.txt
http://repository.unilibre.edu.co/bitstream/10901/23915/1/Trabajo%20de%20grado.pdf
http://repository.unilibre.edu.co/bitstream/10901/23915/2/Autorizaci%c3%b3n.pdf
http://repository.unilibre.edu.co/bitstream/10901/23915/3/Turnitin.pdf
bitstream.checksum.fl_str_mv d64047f53f9e6a499d868aba576c8215
3cf132f006ce92192febda34fdd588c5
d71640ceea5edb9c5ee5452f2b3886fe
8a4605be74aa9ea9d79846c1fba20a33
1b891d3d73f3745ad981aa21f4bb4087
6216a74dca789325d8c1e3f2debe07cf
adb6930ef35c30a1465d5ce27ffe7909
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Unilibre
repository.mail.fl_str_mv repositorio@unilibrebog.edu.co
_version_ 1807060585597108224
spelling Gómez Cardona, Juan PabloRentería Moreno, Ailyn DayanaSocorro2023-01-17T16:36:25Z2023-01-17T16:36:25Z2022-09-07https://hdl.handle.net/10901/23915Se presentan los resultados del proyecto “Diseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre Seccional Socorro” que tuvo como propósito diseñar una construcción sostenible a nivel de materiales y de consumo energético. Dicha construcción se diseñó bajo la metodología de desarrollo de nuevos productos. Los resultados presentados son: en primer lugar, un análisis basado en criterios de sostenibilidad a través de una matriz de despliegue de la función de calidad (Quality Function Deployment QFD), de una encuesta a la comunidad universitaria donde se indagó sobre sus expectativas y necesidades, así como, la frecuencia de carga de sus dispositivos móviles dentro del campus. En segundo lugar, tres prototipos que fueron diseñados basados en los resultados de dicho análisis, y posteriormente sometidos a votación. En el tercer resultado se listan los materiales elegidos para ser usados en la construcción tras realizar la consulta y evaluación de sus características. Por último, se presenta el diseño del sistema solar fotovoltaico, acorde a la demanda energética. El modelo de construcción sostenible, resultado de este proyecto, de llegar a construirse, podría llegar a tener un impacto significativo en la forma como actualmente se realizan las construcciones en la región. Asimismo, de implementarse, podría constituirse como un proyecto piloto con potencial para acceder a un sello LEED de construcción sostenible. Una estructura eco-amigable a modo de prueba piloto en la Universidad podría ayudar a promover mejores prácticas de construcción en la región repercutiendo en impactos positivos a nivel social (cultura en torno al tema), ambiental (disminución emisiones CO2) y económico.Universidad Libre Seccional Socorro -- Facultad de Ingenierías y Ciencias Agropecuarias -- Ingeniería AmbientalThe results presented are: First, an analysis based on sustainability criteria through a quality function deployment (QFD), applied to a survey performed to the community to know their expectations and needs. Second, three prototypes based on the results of the previous analysis and subsequently chosen by the community through a poll. Second to last, the materials chosen to be used in the construction after consulting and evaluating their characteristics. And last, the final architectural and photovoltaic designs. The result of this project could have a significant impact on the way construction is currently carried out in the region, and if it is implemented, it could apply for a label LEED of sustainable buildingPDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Construcción sostenibleEnergías renovablesSostenibilidadConstrucción sostenible -- MaterialesSustainable constructionRenewable energySustainabilitySustainable construction -- MaterialConstrucción sostenibleEnergías renovablesSostenibilidadConstrucción sostenible -- MaterialeDiseño preliminar de una estructura eco-amigable para ser ubicada en las zonas verdes de la Universidad Libre seccional SocorroTesis de Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1f7 reasons why we should build straw houses and live in them. (2015, enero 29). LifeGate. https://www.lifegate.com/7-reasons-why-build-straw-houses-to-live-in11 Colombian Houses That Feature Exposed Brick. (2020, mayo 20). ArchDaily. https://www.archdaily.com/939644/11-colombian-houses-that-feature-exposed-brickA House Made of Corn Cobs. (s. f.). Recuperado 5 de septiembre de 2021, de https://earthpowernews.com/a-house-made-of-corn-cobs/Abdellatef, Y., & Kavgic, M. (2020). Thermal, microstructural and numerical analysis of hempcrete-microencapsulated phase change material composites. Applied Thermal Engineering, 178. Scopus. https://doi.org/10.1016/j.applthermaleng.2020.115520Abed, M. S., Resan, S. F., & Zemam, S. K. (2022). Developing knotted slender reinforced concrete column based on bamboo culm biomimicry. Asian Journal of Civil Engineering, 23(1), 99-111. Scopus. https://doi.org/10.1007/s42107-021-00411-xAbessolo, D., Biwole, A. B., Fokwa, D., Ganou Koungang, B. M., & Yembe, B. B. A. A. H. (2022). Physical, Mechanical and Hygroscopic Behaviour of Compressed Earth Blocks Stabilized with Cement and Reinforced with Bamboo Fibres. International Journal of Engineering Research in Africa, 59, 29-41. Scopus. https://doi.org/10.4028/p-spbskvAdamová, T., Hradecký, J., & Prajer, M. (2019). VOC emissions from spruce strands and hemp shive: In search for a low emission raw material for bio-based construction materials. Materials, 12(12). Scopus. https://doi.org/10.3390/ma12122026Adell, J., Bedoya, C., Ayllón, J. H., Humero, A., & Lombana, E. (2018). Brick façade of a main historic building to be preserved by reinforced and panelled, to disassemble and reassemble fixed on a new structure. 0(222279), 871-882. Scopus.Ahmadi, R., Souri, B., & Ebrahimi, M. (2020). Evaluation of wheat straw to insulate fired clay hollow bricks as a construction material. Journal of Cleaner Production, 254. Scopus. https://doi.org/10.1016/j.jclepro.2020.120043Alarcón, L., & Montero-Fernández, F. (2018). Nature in the city: Open space and ruin. RA Revista de Arquitectura, 20, 104-117+279 and283. Scopus. https://doi.org/10.15581/014.20.104-117AlShuhail, K., Aldawoud, A., Syarif, J., & Abdoun, I. A. (2021). Enhancing the performance of compressed soil bricks with natural additives: Wood chips and date palm fibers. Construction and Building Materials, 295, 123611. https://doi.org/10.1016/j.conbuildmat.2021.123611Alyousef, R., Ahmad, W., Ahmad, A., Aslam, F., Joyklad, P., & Alabduljabbar, H. (2021). Potential use of recycled plastic and rubber aggregate in cementitious materials for sustainable construction: A review. Journal of Cleaner Production, 329. Scopus. https://doi.org/10.1016/j.jclepro.2021.129736Antivil-Marinao, W., & Orellana-Yaez, I. (2020). Sustainable Concepts Reflected in Mapuche Constructions. 503(1). Scopus. https://doi.org/10.1088/1755-1315/503/1/012054Application of Coconut Fibres as Outer Eco-insulation to Control Solar Heat Radiation on Horizontal Concrete Slab Rooftop. (2015). Procedia Engineering, 125, 765-772. https://doi.org/10.1016/j.proeng.2015.11.129Arehart, J. H., Nelson, W. S., & Srubar, W. V., III. (2020). On the theoretical carbon storage and carbon sequestration potential of hempcrete. Journal of Cleaner Production, 266. Scopus. https://doi.org/10.1016/j.jclepro.2020.121846Arquitectura con tierra, las casas de Barichara en Colombia. (s. f.). Recuperado 5 de septiembre de 2021, de https://revistaaxxis.com.co/arquitectura/casa-sostenible-barichara/Asare, B. J., & Danyuo, Y. (2020). Mechanical Characterization of Earth-Based Composites Materials Reinforced with Treated Bamboo Fibres for Affordable Housing. MRS Advances, 5(25), 1313-1321. Scopus. https://doi.org/10.1557/adv.2020.214Aurrekoexea, I., & Cultrone, G. (2020). Chemical, mineralogical and physical characterization of lightweight bricks with the addition of sawdust for use in construction and preservation of architectural heritage. 94-101. Scopus.author/lauren-shanesy. (2016, diciembre 5). Insulating Homes with Natural Sheep’s Wool. Builder. https://www.builderonline.com/products/building-materials/insulating-homes-with-natural-sheeps-wool_oAwoyera, P. O., Nworgu, T. A., Shanmugam, B., Arunachalam, K. P., Mansouri, I., Romero, L. M. B., & Hu, J.-W. (2021). Structural retrofitting of corroded reinforced concrete beams using bamboo fiber laminate. Materials, 14(21). Scopus. https://doi.org/10.3390/ma14216711Bakhoum, E. S., Garas, G. L., & Allam, M. E. (2015). Sustainability analysis of conventional and eco-friendly materials: A step towards green building. ARPN Journal of Engineering and Applied Sciences, 10(2), 788-796. Scopus.Bamboo Treehouse in Colombia. (s. f.). Guadua Bamboo. Recuperado 5 de septiembre de 2021, de https://www.guaduabamboo.com/blog/bamboo-treehouseBambooU. (s. f.). Bamboo U Home. Recuperado 10 de junio de 2022, de https://www.bamboou.com/?r_done=1&utm_medium=website&utm_source=archdaily.coBarnaure, M., Bonnet, S., & Poullain, P. (2021). Earth buildings with local materials: Assessing the variability of properties measured using non-destructive methods. Construction and Building Materials, 281, 122613. https://doi.org/10.1016/j.conbuildmat.2021.122613Barreca, F., Martinez Gabarron, A., Flores Yepes, J. A., & Pastor Pérez, J. J. (2019). Innovative use of giant reed and cork residues for panels of buildings in Mediterranean area. Resources, Conservation and Recycling, 140, 259-266. Scopus. https://doi.org/10.1016/j.resconrec.2018.10.005Basak, M., Dutta, S., Biswas, S., Chakraborty, S., Sarkar, A., Rahaman, T., Dey, S., Biswas, P., & Das, M. (2021). Genomic insights into growth and development of bamboos: What have we learnt and what more to discover? Trees - Structure and Function, 35(6), 1771-1791. Scopus. https://doi.org/10.1007/s00468-021-02197-6Best Solar Inverters 2021. (s. f.). CLEAN ENERGY REVIEWS. Recuperado 7 de septiembre de 2021, de https://www.cleanenergyreviews.info/blog/best-grid-connect-solar-inverters-sma-fronius-solaredge-abbBirjukovs, M., Sinka, M., Jakovics, A., & Bajare, D. (2022). Combined in situ and in silico validation of a material model for hempcrete. Construction and Building Materials, 321. Scopus. https://doi.org/10.1016/j.conbuildmat.2021.126051Bleiel, J., Bogue, J., & Troy, A.-J. (2011). New product development for functional foods: Focusing on mega-trends to increase consumer acceptance. Agro Food Industry Hi-Tech, 22(5), 20-22. Scopus.Bonnefin, I. (s. f.). Emerging Materials: Mycelium Brick. Recuperado 5 de septiembre de 2021, de https://www.certifiedenergy.com.au/emerging-materials/emerging-materials-mycelium-brickBonoli, A., Rizzo, S., & Chiavetta, C. (2014). Straw as construction material for sustainable buildings: Life Cycle Assessment of a post-earthquake reconstruction. En Vernacular Architecture: Towards a Sustainable Future (pp. 143-146). Scopus. https://doi.org/10.1201/b17393Bracho, L., & Martinez, P. (2020). Diagnosis of the Generation of Solid Waste in the Construction of a Building under the Approach of Industrial Ecology. 503(1). Scopus. https://doi.org/10.1088/1755-1315/503/1/012023Briede W., J. C., & Alarcón C., J. (2012). Sustainable strategies applied to regional context: Design of wooden and unconventional raw materials boards for decorative finishing. Interciencia, 37(12), 927-933. Scopus.Bukhari, H., Musarat, M. A., Alaloul, W. S., & Riaz, M. (2021). Hempcrete as a Sustainable Building Material: A Review. 633-635. Scopus. https://doi.org/10.1109/DASA53625.2021.9682411Cabina de caza—JD Composites. (s. f.). Recuperado 5 de septiembre de 2021, de https://jdcomposites.ca/portfolio/hunting-cabin/Casa de corcho. (s. f.). Recuperado 5 de septiembre de 2021, de https://www.architecture.com/awards-and-competitions-landing-page/awards/riba-regional-awards/riba-south-award-winners/2019/cork-houseCascone, S., Rapisarda, R., & Cascone, D. (2019). Physical properties of straw bales as a construction material: A review. Sustainability (Switzerland), 11(12). Scopus. https://doi.org/10.3390/SU11123388Chaurasia, D. (2019). «Bamboo» with reference to Indian context: Potential sustainable building material and awareness. 2158. Scopus. https://doi.org/10.1063/1.5127128Chaussinand, A., Scartezzini, J. L., & Nik, V. (2015). Straw bale: A waste from agriculture, a new construction material for sustainable buildings. 78, 297-302. Scopus. https://doi.org/10.1016/j.egypro.2015.11.646Chen, L., & Yang, M. (2021). The impact of the use of new environmentally friendly materials on the management of construction projects: Taking straw fiber materials as an example. 2011(1). Scopus. https://doi.org/10.1088/1742-6596/2011/1/012019Chen, R., Zhang, W., Guan, L., Gu, J., Lin, W., & Hu, C. (2018). Manufacturing technology of composite particleboard using waste newspaper and wood particles. Journal of South China Agricultural University, 39(6), 85-90. Scopus. https://doi.org/10.7671/j.issn.1001-411X.2018.06.013Chen, Z.-S., Martínez, L., Chang, J.-P., Wang, X.-J., Xionge, S.-H., & Chin, K.-S. (2019). Sustainable building material selection: A QFD- and ELECTRE III-embedded hybrid MCGDM approach with consensus building. Engineering Applications of Artificial Intelligence, 85, 783-807. https://doi.org/10.1016/j.engappai.2019.08.006Chiou, Y.-C., Shen, M.-Y., Chiang, C.-L., Li, Y.-L., & Lai, W.-M. (2022). Effects of Environmental Aging on the Durability of Wood-Flour Filled Recycled PET/PA6 Wood Plastic Composites. Journal of Polymers and the Environment, 30(4), 1300-1313. Scopus. https://doi.org/10.1007/s10924-021-02268-2Chotikhun, A., Kittijaruwattana, J., Arsyad, W. O. M., Salca, E.-A., Hadi, Y. S., & Hiziroglu, S. (2022). Some Properties of Wood Plastic Composites Made from Rubberwood, Recycled Plastic and Silica. Forests, 13(3). Scopus. https://doi.org/10.3390/f13030427Chowdhury, F. I., Islam, J., Haldar, S. S., & Zabed, H. M. (2022). Recycled wood plastic biocomposites and development of new materials. En Recycled Plastic Biocomposites (pp. 119-145). Scopus. https://doi.org/10.1016/B978-0-323-88653-6.00011-0Contributor, T. R., Rise. (2020, octubre 16). Building with Hempcrete. Rise. https://www.buildwithrise.com/stories/building-with-hempcreteCuccurullo, A., Gallipoli, D., Bruno, A. W., Augarde, C., Hughes, P., & La Borderie, C. (2020). Earth stabilisation via carbonate precipitation by plant-derived urease for building applications. Geomechanics for Energy and the Environment, 100230. https://doi.org/10.1016/j.gete.2020.100230Dias, P. P., Jayasinghe, L. B., & Waldmann, D. (2021). Investigation of Mycelium-Miscanthus composites as building insulation material. Results in Materials, 10. Scopus. https://doi.org/10.1016/j.rinma.2021.100189Dotelli, G., Moletti, C., Aversa, P., Sabbadini, S., Marzo, A., Tripepi, C., Lauriola, P., & Luprano, V. A. M. (2020). Hempcrete Buildings: Environmental Sustainability and Durabilityof Two Case-Studiesin North and South Italy. 1007-1014. Scopus. https://doi.org/10.23967/dbmc.2020.213Dueñas, M. E., & Vera, A. I. (2017). Construction of a floor tile prototype using PET recycled plastics and rice husk, an innovation in Ecuador. 2017-July. Scopus. https://doi.org/10.18687/LACCEI2017.1.1.120Effect of Treatments on Properties of Cement-fiber Bricks Utilizing Rice Husk, Corncob and Coconut Coir. (2017). Procedia Engineering, 180, 1266-1273. https://doi.org/10.1016/j.proeng.2017.04.288Eid, J., Taibi, S., Fleureau, J. M., & Hattab, M. (2015). Drying, cracks and shrinkage evolution of a natural silt intended for a new earth building material. Impact of reinforcement. Construction and Building Materials, 86, 120-132. https://doi.org/10.1016/j.conbuildmat.2015.03.115Eleftheriadis, S., Duffour, P., & Mumovic, D. (2018). Participatory decision-support model in the context of building structural design embedding BIM with QFD. Advanced Engineering Informatics, 38, 695-711. https://doi.org/10.1016/j.aei.2018.10.001Enfrin, M., & Giustozzi, F. (2022). Recent advances in the construction of sustainable asphalt roads with recycled plastic. Polymer International. Scopus. https://doi.org/10.1002/pi.6405Enviro Board Corporation | Una solución de construcción natural globalmente sostenible. (s. f.). Recuperado 5 de septiembre de 2021, de http://enviroboard.com/Enviroboards. (s. f.). Total Building Materials. Recuperado 17 de mayo de 2022, de https://totalbm.com/enviroboards/Erika, L., Martina, N., & Miriam, O. (2018). Comparison of materials for building construction and their innovations in terms of sustainable growth. 177-184. Scopus.Fan, Y., Li, S., Li, Y., Liang, H., Tang, M., Huang, K., & Zhu, L. (2021). Recycling of municipal solid waste incineration fly ash in foam ceramic materials for exterior building walls. Journal of Building Engineering, 44. Scopus. https://doi.org/10.1016/j.jobe.2021.103427Fardos de paja: Un residuo de la agricultura, un nuevo material de construcción para edificios sostenibles—ScienceDirect. (s. f.). Recuperado 9 de julio de 2021, de https://www-sciencedirect-com.sibulgem.unilibre.edu.co/science/article/pii/S1876610215023784Faris, F., & Adi, A. D. (2022). HEIGHT RELIABILITY-BASED ANALYSIS OF WOVEN BAMBOO MAT REINFORCED MECHANICALLY STABILIZED EARTH WALL IN TEMPORARY RAILWAY EMBANKMENT. ASEAN Engineering Journal, 12(1), 189-196. Scopus. https://doi.org/10.11113/aej.v12.17320Fatourehchi, D., & Zarghami, E. (2020). Social sustainability assessment framework for managing sustainable construction in residential buildings. Journal of Building Engineering, 101761. https://doi.org/10.1016/j.jobe.2020.101761Foti, D., Voulgaridou, E. E., Karastergiou, S., Taghiyari, H. R., & Papadopoulos, A. N. (2022). Physical and mechanical properties of eco-friendly composites made from wood dust and recycled polystyrene. Journal of Renewable Materials, 10(1), 75-88. Scopus. https://doi.org/10.32604/jrm.2022.017759Fuentes-García, R., Valverde-Palacios, I., & Valverde-Espinosa, I. (2015a). A new procedure to adapt any type of soil for the consolidation and construction of earthen structures: Projected earth system. Materiales de Construccion, 65(319). Scopus. https://doi.org/10.3989/mc.2015.06614Govindan, B., Ramasamy, V., Panneerselvam, B., & Rajan, D. (2022). Performance assessment on bamboo reinforced concrete beams. Innovative Infrastructure Solutions, 7(1). Scopus. https://doi.org/10.1007/s41062-021-00616-8Grewal, N., Escallon, M., Chaudhary, A., & Hramyka, A. (2019). INFRASONIC A mycelium-based, earthquake-resistant building proposal in Kathmandu, Nepal. 234-245. Scopus.Grillo, C. C., & Saron, C. (2022). Wood-plastic from Pennisetum Purpureum Fibers and Recycled Low-density Polyethylene. Journal of Natural Fibers, 19(3), 858-871. Scopus. https://doi.org/10.1080/15440478.2020.1764436Grow.me by Mediavine. (s. f.). Recuperado 5 de septiembre de 2021, de https://app.grow.me/Guillen, J., & Rojas-Valencia, M. N. (2019). Study of the properties of the Echerhirhu-Block made with Opuntia ficus mucilage for use in the construction industry. Case Studies in Construction Materials, 10. Scopus. https://doi.org/10.1016/j.cscm.2019.e00216Gutiérrez, L. M. D. (2017). Definición de criterios sostenibles para la selección de materiales de viviendas en Bogotá [Trabajo de Grado Maestría, Universidad Católica de Colombia]. https://repository.ucatolica.edu.co/bitstream/10983/15397/1/Monica%20Duran_Definicion%20de%20Criterios%20de%20Sosteniblidad%20.pdfHall, M. R., Lindsay, R., & Krayenhoff, M. (2012). Overview of modern earth building. En Modern Earth Buildings: Materials, Engineering, Constructions and Applications (pp. 3-16). Scopus. https://doi.org/10.1533/9780857096166.1.3Hamard, E., Cazacliu, B., Razakamanantsoa, A., & Morel, J.-C. (2016). Cob, a vernacular earth construction process in the context of modern sustainable building. Building and Environment, 106, 103-119. https://doi.org/10.1016/j.buildenv.2016.06.009Hamard, E., Cazacliu, B., Razakamanantsoa, A., & Morel, J.-C. (2016). Cob, a vernacular earth construction process in the context of modern sustainable building. Building and Environment, 106, 103-119. https://doi.org/10.1016/j.buildenv.2016.06.009Harja, M., Gencel, O., Sarı, A., Sutcu, M., Erdogmus, E., & Hekimoglu, G. (2022). Production and characterization of natural clay-free green building brick materials using water treatment sludge and oak wood ash. Archives of Civil and Mechanical Engineering, 22(2). Scopus. https://doi.org/10.1007/s43452-022-00400-0Hoier, P., Hammersberg, P., Klement, U., & Krajnik, P. (2021). On assessing grindability of recycled and ore-based crankshaft steel: An approach combining data analysis with material science. 104, 1601-1606. Scopus. https://doi.org/10.1016/j.procir.2021.11.270Home. (s. f.). Kodiak Steel Homes. Recuperado 5 de septiembre de 2021, de https://kodiaksteelhomes.com/Hossain, Md. U., Sohail, A., & Ng, S. T. (2019). Developing a GHG-based methodological approach to support the sourcing of sustainable construction materials and products. Resources, Conservation and Recycling, 145, 160-169. https://doi.org/10.1016/j.resconrec.2019.02.030How Is Ferrock Made? (2020, agosto 9). BuilderSpace. https://www.builderspace.com/how-is-ferrock-madeHow solar power works—On-grid, off-grid and hybrid systems. (s. f.). CLEAN ENERGY REVIEWS. Recuperado 7 de septiembre de 2021, de https://www.cleanenergyreviews.info/blog/2014/5/4/how-solar-worksHow to choose a quality solar panel. (s. f.). CLEAN ENERGY REVIEWS. Recuperado 7 de septiembre de 2021, de https://www.cleanenergyreviews.info/blog/best-quality-solar-panels-manufacturersInnovation for a Sustainable Low Carbon Built Environment. (2017). Procedia Engineering, 180, 16-32. https://doi.org/10.1016/j.proeng.2017.04.161Is There an Eco-friendly Spray Foam Insulation? (2015, octubre 14). BuildDirect Blog: Life at Home. https://www.builddirect.com/blog/is-there-an-eco-friendly-spray-foam-insulation/Iždinský, J., Vidholdová, Z., & Reinprecht, L. (2021). Particleboards from recycled thermally modified wood. Forests, 12(11). Scopus. https://doi.org/10.3390/f12111462Johnson, C. (2016, octubre 4). Timbercrete: An Innovative Building Material to Offset Emissions. Build Abroad. https://buildabroad.org/2016/10/04/timbercrete/Karthika, S., Rose, A. L., & Priyadarshini, G. (2021). Sustainable development on Ferrock mortar cubes. 2040(1). Scopus. https://doi.org/10.1088/1742-6596/2040/1/012020Kavgic, M., & Abdellatef, Y. (2021). Temperature control to improve performance of hempcrete‐ phase change material wall assemblies in a cold climate. Energies, 14(17). Scopus. https://doi.org/10.3390/en14175343Kerroum, N., Nouibat, B., Benyahia, A., & Redjem, A. (2018). Study of the performance of adobe brick coated for sustainable construction in the Algerian Sahara. Materiaux et Techniques, 106(4). Scopus. https://doi.org/10.1051/mattech/2018041Keshav, L., Srisanthi, V. G., & Rajkumar, N. (2012). Eco friendly and earthquake resistant building constructed using earth block-an experimental study. Ecology, Environment and Conservation, 18(4), 915-923. Scopus.Koh, C. H. (Alex), & Kraniotis, D. (2020). A review of material properties and performance of straw bale as building material. Construction and Building Materials, 259, 120385. https://doi.org/10.1016/j.conbuildmat.2020.120385Kumar, P., Gautam, P., Kaur, S., Chaudhary, M., Afreen, A., & Mehta, T. (2021). Bamboo as reinforcement in structural concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.04.342La construcción con muros de tierra. (2021, febrero 24). EcoHabitar. https://ecohabitar.org/la-construccion-con-muros-de-tierra/Li, L., Liu, W., You, Q., Chen, M., & Zeng, Q. (2020). Waste ceramic powder as a pozzolanic supplementary filler of cement for developing sustainable building materials. Journal of Cleaner Production, 259, 120853. https://doi.org/10.1016/j.jclepro.2020.120853Li, Z., Liu, K., Demartino, C., & Xiao, Y. (2022). Use of Bamboo in Constructions. Springer Tracts in Civil Engineering, 15-27. Scopus. https://doi.org/10.1007/978-3-030-91990-0_2Liu, L., Zou, S., Li, H., Deng, L., Bai, C., Zhang, X., Wang, S., & Li, N. (2019). Experimental physical properties of an eco-friendly bio-insulation material based on wheat straw for buildings. Energy and Buildings, 201, 19-36. Scopus. https://doi.org/10.1016/j.enbuild.2019.07.037Lysyannikov, A. V., Egorov, A. V., Lysyannikova, N. N., Shram, V. G., Kovaleva, M. A., Lynev, A. S., & Kaizer, Y. F. (2019). Polymer materials from recycled plastic in road construction. 1399(4). Scopus. https://doi.org/10.1088/1742-6596/1399/4/044064Maia, S. F. D., & Melo, M. B. F. V. (2013). Use of the recycled plastic roof main beam in the construction of popular houses: Impact on laborer’s health. 109-112. Scopus.Malchiodi, B., Marchetti, R., Barbieri, L., & Pozzi, P. (2022). Recovery of Cork Manufacturing Waste within Mortar and Polyurethane: Feasibility of Use and Physical, Mechanical, Thermal Insulating Properties of the Final Green Composite Construction Materials. Applied Sciences (Switzerland), 12(8). Scopus. https://doi.org/10.3390/app12083844Marzouk, M., Metawie, M., Hisham, M., Al-Sulahi, I., Kamal, M., & Al-Gahtani, K. (2014). Modeling sustainable building materials in Saudi Arabia. 1546-1553. Scopus. https://doi.org/10.1061/9780784413616.192Massicotte, H. B., Melville, L. H., & Peterson, R. L. (2005). Building a basidiocarp: A case study of Laccaria spp. fruitbodies in the extraradical mycelium of Pinus ectomycorrhizas. Mycologist, 19(4), 141-149. Scopus. https://doi.org/10.1017/S0269915X05004027McClain, J., Wohlt, J. E., McKeever, K. H., & Ward, P. L. (1997). Horse hair coat cleanliness is affected by bedding material: A comparison of clean and used wheat straw, wood shavings and pelleted newspaper. Journal of Equine Veterinary Science, 17(3), 156-160. Scopus. https://doi.org/10.1016/S0737-0806(97)80308-5Mercader-Moyano, P., Requena García-de-la-Cruz, M. V., & Yajnes, M. E. (2017). Development of new eco-efficient cement-based construction materials and recycled fine aggregates and EPS from CDW. Open Construction and Building Technology Journal, 11, 381-394. Scopus. https://doi.org/10.2174/1874836801711010381Mills, H. F., Gonzalez, M. G., & Buchhorn, H. (2022). Ternary Shed: An Exemplar Design for Bamboo Construction. Springer Tracts in Civil Engineering, 187-198. Scopus. https://doi.org/10.1007/978-3-030-91990-0_15Morley, M. (2017). Investigating the use of earth tubes for passive cooling and ventilation through thermal modelling. 1, 330-339. Scopus. https://doi.org/10.26868/25222708.2017.771Nanostead | Pequeño | Simple | Sostenible. (s. f.). Recuperado 5 de septiembre de 2021, de https://nanostead.com/Nassar, M. A., Abdelwahab, N. A., & Elhalawany, N. R. (2009). Contributions of polystyrene to the mechanical properties of blended mixture of old newspaper and wood pulp. Carbohydrate Polymers, 76(3), 417-421. Scopus. https://doi.org/10.1016/j.carbpol.2008.11.039Nguyen, T.-D., Bui, T.-T., Limam, A., Bui, T.-L., & Bui, Q.-B. (2021). Evaluation of seismic performance of rammed earth building and improvement solutions. Journal of Building Engineering, 43. Scopus. https://doi.org/10.1016/j.jobe.2021.103113Niveditha, M., Manjunath, Y. M., & Prasanna, S. H. S. (2020). Ferrock: A carbon negative sustainable concrete. International Journal of Sustainable Construction Engineering and Technology, 11(4), 90-98. Scopus. https://doi.org/10.30880/ijscet.2021.11.04.008Ofuyatan, O., Olowofoyeku, A., Adaramaja, G., Oluwafemi, J., & Edeki, S. (2020). Potential use of coconut stem as reinforcement in concrete slab. Case Studies in Construction Materials, 13, e00355. https://doi.org/10.1016/j.cscm.2020.e00355Özdemir, E., Saeidi, N., Javadian, A., Rossi, A., Nolte, N., Ren, S., Dwan, A., Acosta, I., Hebel, D. E., Wurm, J., & Eversmann, P. (2022). Wood-Veneer-Reinforced Mycelium Composites for Sustainable Building Components. Biomimetics, 7(2). Scopus. https://doi.org/10.3390/biomimetics7020039Parlato, M. C. M., & Porto, S. M. C. (2020). Organized framework of main possible applications of sheep wool fibers in building components. Sustainability (Switzerland), 12(3). Scopus. https://doi.org/10.3390/su12030761Pelé-Peltier, A., Fabbri, A., Morel, J.-C., Hamard, E., & Lhenry, M. (2022). A similitude relation to assessing the compressive strength of rammed earth from scale-down samples. Case Studies in Construction Materials, 16. Scopus. https://doi.org/10.1016/j.cscm.2022.e00921Potente panel solar casero | Maxeon 5 | SunPower Australia. (s. f.). Recuperado 7 de septiembre de 2021, de https://sunpower.maxeon.com/au/solar-panel-products/ac-modules/maxeon-5-ac-modulesPotkány, M., Krajčírová, L., & Stasiak-Betlejewska, R. (2021). Use of Target Costing methodology in the construction of wood-aluminium windows—Case study. Engineering Management in Production and Services, 13(4), 148-159. Scopus. https://doi.org/10.2478/emj-2021-0037Prašnikar, J., & Škerlj, T. (2006). New product development process and time-to-market in the generic pharmaceutical industry. Industrial Marketing Management, 35(6), 690-702. https://doi.org/10.1016/j.indmarman.2005.06.001Proceedings of the 1996 Conference on the Use of Recycled Wood and Paper in Building Applications. (1996). Proceedings of the Conference on the Use of Recycled Wood and Paper in Building Applications. Scopus.Programa LEED® en Colombia – Consejo Colombiano de Construcción Sostenible – CCCS. (s. f.). Recuperado 17 de abril de 2020, de https://www.cccs.org.co/wp/capacitacion/talleres-de-preparacion-leed/Properties of Coconut, Oil Palm and Bagasse Fibres: As Potential Building Materials. (2017). Procedia Engineering, 200, 1-9. https://doi.org/10.1016/j.proeng.2017.07.002Qureshi, L. A., Ali, B., & Ali, A. (2020). Combined effects of supplementary cementitious materials (silica fume, GGBS, fly ash and rice husk ash) and steel fiber on the hardened properties of recycled aggregate concrete. Construction and Building Materials, 263. Scopus. https://doi.org/10.1016/j.conbuildmat.2020.120636Raamets, J., Lokko, L., Ruus, A., Kalamees, T., & Muoni, K. (2021). Assessment of moisture and mould of hempcrete and straw panels. 2069(1). Scopus. https://doi.org/10.1088/1742-6596/2069/1/012194Raavi, S. S. D., & Tripura, D. D. (2022). Evaluating the flexural strength and failure patterns of cement stabilized rammed earth wallettes reinforced with coir, bamboo and steel. Materials and Structures/Materiaux et Constructions, 55(2). Scopus. https://doi.org/10.1617/s11527-022-01896-xRahman, N. A., Rong, C. L., & Pin, L. H. (2022). Bamboo Reinforced Concrete Beam. Lecture Notes in Civil Engineering, 215, 497-509. Scopus. https://doi.org/10.1007/978-981-16-7924-7_32Reinprecht, L., & Iždinský, J. (2022). Composites from recycled and modified woods—Technology, properties, application. Forests, 13(1). Scopus. https://doi.org/10.3390/f13010006Resilience by Design: Can Innovative Processes Deliver More? (2017). Procedia Engineering, 180, 7-15. https://doi.org/10.1016/j.proeng.2017.04.160Rodríguez, F., & Fernández, G. (2010). Sustainable engineering: New objectives for construction projects. Revista Ingenieria de Construccion, 25(2), 147-160. Scopus.Rojas-Valencia, M. N., & Bolaños, E. A. (2016). Sustainable adobe bricks with construction wastes. Proceedings of Institution of Civil Engineers: Waste and Resource Management, 169(4), 158-165. Scopus. https://doi.org/10.1680/jwarm.16.00014Roy, M., & Mandal, S. (2020). Constructing a PV-Integrated Permanent Bamboo Building – An Experience. En S. Hashmi & I. A. Choudhury (Eds.), Encyclopedia of Renewable and Sustainable Materials (pp. 50-57). Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.11663-7Samadi, M., Huseien, G. F., Mohammadhosseini, H., Lee, H. S., Abdul Shukor Lim, N. H., Tahir, M. M., & Alyousef, R. (2020a). Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. Journal of Cleaner Production, 266, 121825. https://doi.org/10.1016/j.jclepro.2020.121825Samadi, M., Huseien, G. F., Mohammadhosseini, H., Lee, H. S., Abdul Shukor Lim, N. H., Tahir, M. M., & Alyousef, R. (2020b). Waste ceramic as low cost and eco-friendly materials in the production of sustainable mortars. Journal of Cleaner Production, 266, 121825. https://doi.org/10.1016/j.jclepro.2020.121825Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258. Scopus. https://doi.org/10.1016/j.jclepro.2020.120556Santi, S., Pierobon, F., Corradini, G., Cavalli, R., & Zanetti, M. (2016). Massive wood material for sustainable building design: The Massiv–Holz–Mauer wall system. Journal of Wood Science, 62(5), 416-428. Scopus. https://doi.org/10.1007/s10086-016-1570-7Schneider, H., & Samaniego, J. (s. f.). La huella del carbono en la producción, distribución y consumo de bienes y servicios. 46.Scopus—Document details. (s. f.-a). Recuperado 31 de agosto de 2020, de https://www-scopus-com.sibulgem.unilibre.edu.co/record/display.uri?eid=2-s2.0-85077823418&origin=resultslist&sort=plf-f&src=s&st1=sustainable+building+material&nlo=&nlr=&nls=&sid=564719cba0bf0c787a0af9d92a00abd4&sot=b&sdt=b&sl=36&s=TITLE%28sustainable+building+material%29&relpos=23&citeCnt=0&searchTerm=Scopus—Document details. (s. f.-b). Recuperado 31 de agosto de 2020, de https://www-scopus-com.sibulgem.unilibre.edu.co/record/display.uri?eid=2-s2.0-85070406019&origin=resultslist&sort=plf-f&src=s&st1=sustainable+building+material&nlo=&nlr=&nls=&sid=564719cba0bf0c787a0af9d92a00abd4&sot=b&sdt=b&sl=36&s=TITLE%28sustainable+building+material%29&relpos=35&citeCnt=0&searchTerm=Scopus—Document details. (s. f.-c). Recuperado 31 de agosto de 2020, de https://www-scopus-com.sibulgem.unilibre.edu.co/record/display.uri?eid=2-s2.0-85089019925&origin=resultslist&sort=plf-f&src=s&st1=sustainable+building+material&nlo=&nlr=&nls=&sid=564719cba0bf0c787a0af9d92a00abd4&sot=b&sdt=b&sl=36&s=TITLE%28sustainable+building+material%29&relpos=46&citeCnt=0&searchTerm=Scopus—Document details. (s. f.-d). Recuperado 31 de agosto de 2020, de https://www-scopus-com.sibulgem.unilibre.edu.co/record/display.uri?eid=2-s2.0-85055740038&origin=resultslist&sort=plf-f&src=s&st1=sustainable+building+material&nlo=&nlr=&nls=&sid=564719cba0bf0c787a0af9d92a00abd4&sot=b&sdt=b&sl=36&s=TITLE%28sustainable+building+material%29&relpos=29&citeCnt=1&searchTerm=Scopus—Document details—Recycling of raw corn cob residues as an agricultural waste material for ammonium removal: Kinetics, isotherms, and mechanisms. (s. f.). Recuperado 17 de mayo de 2022, de https://www-scopus-com.sibulgem.unilibre.edu.co/record/display.uri?eid=2-s2.0-84896965649&origin=resultslist&sort=plf-f&src=s&st1=agricultural+residue+waste+material&sid=11122215f6190335c9c7f6410512758b&sot=b&sdt=b&sl=42&s=TITLE%28agricultural+residue+waste+material%29&relpos=0&citeCnt=4&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1Scopus—Document details—Study on application of straw as landscape wall construction material. (s. f.). Recuperado 17 de mayo de 2022, de https://www-scopus-com.sibulgem.unilibre.edu.co/record/display.uri?eid=2-s2.0-85009080453&origin=resultslist&sort=plf-f&src=s&st1=construction+material+straw&sid=94d888d211539eb0165d23f9c465ab2c&sot=b&sdt=b&sl=34&s=TITLE%28construction+material+straw%29&relpos=9&citeCnt=0&searchTerm=&featureToggles=FEATURE_NEW_DOC_DETAILS_EXPORT:1Shantveerayya, K., Mahesh, K. C. L., Shwetha, K. G., Jima, F., & Fufa, K. (2022). Performance Evaluation of Hollow Concrete Blocks Made with Sawdust Replacement of Sand: Case Study of Adama, Ethiopia. International Journal of Engineering Transactions C: Aspects, 35(6). Scopus. https://doi.org/10.5829/ije.2022.35.06c.03Shi, S. Q. (2013). Wood, the best material for sustainable building design. Wood and Fiber Science, 45(3), 235-236. Scopus.Silva, E. J. da, Marques, M. L., Velasco, F. G., Fornari Junior, C., Luzardo, F. M., & Tashima, M. M. (2017). A new treatment for coconut fibers to improve the properties of cement-based composites – Combined effect of natural latex/pozzolanic materials. Sustainable Materials and Technologies, 12, 44-51. https://doi.org/10.1016/j.susmat.2017.04.003Silvestre, J. D., Pargana, N., De Brito, J., Pinheiro, M. D., & Durão, V. (2016). Insulation cork boards-environmental life cycle assessment of an organic construction material. Materials, 9(5). Scopus. https://doi.org/10.3390/ma9050394Solahuddin, B. A. (2022). A Review on Structural Performance of Bamboo Reinforced Concrete. Materials Science Forum, 1056 MSF, 75-80. Scopus. https://doi.org/10.4028/p-dx1x87Solar Panels | Guide to Buying Solar. (s. f.). CLEAN ENERGY REVIEWS. Recuperado 7 de septiembre de 2021, de https://www.cleanenergyreviews.info/solar-panelsSridhar, J., Gobinath, R., & Kırgız, M. S. (2022). Comparative study for efficacy of chemically treated jute fiber and bamboo fiber on the properties of reinforced concrete beams. Journal of Natural Fibers. Scopus. https://doi.org/10.1080/15440478.2022.2054894Straw bale: A Waste from Agriculture, a New Construction Material for Sustainable Buildings. (2015). Energy Procedia, 78, 297-302. https://doi.org/10.1016/j.egypro.2015.11.646SunPower Solar Panels Review 2021. (s. f.). CLEAN ENERGY REVIEWS. Recuperado 7 de septiembre de 2021, de https://www.cleanenergyreviews.info/blog/sunpower-solar-panels-reviewTahmoorian, F., & Yeaman, J. (2018). Utilizing plastic for pretreating recycled construction aggregate to eliminate binder absorption in asphalt mixture. 5(2). Scopus.Tang, Z., Li, W., Tam, V. W. Y., & Xue, C. (2020). Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resources, Conservation & Recycling: X, 6, 100036. https://doi.org/10.1016/j.rcrx.2020.100036Temga, J. P., Mazzù, A., Nguetnkam, J. P., Palazzini, D., Ndjouenkeu, R., & Vitali, F. (2014). Valorisation of crude earth as sustainable building material: A case of international cooperation in the Logone Valley (Chad-Cameroon). International Journal of Sustainable Engineering, 7(3), 222-234. Scopus. https://doi.org/10.1080/19397038.2013.807886Terai, M. (2022). AGING OF BAMBOO-REINFORCED CONCRETE AFTER 10-YEAR OUTDOOR AND UNDER-GROUND EXPOSURE. AIJ Journal of Technology and Design, 28(68), 30-35. Scopus. https://doi.org/10.3130/aijt.28.30The house made of hemp. (2010, diciembre 1). New Atlas. https://newatlas.com/first-us-hemp-house/17115/Tiza, T. M., Singh, S. K., Kumar, L., Shettar, M. P., & Singh, S. P. (2021). Assessing the potentials of Bamboo and sheep wool fiber as sustainable construction materials: A review. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.05.322Tola, A. (2014). Bio-construction and renewable raw materials: The case of cork. En Pathways to Environmental Sustainability: Methodologies and Experiences (pp. 137-146). Scopus. https://doi.org/10.1007/978-3-319-03826-1_14Top 10 Solar Panels—Latest Technology 2021. (s. f.). CLEAN ENERGY REVIEWS. Recuperado 7 de septiembre de 2021, de https://www.cleanenergyreviews.info/blog/2017/9/11/best-solar-panels-top-modules-reviewTripura, D. D., Gupta, S., Debbarma, B., & Deep, R. S. S. (2020). Flexural strength and failure trend of bamboo and coir reinforced cement stabilized rammed earth wallettes. Construction and Building Materials, 242. Scopus. https://doi.org/10.1016/j.conbuildmat.2019.117986Tu, J. (2018). Application of recycled plastic building materials in modern home design. Hecheng Shuzhi Ji Suliao/China Synthetic Resin and Plastics, 35(6), 100-102. Scopus.Umniati, B. S., Sulton, M., Sulaksitaningrum, R., Abdullah, M. M. A. B., & Muhtadi, S. (2021). Mechanical characteristics of bamboo reinforced concrete precast column, a numerical analysis. 2447. Scopus. https://doi.org/10.1063/5.0072834Unterrainer, W. (2018). Wood – A sustainable building material? 216379. Scopus. https://doi.org/10.5176/2301-394X_ACE18.43Vallas, T., & Courard, L. (2017). Using nature in architecture: Building a living house with mycelium and trees. Frontiers of Architectural Research, 6(3), 318-328. Scopus. https://doi.org/10.1016/j.foar.2017.05.003Venkatarama Reddy, B. V., & Sri Bhanupratap Rathod, R. (2022). Influence of interlayer shear studs on the behaviour of cement stabilised rammed earth under compression, tension and shear. Journal of Building Engineering, 49. Scopus. https://doi.org/10.1016/j.jobe.2022.104096Vijayan, D. S., Dineshkumar, Arvindan, S., & Janarthanan, T. S. (2020). Evaluation of ferrock: A greener substitute to cement. 22, 781-787. Scopus. https://doi.org/10.1016/j.matpr.2019.10.147Vitolina, S., Shulga, G., Neiberte, B., Jaunslavietis, J., Verovkins, A., & Betkers, T. (2022). Characteristics of the Waste Wood Biomass and Its Effect on the Properties of Wood Sanding Dust/Recycled PP Composite. Polymers, 14(3). Scopus. https://doi.org/10.3390/polym14030468Wairagade, V. R., & Sonar, I. P. (2022). Bamboo-Reinforced Concrete Lintel—A Sustainable Approach. Lecture Notes in Civil Engineering, 172, 317-328. Scopus. https://doi.org/10.1007/978-981-16-4396-5_29Wang, Y., Feng, Y., Zhang, B., & Yang, Y. (2021). Experimental study on seismic performance of bamboo mesh and cement mortar reinforced rammed earth wall. World Earthquake Engineering, 37(3), 104-110. Scopus.Ward, P. L., Wohlt, J. E., & Katz, S. E. (2001). Chemical, physical, and environmental properties of pelleted newspaper compared to wheat straw and wood shavings as bedding for horses. Journal of Animal Science, 79(6), 1359-1369. Scopus. https://doi.org/10.2527/2001.7961359xWard, P. L., Wohlt, J. E., Zajac, P. K., & Cooper, K. R. (2000). Chemical and physical properties of processed newspaper compared to wheat straw and wood shavings as animal bedding. Journal of Dairy Science, 83(2), 359-367. Scopus. https://doi.org/10.3168/jds.S0022-0302(00)74887-9Wongsa, A., Kunthawatwong, R., Naenudon, S., Sata, V., & Chindaprasirt, P. (2020). Natural fiber reinforced high calcium fly ash geopolymer mortar. Construction and Building Materials, 241, 118143. https://doi.org/10.1016/j.conbuildmat.2020.118143Xing, Y., Brewer, M., El-Gharabawy, H., Griffith, G., & Jones, P. (2018). Growing and testing mycelium bricks as building insulation materials. 121(2). Scopus. https://doi.org/10.1088/1755-1315/121/2/022032Xu, X., Xu, P., Zhu, J., Li, H., & Xiong, Z. (2022). Bamboo construction materials: Carbon storage and potential to reduce associated CO2 emissions. Science of the Total Environment, 814. Scopus. https://doi.org/10.1016/j.scitotenv.2021.152697Yamasue, E., Minamino, R., Tanikawa, H., Daigo, I., Okumura, H., Ishihara, K. N., & Brunner, P. H. (2013). Quality evaluation of steel, aluminum, and road material recycled from end-of-life urban buildings in Japan in terms of total material requirement. Journal of Industrial Ecology, 17(4), 555-565. Scopus. https://doi.org/10.1111/jiec.12014Yathushan, K., Kishok, S., Thevarajah, B. E., & Nithurshan, M. (2021). Bamboo cane as an alternative reinforcement in reinforced concrete beam. 154-159. Scopus. https://doi.org/10.1109/MERCon52712.2021.9525805Zaffar, S., Kumar, A., Memon, N. A., Kumar, R., & Saand, A. (2022). Investigating Optimum Conditions for Developing Pozzolanic Ashes from Organic Wastes as Cement Replacing Materials. Materials, 15(6). Scopus. https://doi.org/10.3390/ma15062320Zhang, X., Hu, J., Fan, X., & Yu, X. (2022). Naturally grown mycelium-composite as sustainable building insulation materials. Journal of Cleaner Production, 342. Scopus. https://doi.org/10.1016/j.jclepro.2022.130784Zheng, B., Hu, C., Guan, L., Gu, J., Guo, H., & Zhang, W. (2019). Structural characterization and analysis of high-strength laminated composites from recycled newspaper and HDPE. Polymers, 11(8). Scopus. https://doi.org/10.3390/polym11081311Zimele, Z., Irbe, I., Grinins, J., Bikovens, O., Verovkins, A., & Bajare, D. (2020). Novel mycelium-based biocomposites (Mbb) as building materials. Journal of Renewable Materials, 8(9), 1067-1076. Scopus. https://doi.org/10.32604/jrm.2020.09646webBiblioteca digital. (s/f). Edu.Co Adaptado de https://repository.cesa.edu.co/Consejo Colombiano de Construcción Sostenible – CCCS – Liderando el desarrollo sostenible de la industria de la construcción. (s/f). Org.co Adaptado de https://www.cccs.org.co/Eficiencia energética y energía solar en Colombia. (s/f). Celsia.com Adaptado de https://blog.celsia.com/new/enero. (s/f). Solución Solar & Led. Blogspot.com Adaptado de https://solucionsolarled.blogspot.com/Environmental XPRT - the Environmental Industry online. (s/f). Environmental-expert.com Adaptado de http://www.environmental-expert.com/Le proporcionamos las herramientas cómodas y gratuitas para publicar y compartir la información. (s/f).Docplayer.Es Adaptado de http://docplayer.es/Revistas Universidad Externado de Colombia. (s/f). Edu.co Adaptado de https://revistas.uexternado.edu.coUniversidad El Bosque. (s/f). Repositorio institucional. Universidad El Bosque Adaptado de https://repositorio.unbosque.edu.co/Universidad Sergio Arboleda. (s/f). Universidad Sergio Arboleda Adaptado de https://www.usergioarboleda.edu.co/(S/f). Blogspot.com Adaptado de http://dhticsalumnos.blogspot.com/THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgimage/png19740http://repository.unilibre.edu.co/bitstream/10901/23915/5/Trabajo%20de%20grado.pdf.jpgd64047f53f9e6a499d868aba576c8215MD55Autorización.pdf.jpgAutorización.pdf.jpgIM Thumbnailimage/jpeg21430http://repository.unilibre.edu.co/bitstream/10901/23915/6/Autorizaci%c3%b3n.pdf.jpg3cf132f006ce92192febda34fdd588c5MD56Turnitin.pdf.jpgTurnitin.pdf.jpgIM Thumbnailimage/jpeg7003http://repository.unilibre.edu.co/bitstream/10901/23915/7/Turnitin.pdf.jpgd71640ceea5edb9c5ee5452f2b3886feMD57LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/23915/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf3086763http://repository.unilibre.edu.co/bitstream/10901/23915/1/Trabajo%20de%20grado.pdf1b891d3d73f3745ad981aa21f4bb4087MD51Autorización.pdfAutorización.pdfapplication/pdf256318http://repository.unilibre.edu.co/bitstream/10901/23915/2/Autorizaci%c3%b3n.pdf6216a74dca789325d8c1e3f2debe07cfMD52Turnitin.pdfTurnitin.pdfapplication/pdf25207838http://repository.unilibre.edu.co/bitstream/10901/23915/3/Turnitin.pdfadb6930ef35c30a1465d5ce27ffe7909MD5310901/23915oai:repository.unilibre.edu.co:10901/239152024-01-05 06:02:00.938Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=