Análisis in silico de genes vinculados a la biosíntesis de ácido indolacético (AIA) asociados a aislamientos bacterianos de suelos agrícolas del Eje Cafetero

El ácido indolacético (AIA) es una de las principales fitohormonas responsables de la morfogénesis de las plantas y un metabolito secundario bacteriano de interés en las Bacterias Promotoras de Crecimiento Vegetal (BPCV). En las aplicaciones biotecnológicas que se dan en la agricultura, como la form...

Full description

Autores:
Jaramillo Zárate, María José
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Libre
Repositorio:
RIU - Repositorio Institucional UniLibre
Idioma:
OAI Identifier:
oai:repository.unilibre.edu.co:10901/30432
Acceso en línea:
https://hdl.handle.net/10901/30432
Palabra clave:
Ácidos indolacéticos
Genes
Enzimas
Metabolismo
BPCV (bacterias promotoras de crecimiento vegetal)
Indoleacetic Acids
Genes
Enzymes
Metabolism
PGPB (Plant Growth Promoting Bacteria)
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id RULIBRE2_025ab0a9e3893e4c8cd322508e5def12
oai_identifier_str oai:repository.unilibre.edu.co:10901/30432
network_acronym_str RULIBRE2
network_name_str RIU - Repositorio Institucional UniLibre
repository_id_str
dc.title.spa.fl_str_mv Análisis in silico de genes vinculados a la biosíntesis de ácido indolacético (AIA) asociados a aislamientos bacterianos de suelos agrícolas del Eje Cafetero
dc.title.alternative.spa.fl_str_mv In silico analysis of genes linked to indoleacetic acid (IAA) biosynthesis associated with bacterial isolates from agricultural soils of the Eje Cafetero.
title Análisis in silico de genes vinculados a la biosíntesis de ácido indolacético (AIA) asociados a aislamientos bacterianos de suelos agrícolas del Eje Cafetero
spellingShingle Análisis in silico de genes vinculados a la biosíntesis de ácido indolacético (AIA) asociados a aislamientos bacterianos de suelos agrícolas del Eje Cafetero
Ácidos indolacéticos
Genes
Enzimas
Metabolismo
BPCV (bacterias promotoras de crecimiento vegetal)
Indoleacetic Acids
Genes
Enzymes
Metabolism
PGPB (Plant Growth Promoting Bacteria)
title_short Análisis in silico de genes vinculados a la biosíntesis de ácido indolacético (AIA) asociados a aislamientos bacterianos de suelos agrícolas del Eje Cafetero
title_full Análisis in silico de genes vinculados a la biosíntesis de ácido indolacético (AIA) asociados a aislamientos bacterianos de suelos agrícolas del Eje Cafetero
title_fullStr Análisis in silico de genes vinculados a la biosíntesis de ácido indolacético (AIA) asociados a aislamientos bacterianos de suelos agrícolas del Eje Cafetero
title_full_unstemmed Análisis in silico de genes vinculados a la biosíntesis de ácido indolacético (AIA) asociados a aislamientos bacterianos de suelos agrícolas del Eje Cafetero
title_sort Análisis in silico de genes vinculados a la biosíntesis de ácido indolacético (AIA) asociados a aislamientos bacterianos de suelos agrícolas del Eje Cafetero
dc.creator.fl_str_mv Jaramillo Zárate, María José
dc.contributor.advisor.none.fl_str_mv Rivera Rodríguez, Silvia
dc.contributor.author.none.fl_str_mv Jaramillo Zárate, María José
dc.subject.spa.fl_str_mv Ácidos indolacéticos
Genes
Enzimas
Metabolismo
BPCV (bacterias promotoras de crecimiento vegetal)
topic Ácidos indolacéticos
Genes
Enzimas
Metabolismo
BPCV (bacterias promotoras de crecimiento vegetal)
Indoleacetic Acids
Genes
Enzymes
Metabolism
PGPB (Plant Growth Promoting Bacteria)
dc.subject.subjectenglish.spa.fl_str_mv Indoleacetic Acids
Genes
Enzymes
Metabolism
PGPB (Plant Growth Promoting Bacteria)
description El ácido indolacético (AIA) es una de las principales fitohormonas responsables de la morfogénesis de las plantas y un metabolito secundario bacteriano de interés en las Bacterias Promotoras de Crecimiento Vegetal (BPCV). En las aplicaciones biotecnológicas que se dan en la agricultura, como la formulación de bioinsumos, se requiere de una caracterización amplia y detallada de las propiedades y mecanismos con los que el microorganismo puede impactar positivamente la planta y/o el entorno de esta. No obstante, la biosíntesis del AIA en BPCV no cuenta con una exploración amplia, y la bioinformática representa una herramienta valiosa para develar información sobre este metabolismo de forma integral. En esta investigación se realizó el análisis bioinformático de los cinco morfotipos con mayor producción de AIA dentro del proyecto “Biotecnología Agrícola para Producción de Hortalizas en Risaralda” (Bueno-López, 2023) a partir de las secuencias ARNr 16S y sus genomas homólogos, para comprobar las bases genéticas y moleculares de este proceso metabólico, en conjunto con propiedades genómicas que justifican su potencialidad para procesos biotecnológicos. Se demuestra que las especies homólogas son pertenecientes de Pseudomonas, Burkholderia y Bacillus, géneros relevantes en las BPCV. Se determinó la existencia de los genes para dos rutas biosintéticas dependientes de TRP y cómo su filiación a un mismo grupo de genes homólogos, clusters y relaciones filogenéticas se constituyen desde las regiones conservadas en los genomas de Pseudomonas y Burkholderia, y del enfoque de investigación del AIA para estos dos géneros. Se encuentra que la producción de AIA in vitro en BPCV suele estar asociada a otras actividades promotoras de crecimiento vegetal que suman a la respuesta de la planta hacia el estrés ambiental. Este estudio termina sumándole valor agregado a los candidatos para la propuesta de formulación de un bioinsumo, y destaca la importancia de la aplicación de herramientas in silico en pro del desarrollo agrícola y de los contextos de investigación desde la academia.
publishDate 2024
dc.date.created.none.fl_str_mv 2024-06-12
dc.date.accessioned.none.fl_str_mv 2025-01-20T15:11:11Z
dc.date.available.none.fl_str_mv 2025-01-20T15:11:11Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Tesis de Pregrado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10901/30432
url https://hdl.handle.net/10901/30432
dc.relation.references.spa.fl_str_mv Bueno-López, L. (2023). Informe Técnico de Avance Final de Programas y Proyectos de CTeI: “Bio-tecnología Agrícola para producción de hortalizas en Risaralda. Cod. 1208-893-82785, CT. 435-2021 (Final 4; p. Anexos 11 y 12). Universidad Libre seccional Pereira
Agosti, D., Benichou, L., Addink, W., Arvanitidis, C., Catapano, T., Cochrane, G., Dillen, M., Döring, M., Georgiev, T., Gérard, I., Groom, Q., Kishor, P., Kroh, A., Kvaček, J., Mergen, P., Mietchen, D., Pauperio, J., Sautter, G., & Penev, L. (2022). Recommendations for use of annotations and persistent identifiers in taxonomy and biodiversity publishing. Research Ideas and Outcomes, 8, e97374. https://doi.org/10.3897/rio.8.e97374
Ahmad, E., Sharma, S. K., & Sharma, P. K. (2021). Deciphering operation of tryptophanindependent pathway in high indole-3-acetic acid (IAA) producing Micrococcus aloeverae DCB-20. FEMS Microbiology Letters, 367(24), fnaa190. https://doi.org/10.1093/femsle/fnaa190
Ait Bessai, S., Bensidhoum, L., & Nabti, E. (2022). Optimization of IAA production by telluric bacteria isolated from northern Algeria. Biocatalysis and Agricultural Biotechnology, 41, 102319. https://doi.org/10.1016/j.bcab.2022.102319
Alkhalaf, L. M., & Ryan, K. S. (2015). Biosynthetic Manipulation of Tryptophan in Bacteria: Pathways and Mechanisms. Chemistry & Biology, 22(3), 317–328. https://doi.org/10.1016/j.chembiol.2015.02.005
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Amezquita-Aviles, C. F., Coronel-Acosta, C. B., Santos-Villalobos, S. de los, Santoyo, G., Parra-Cota, F. I., Amezquita-Aviles, C. F., Coronel-Acosta, C. B., Santos-Villalobos, S. de los, Santoyo, G., & Parra-Cota, F. I. (2022). Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.). Biotecnia, 24(1), 15–22. https://doi.org/10.18633/biotecnia.v24i1.1353
Aron, S., Jongeneel, C. V., Chauke, P. A., Chaouch, M., Kumuthini, J., Zass, L., Radouani, F., Kassim, S. K., Fadlelmola, F. M., & Mulder, N. (2021). Ten simple rules for developing bioinformatics capacity at an academic institution. PLOS Computational Biology, 17(12), e1009592. https://doi.org/10.1371/journal.pcbi.1009592
Barbosa-Nuñez, J. A., Palacios, O. A., de-Bashan, L. E., Snell-Castro, R., Corona-González, R. I., & Choix, F. J. (2022). Active indole-3-acetic acid biosynthesis by the bacterium 48 Azospirillum brasilense cultured under a biogas atmosphere enables its beneficial association with microalgae. Journal of Applied Microbiology, 132(5), 3650–3663. https://doi.org/10.1111/jam.15509
Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(Database issue), D36- 42. https://doi.org/10.1093/nar/gks1195
Bernal, P., Civantos, C., Pacheco-Sánchez, D., Quesada, J. M., Filloux, A., & Llamas, M. A. (2023). Transcriptional organization and regulation of the Pseudomonas putida K1 type VI secretion system gene cluster. Microbiology (Reading, England), 169(1), 001295. https://doi.org/10.1099/mic.0.001295
Boonmahome, P., & Mongkolthanaruk, W. (2022). Characterization of indole-3-acetic acid biosynthesis and stability from Micrococcus luteus. Journal of Applied Biology & Biotechnology. https://doi.org/10.7324/JABB.2023.117202
Bose, R., Buneman, P., & Ecklund, D. J. (2006). Annotating scientific data: Why it is important and why it is difficult. Proceedings of the 2006 UK e-Science all hands meeting, 739–747. https://api.semanticscholar.org/CorpusID:13817766
Briggs, S. P. (1998). Plant genomics: More than food for thought. Proceedings of the National Academy of Sciences, 95(5), 1986–1988. https://doi.org/10.1073/pnas.95.5.1986
Brown, L., Villegas, J. M., Elean, M., Fadda, S., Mozzi, F., Saavedra, L., & Hebert, E. M. (2017). YebC, a putative transcriptional factor involved in the regulation of the proteolytic system of Lactobacillus. Scientific Reports, 7(1), 8579. https://doi.org/10.1038/s41598-017-09124-1
Capuchina González, S. M., Rodríguez-Castillejos, G., Lizarazo-Ortega, C., Sánchez-Yáñez, J. M., Cano, E. G., Oliva-Hernández, A. A., Jiménez, M. C. H., & HernándezMendoza, J. L. (2021). Study of indole-3-acetic acid biosynthesis pathways in Bradyrhizobium japonicum BJBV-05. Interciencia, 46(5), 198–203.
Cerboneschi, M., Decorosi, F., Biancalani, C., Ortenzi, M. V., Macconi, S., Giovannetti, L., Viti, C., Campanella, B., Onor, M., Bramanti, E., & Tegli, S. (2016). Indole-3-acetic acid in plant–pathogen interactions: A key molecule for in planta bacterial virulence and fitness. Research in Microbiology, 167(9–10), 774–787. https://doi.org/10.1016/j.resmic.2016.09.002
Chen, B., Luo, S., Wu, Y., Ye, J., Wang, Q., Xu, X., Pan, F., Khan, K. Y., Feng, Y., & Yang, X. (2017). The Effects of the Endophytic Bacterium Pseudomonas fluorescens Sasm05 and IAA on the Plant Growth and Cadmium Uptake of Sedum alfredii Hance. Frontiers in Microbiology, 8, 2538. https://doi.org/10.3389/fmicb.2017.02538
Cheng, F., & Cheng, Z. (2015). Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01020
Coenye, T., Vandamme, P., Govan, J. R. W., & LiPuma, J. J. (2001). Taxonomy and Identification of the Burkholderia cepacia Complex. Journal of Clinical Microbiology, 39(10), 3427–3436. https://doi.org/10.1128/JCM.39.10.3427- 3436.2001
Cohen, J. D., & Strader, L. C. (2024). An auxin research odyssey: 1989–2023. The Plant Cell, 36(5), 1410–1428. https://doi.org/10.1093/plcell/koae054
Dezfulian, M. H., Foreman, C., Jalili, E., Pal, M., Dhaliwal, R. K., Roberto, D. K. A., Imre, K. M., Kohalmi, S. E., & Crosby, W. L. (2017). Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched-chain amino acid synthesis and Arabidopsis development. BMC Plant Biology, 17(1), 71. https://doi.org/10.1186/s12870-017-1022-6
Duca, D. R., Rose, D. R., & Glick, B. R. (2018). Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie van Leeuwenhoek, 111(9), 1645–1660. https://doi.org/10.1007/s10482-018-1051-7
Eberl, L., & Tümmler, B. (2004). Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: Genome evolution, interactions and adaptation. International Journal of Medical Microbiology, 294(2–3), 123–131. https://doi.org/10.1016/j.ijmm.2004.06.022
Espinosa-Victoria, D., López-Reyes, L., Carcaño-Montiel, M. G., & Serret-López, M. (2020). The Burkholderia genus: Between mutualism and pathogenicity. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 38(3). https://doi.org/10.18781/R.MEX.FIT.2004-5
Figueredo, E. F., Cruz, T. A. D., Almeida, J. R. D., Batista, B. D., Marcon, J., Andrade, P. A. M. D., Hayashibara, C. A. D. A., Rosa, M. S., Azevedo, J. L., & Quecine, M. C. (2023). The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiological Research, 266, 127218. https://doi.org/10.1016/j.micres.2022.127218
Fujibuchi, W., Goto, S., Migimatsu, H., Uchiyama, I., Ogiwara, A., Akiyama, Y., & Kanehisa, M. (1998). DBGET/LinkDB: An integrated database retrieval system. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 683–694
Gamalero, E., Bona, E., & Glick, B. R. (2022). Current Techniques to Study Beneficial PlantMicrobe Interactions. Microorganisms, 10(7), 1380. https://doi.org/10.3390/microorganisms10071380
Gang, S., Saraf, M., Waite, C. J., Buck, M., & Schumacher, J. (2018). Mutualism between Klebsiella SGM 81 and Dianthus caryophyllus in modulating root plasticity and rhizospheric bacterial density. Plant and Soil, 424(1), 273–288. https://doi.org/10.1007/s11104-017-3440-5
Gang, S., Sharma, S., Saraf, M., Buck, M., & Schumacher, J. (2019). Analysis of Indole-3- acetic Acid (IAA) Production in Klebsiellaby LC-MS/MS and the Salkowski Method. Bio-Protocol, 9(9), e3230. https://doi.org/10.21769/BioProtoc.3230
Gaweska, H. M., Taylor, A. B., Hart, P. J., & Fitzpatrick, P. F. (2013). Structure of the Flavoprotein Tryptophan 2-Monooxygenase, a Key Enzyme in the Formation of Galls in Plants. Biochemistry, 52(15), 2620–2626. https://doi.org/10.1021/bi4001563
Ghadamgahi, F., Tarighi, S., Taheri, P., Saripella, G. V., Anzalone, A., Kalyandurg, P. B., Catara, V., Ortiz, R., & Vetukuri, R. R. (2022). Plant Growth-Promoting Activity of Pseudomonas aeruginosa FG106 and Its Ability to Act as a Biocontrol Agent against Potato, Tomato and Taro Pathogens. Biology, 11(1), 140. https://doi.org/10.3390/biology11010140
Goddijn, O. J. M., Lohman, F. P., de Kam, R. J., hilperoort, R. A., & Hoge, J. H. C. (1994). Nucleotide sequence of the tryptophan decarboxylase gene of Catharanthus roseus and expression of tdc-gusA gene fusions in Nicotiana tabacum. Molecular and General Genetics MGG, 242(2), 217–225. https://doi.org/10.1007/BF00391016
Gomes, G. L. B., & Scortecci, K. C. (2021). Auxin and its role in plant development: Structure, signalling, regulation and response mechanisms. Plant Biology, 23(6), 894–904. https://doi.org/10.1111/plb.13303
Gómez-Godínez, L. J., Ochoa, V., Faggioli, V., & Cristancho, M. (2024). EXPLORING THE SOIL-ASSOCIATED BACTERIAL MICROBIOME OF COFFEE PLANTATIONS IN DIFFERENT REGIONS OF COLOMBIA: A METABARCODING APPROACH. Tropical and Subtropical Agroecosystems, 27(2). https://doi.org/10.56369/tsaes.5196
Gonçalves, S., Nunes-Costa, D., Cardoso, S. M., Empadinhas, N., & Marugg, J. D. (2022). Enzyme Promiscuity in Serotonin Biosynthesis, From Bacteria to Plants and Humans. Frontiers in Microbiology, 13, 873555. https://doi.org/10.3389/fmicb.2022.873555
Guenter, J., & Lenartowski, R. (2016). Molecular characteristic and physiological role of DOPA-decarboxylase. Postępy Higieny i Medycyny Doświadczalnej, 70, 1424–1440. https://doi.org/10.5604/17322693.1227773
Hashem, A., Tabassum, B., & Fathi Abd Allah, E. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004
Heine, T., van Berkel, W. J. H., Gassner, G., van Pée, K.-H., & Tischler, D. (2018). TwoComponent FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. Biology, 7(3), 42. https://doi.org/10.3390/biology7030042
Johnson, J. M. B., & Kunkel, B. N. (2024). AefR, a TetR Family Transcriptional Repressor, Regulates Several Auxin Responses in Pseudomonas syringae Strain Pto DC3000. Molecular Plant-Microbe Interactions®, 37(2), 155–165. https://doi.org/10.1094/MPMI-10-23-0170-R
Kanehisa, M. (1997). Linking databases and organisms: GenomeNet resources in Japan. Trends in Biochemical Sciences, 22(11), 442–444. https://doi.org/10.1016/S0968- 0004(97)01130-4
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), D457–D462. https://doi.org/10.1093/nar/gkv1070
Kanehisa, M., Sato, Y., & Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. Journal of Molecular Biology, 428(4), 726–731. https://doi.org/10.1016/j.jmb.2015.11.006
Kanethisa, M., Klein, P., Greif, P., & DeLisi, C. (1984). Computer analysis and structure prediction of nucleic acid and proteins. Nucleic Acids Research, 12(1Part1), 417–428. https://doi.org/10.1093/nar/12.1Part1.417
Kavana, M., & Moran, G. R. (2003). Interaction of (4-Hydroxyphenyl)pyruvate Dioxygenase with the Specific Inhibitor 2-[2-Nitro-4-(trifluoromethyl)benzoyl]-1,3- cyclohexanedione. Biochemistry, 42(34), 10238–10245. https://doi.org/10.1021/bi034658b
Keswani, C., Singh, S. P., Cueto, L., García-Estrada, C., Mezaache-Aichour, S., Glare, T. R., Borriss, R., Singh, S. P., Blázquez, M. A., & Sansinenea, E. (2020). Auxins of microbial origin and their use in agriculture. Applied Microbiology and Biotechnology, 104(20), 8549–8565. https://doi.org/10.1007/s00253-020-10890-8
Khan, N., Bano, A., Ali, S., & Babar, Md. A. (2020). Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulation, 90(2), 189–203. https://doi.org/10.1007/s10725-020-00571-x
Koga, J., Adachi, T., & Hidaka, H. (1991). Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Molecular and General Genetics MGG, 226(1), 10–16. https://doi.org/10.1007/BF00273581
Kohlen, W., Ng, J. L. P., Deinum, E. E., & Mathesius, U. (2018). Auxin transport, metabolism, and signalling during nodule initiation: Indeterminate and determinate nodules. Journal of Experimental Botany, 69(2), 229–244. https://doi.org/10.1093/jxb/erx308
Kong, P., & Hong, C. (2020). Endophytic Burkholderia sp. SSG as a potential biofertilizer promoting boxwood growth. PeerJ, 8, e9547. https://doi.org/10.7717/peerj.9547
Koshiba, T., Saito, E., Ono, N., Yamamoto, N., & Sato, M. (1996). Purification and Properties of Flavin- and Molybdenum-Containing Aldehyde Oxidase from Coleoptiles of Maize. Plant Physiology, 110(3), 781–789. https://doi.org/10.1104/pp.110.3.781
Koyanagi, T., Nakagawa, A., Sakurama, H., Yamamoto, K., Sakurai, N., Takagi, Y., Minami, H., Katayama, T., & Kumagai, H. (2012). Eukaryotic-type aromatic amino acid decarboxylase from the root colonizer Pseudomonas putida is highly specific for 3,4- dihydroxyphenyl-l-alanine, an allelochemical in the rhizosphere. Microbiology, 158(12), 2965–2974. https://doi.org/10.1099/mic.0.062463-0
Kumari, E., Kumari, S., Das, S. S., Mahapatra, M., & Sahoo, J. P. (2023). Plant GrowthPromoting Bacteria (PGPB) for Sustainable Agriculture: Current Prospective and Future Challenges. AgroEnvironmental Sustainability, 1(3), Article 3. https://doi.org/10.59983/s2023010309
Kunkel, B. N., & Harper, C. P. (2018). The roles of auxin during interactions between bacterial plant pathogens and their hosts. Journal of Experimental Botany, 69(2), 245–254. https://doi.org/10.1093/jxb/erx447
Kunkel, B. N., & Johnson, J. M. B. (2021). Auxin Plays Multiple Roles during Plant– Pathogen Interactions. Cold Spring Harbor Perspectives in Biology, 13(9), a040022. https://doi.org/10.1101/cshperspect.a040022
Laird, T. S., Flores, N., & Leveau, J. H. J. (2020). Bacterial catabolism of indole-3-acetic acid. Applied Microbiology and Biotechnology, 104(22), 9535–9550. https://doi.org/10.1007/s00253-020-10938-9
Law, S. R., Mathes, F., Paten, A. M., Alexandre, P. A., Regmi, R., Reid, C., Safarchi, A., Shaktivesh, S., Wang, Y., Wilson, A., Rice, S. A., & Gupta, V. V. S. R. (2024). Life at the borderlands: Microbiomes of interfaces critical to One Health. FEMS Microbiology Reviews, 48(2), fuae008. https://doi.org/10.1093/femsre/fuae008
León-Sicard, T., Prager, M. S. de, Rojas, L. J., Ortiz, J. C., Alviar, J. A. B., Osorio, Á. A., & Leiton, A. A. (2015). Hacia una historia de la agroecología en Colombia. Agroecología, 10(2), Article 2.
Li, M., Guo, R., Yu, F., Chen, X., Zhao, H., Li, H., & Wu, J. (2018). Indole-3-Acetic Acid Biosynthesis Pathways in the Plant-Beneficial Bacterium Arthrobacter pascens ZZ21. International Journal of Molecular Sciences, 19(2), Article 2. https://doi.org/10.3390/ijms19020443
Liang, H., Li, L., Dong, Z., Surette, M. G., & Duan, K. (2008). The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. Journal of Bacteriology, 190(18), 6217–6227. https://doi.org/10.1128/JB.00428-08
Liang, J., Han, Q., Tan, Y., Ding, H., & Li, J. (2019). Current Advances on Structure-Function Relationships of Pyridoxal 5′-Phosphate-Dependent Enzymes. Frontiers in Molecular Biosciences, 6, 4. https://doi.org/10.3389/fmolb.2019.00004
Lin, H.-R., Shu, H.-Y., & Lin, G.-H. (2018). Biological roles of indole-3-acetic acid in Acinetobacter baumannii. Microbiological Research, 216, 30–39. https://doi.org/10.1016/j.micres.2018.08.004
Liu, W.-H., Chen, F.-F., Wang, C.-E., Fu, H.-H., Fang, X.-Q., Ye, J.-R., & Shi, J.-Y. (2019). Indole-3-Acetic Acid in Burkholderia pyrrocinia JK-SH007: Enzymatic Identification of the Indole-3-Acetamide Synthesis Pathway. Frontiers in Microbiology, 10, 2559. https://doi.org/10.3389/fmicb.2019.02559
Lobo, L. L. B., Da Silva, M. S. R. D. A., Carvalho, R. F., & Rigobelo, E. C. (2023). The Negative Effect of Coinoculation of Plant Growth-Promoting Bacteria Is Not Related to Indole-3-Acetic Acid Synthesis. Journal of Plant Growth Regulation, 42(4), 2317– 2326. https://doi.org/10.1007/s00344-022-10706-1
Lobo, L. L. B., De Andrade Da Silva, M. S. R., Castellane, T. C. L., Carvalho, R. F., & Rigobelo, E. C. (2022). Effect of Indole-3-Acetic Acid on Tomato Plant Growth. Microorganisms, 10(11), 2212. https://doi.org/10.3390/microorganisms10112212
Lozano-González, J. M., Valverde, S., Montoya, M., Martín, M., Rivilla, R., Lucena, J. J., & López-Rayo, S. (2023). Evaluation of Siderophores Generated by Pseudomonas Bacteria and Their Possible Application as Fe Biofertilizers. Plants (Basel, Switzerland), 12(23), 4054. https://doi.org/10.3390/plants12234054
Maddocks, S. E., & Oyston, P. C. F. (2008). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology, 154(12), 3609–3623. https://doi.org/10.1099/mic.0.2008/022772-0
Mano, Y., Nemoto, K., Suzuki, M., Seki, H., Fujii, I., & Muranaka, T. (2010). The AMI1 gene family: Indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. Journal of Experimental Botany, 61(1), 25–32. https://doi.org/10.1093/jxb/erp292
Mashiguchi, K., Hisano, H., Takeda-Kamiya, N., Takebayashi, Y., Ariizumi, T., Gao, Y., Ezura, H., Sato, K., Zhao, Y., Hayashi, K., & Kasahara, H. (2019). Agrobacterium tumefaciens Enhances Biosynthesis of Two Distinct Auxins in the Formation of Crown Galls. Plant and Cell Physiology, 60(1), 29–37. https://doi.org/10.1093/pcp/pcy182
McClerklin, S. A., Lee, S. G., Harper, C. P., Nwumeh, R., Jez, J. M., & Kunkel, B. N. (2018). Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. PLOS Pathogens, 14(1), e1006811. https://doi.org/10.1371/journal.ppat.1006811
Mitter, E. K., Tosi, M., Obregón, D., Dunfield, K. E., & Germida, J. J. (2021). Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Frontiers in Sustainable Food Systems, 5. https://www.frontiersin.org/articles/10.3389/fsufs.2021.606815
Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13(3), 0–0. https://doi.org/10.4067/S0718-95162013005000051
Mukherjee, A., Gaurav, A. K., Singh, S., Yadav, S., Bhowmick, S., Abeysinghe, S., & Verma, J. P. (2022). The bioactive potential of phytohormones: A review. Biotechnology Reports, 35, e00748. https://doi.org/10.1016/j.btre.2022.e00748
Nafisi, M., Goregaoker, S., Botanga, C. J., Glawischnig, E., Olsen, C. E., Halkier, B. A., & Glazebrook, J. (2007). Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis. The Plant Cell, 19(6), 2039–2052. https://doi.org/10.1105/tpc.107.051383
Oberhansli, T., Defago, G., & Haas, D. (1991). Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: Role of tryptophan side chain 56 oxidase. Journal of General Microbiology, 137(10), 2273–2279. https://doi.org/10.1099/00221287-137-10-2273
Ojeda, C., Blanco, J. F., Montaña, A. C. G., Monroy, J. S., Monsalve, J. C., Poveda, D., Rojas, M. K. T., & Castro, J. S. (2021). FUNDAMENTOS EN AGROECOLOGÍA, UNA REVISIÓN EN LA BÚSQUEDA DE ALTERNATIVAS SOSTENIBLES EN CULTIVOS HORTÍCOLAS COMO RESPUESTA A LOS EFECTOS DE LA PANDEMIA POR CORONAVIRUS SARS-COV-2. CON-CIENCIA Y TÉCNICA, 5(1), Article 1.
Ortiz-García, P., González Ortega-Villaizán, A., Onejeme, F. C., Müller, M., & Pollmann, S. (2023). Do Opposites Attract? Auxin-Abscisic Acid Crosstalk: New Perspectives. International Journal of Molecular Sciences, 24(4), Article 4. https://doi.org/10.3390/ijms24043090
Pal, G., Saxena, S., Kumar, K., Verma, A., Sahu, P. K., Pandey, A., White, J. F., & Verma, S. K. (2022). Endophytic Burkholderia: Multifunctional roles in plant growth promotion and stress tolerance. Microbiological Research, 265, 127201. https://doi.org/10.1016/j.micres.2022.127201
Pandit, M. A., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., Rawat, C. D., Mishra, V., & Kaur, J. (2022). Major Biological Control Strategies for Plant Pathogens. Pathogens, 11(2), 273. https://doi.org/10.3390/pathogens11020273
Pardo Díaz, S., Mazo Molina, D. C., & Rojas Tapias, D. F. (2021). Bacterias promotoras del crecimiento vegetal: Filogenia, microbioma, y perspectivas. En Bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible. Editorial AGROSAVIA. https://doi.org/10.21930/agrosavia.analisis.7405019
Parthasarathy, A., Cross, P. J., Dobson, R. C. J., Adams, L. E., Savka, M. A., & Hudson, A. O. (2018). A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Frontiers in Molecular Biosciences, 5, 29. https://doi.org/10.3389/fmolb.2018.00029
Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68(8), 3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
Pruesse, E., Peplies, J., & Glöckner, F. O. (2012). SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics, 28(14), 1823–1829. https://doi.org/10.1093/bioinformatics/bts252
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219
Ramírez-Melo, M., Ruíz-Flores, N., Vásquez-Murrieta, S., Rodríguez-Tovar, A., GuerreroZúñiga, A., & Rodríguez-Dorantes, A. (2013). Plant growth promotion and protecting effect to heavy metals of rhizobacteria on inoculated Lens esculenta seeds. International Journal of AgriScience, 3(5), 414–422.
Ratnaningsih, H. R., Noviana, Z., Dewi, T. K., Loekito, S., Wiyono, S., Gafur, A., & Antonius, S. (2023). IAA and ACC deaminase producing-bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon, 9(6), e16306. https://doi.org/10.1016/j.heliyon.2023.e16306
Reséndez, A. M., Mendoza, V. G., Carrillo, J. L. R., Arroyo, J. V., & Ríos, P. C. (2018). Rizobacterias promotoras del crecimiento vegetal: Una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), Article 1. https://doi.org/10.15446/rev.colomb.biote.v20n1.73707
Roberts, J., & Rosenfeld, H. J. (1977). Isolation, crystallization, and properties of indolyl-3- alkane alpha-hydroxylase. A novel tryptophan-metabolizing enzyme. The Journal of Biological Chemistry, 252(8), 2640–2647
Rojas, M. M., Rives, N., Tejera, B., Acebo, Y., & Heydrich, M. (2012). PRODUCCIÓN DE ANTISUEROS PARA LA DETECCIÓN DE ÁCIDO INDOLACÉTICO EN CULTIVOS DE BACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL. Acta biol. Colomb, 17(2), 271–280.
Rojas-Rojas, F. U., López-Sánchez, D., Meza-Radilla, G., Méndez-Canarios, A., Ibarra, J. A., & Estrada-de Los Santos, P. (2019). El controvertido complejo Burkholderia cepacia, un grupo de especies promotoras del crecimiento vegetal y patógenas de plantas, animales y humanos. Revista Argentina de Microbiología, 51(1), 84–92. https://doi.org/10.1016/j.ram.2018.01.002
Sagar, A., Yadav, S. S., Sayyed, R. Z., Sharma, S., & Ramteke, P. W. (2022). Bacillus subtilis: A Multifarious Plant Growth Promoter, Biocontrol Agent, and Bioalleviator of Abiotic Stress. En M. T. Islam, M. Rahman, & P. Pandey (Eds.), Bacilli in Agrobiotechnology (pp. 561–580). Springer International Publishing. https://doi.org/10.1007/978-3-030-85465-2_24
Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Sánchez-Yáñez, J. M., Alonso-Bravo, J. N., Dasgupta-Schuber, N., & Márquez-Benavides, L. (2015). Biorremediación de suelo contaminado con 55000 y 65000 de aceite residual automotriz y fitorremediación con Sorghum bicolor inoculado con Burkholderia cepacia y Penicillium chrysogenum. Journal of the Selva Andina Biosphere, 3(2), 86–94.
Sardar, P., & Kempken, F. (2018). Characterization of indole-3-pyruvic acid pathwaymediated biosynthesis of auxin in Neurospora crassa. PLoS ONE, 13(2), e0192293. https://doi.org/10.1371/journal.pone.0192293
Savoia, D., Deplano, C., & Zucca, M. (2008). Pseudomonas aeruginosa and Burkholderia cenocepacia Infections in Patients Affected by Cystic Fibrosis: Serum Resistance and Antibody Response. Immunological Investigations, 37(1), 19–27. https://doi.org/10.1080/08820130701741775
Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database, 2020, baaa062. https://doi.org/10.1093/database/baaa062
Schroth, M. N., Hildebrand, D. C., & Panopoulos, N. (2006). Phytopathogenic Pseudomonads and Related Plant-Associated Pseudomonads. En M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes (pp. 714–740). Springer New York. https://doi.org/10.1007/0-387-30746-X_23
Sekimoto, H., Seo, M., Kawakami, N., Komano, T., Desloire, S., Liotenberg, S., MarionPoll, A., Caboche, M., Kamiya, Y., & Koshiba, T. (1998). Molecular Cloning and 59 Characterization of Aldehyde Oxidases in Arabidopsis thaliana. Plant and Cell Physiology, 39(4), 433–442. https://doi.org/10.1093/oxfordjournals.pcp.a029387
Shao, J., Li, S., Zhang, N., Cui, X., Zhou, X., Zhang, G., Shen, Q., & Zhang, R. (2015). Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microbial Cell Factories, 14(1), 130. https://doi.org/10.1186/s12934-015-0323-4
Shao, J., Li, Y., Li, Z., Xu, Z., Xun, W., Zhang, N., Feng, H., Miao, Y., Shen, Q., & Zhang, R. (2021). Participating mechanism of a major contributing gene ysnE for auxin biosynthesis in Bacillus amyloliquefaciens SQR9. Journal of Basic Microbiology, 61(6), 569–575. https://doi.org/10.1002/jobm.202100098
Shitut, S., Ahsendorf, T., Pande, S., Egbert, M., & Kost, C. (2019). Nanotube‐mediated cross‐ feeding couples the metabolism of interacting bacterial cells. Environmental Microbiology, 21(4), 1306–1320. https://doi.org/10.1111/1462-2920.14539
Singh, M., Singh, D., Gupta, A., Pandey, K. D., Singh, P. K., & Kumar, A. (2019). Chapter Three - Plant Growth Promoting Rhizobacteria: Application in Biofertilizers and Biocontrol of Phytopathogens. En A. K. Singh, A. Kumar, & P. K. Singh (Eds.), PGPR Amelioration in Sustainable Agriculture (pp. 41–66). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-815879-1.00003-3
Siow, Y. L., & Dakshinamurti, K. (1990). Neuronal DOPA Decarboxylase. Annals of the New York Academy of Sciences, 585(1 Vitamin B6), 173–188. https://doi.org/10.1111/j.1749-6632.1990.tb28052.x
Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4), 425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
Stecher, G., Tamura, K., & Kumar, S. (2020). Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution, 37(4), 1237–1239. https://doi.org/10.1093/molbev/msz312
Sun, H., Zhang, J., Liu, W., E, W., Wang, X., Li, H., Cui, Y., Zhao, D., Liu, K., Du, B., Ding, Y., & Wang, C. (2022). Identification and combinatorial engineering of indole-3- acetic acid synthetic pathways in Paenibacillus polymyxa. Biotechnology for Biofuels and Bioproducts, 15(1), 81. https://doi.org/10.1186/s13068-022-02181-3
Sun, X., Xu, Z., Xie, J., Hesselberg-Thomsen, V., Tan, T., Zheng, D., Strube, M. L., Dragoš, A., Shen, Q., Zhang, R., & Kovács, Á. T. (2022). Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. The ISME Journal, 16(3), 774–787. https://doi.org/10.1038/s41396- 021-01125-3
Tagele, S. B., Kim, S. W., Lee, H. G., Kim, H. S., & Lee, Y. S. (2018). Effectiveness of multitrait Burkholderia contaminans KNU17BI1 in growth promotion and management of banded leaf and sheath blight in maize seedling. Microbiological Research, 214, 8– 18. https://doi.org/10.1016/j.micres.2018.05.004
Takai, K., Ushiro, H., Noda, Y., Narumiya, S., & Tokuyama, T. (1977). Crystalline hemoprotein from Pseudomonas that catalyzes oxidation of side chain of tryptophan and other indole derivatives. The Journal of Biological Chemistry, 252(8), 2648– 2656.
Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11030–11035. https://doi.org/10.1073/pnas.0404206101
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
Tang, J., Li, Y., Zhang, L., Mu, J., Jiang, Y., Fu, H., Zhang, Y., Cui, H., Yu, X., & Ye, Z. (2023). Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms, 11(8), 2077. https://doi.org/10.3390/microorganisms11082077
Tariq, A., & Ahmed, A. (2022). Auxins-Interkingdom Signaling Molecules. En C. Hano (Ed.), Plant Hormones—Recent Advances, New Perspectives and Applications (p. Ch. 1). IntechOpen. https://doi.org/10.5772/intechopen.102599
Taylor, B. L., & Zhulin, I. B. (1999). PAS domains: Internal sensors of oxygen, redox potential, and light. Microbiology and Molecular Biology Reviews: MMBR, 63(2), 479–506. https://doi.org/10.1128/MMBR.63.2.479-506.1999
Terán Pérez, W. (2023). CARACTERIZACIÓN DE LA DIVERSIDAD GENÉTICA Y FUNCIONAL DE MICROORGANISMOS DEL SISTEMA SUELO-RAÍZ EN SISTEMAS PRODUCTIVOS DE LA ZONA CAFETERA CENTRAL DE COLOMBIA (1.1) [dataset]. SiB Colombia. https://ipt.biodiversidad.co/permisos/resource?r=213_bacteriasuelosejecafetero_201 90401&v=1.1
Vassileva, M., Mocali, S., Canfora, L., Malusá, E., García Del Moral, L. F., Martos, V., FlorPeregrin, E., & Vassilev, N. (2022). Safety Level of Microorganism-Bearing Products Applied in Soil-Plant Systems. Frontiers in Plant Science, 13, 862875. https://doi.org/10.3389/fpls.2022.862875
Wagi, S., & Ahmed, A. (2019). Bacillus spp.: Potent microfactories of bacterial IAA. PeerJ, 7, e7258. https://doi.org/10.7717/peerj.7258
Wang, Z., Lu, K., Liu, X., Zhu, Y., & Liu, C. (2023). Comparative Functional Genome Analysis Reveals the Habitat Adaptation and Biocontrol Characteristics of Plant Growth-Promoting Bacteria in NCBI Databases. Microbiology Spectrum, 11(3), e05007-22. https://doi.org/10.1128/spectrum.05007-22
Wei Wang, M. S. (2009). Phylogenetic relationships between Bacillus species and related genera inferred from 16s rDNA sequences. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 40(3), 505–521. https://doi.org/10.1590/S1517-838220090003000013
Weijers, D., Nemhauser, J., & Yang, Z. (2018). Auxin: Small molecule, big impact. Journal of Experimental Botany, 69(2), 133–136. https://doi.org/10.1093/jxb/erx463
Williams, K. P., Gillespie, J. J., Sobral, B. W. S., Nordberg, E. K., Snyder, E. E., Shallom, J. M., & Dickerman, A. W. (2010). Phylogeny of Gammaproteobacteria. Journal of Bacteriology, 192(9), 2305–2314. https://doi.org/10.1128/JB.01480-09
Wu, X., Monchy, S., Taghavi, S., Zhu, W., Ramos, J., & Van Der Lelie, D. (2011). Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiology Reviews, 35(2), 299–323. https://doi.org/10.1111/j.1574-6976.2010.00249.x
Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T., & Arakawa, M. (1992). Proposal of Burkholderia gen. Nov. And Transfer of Seven 62 Species of the Genus Pseudomonas Homology Group II to the New Genus, with the Type Species Burkholderia cepacia (Palleroni and Holmes 1981) comb. Nov. Microbiology and Immunology, 36(12), 1251–1275. https://doi.org/10.1111/j.1348- 0421.1992.tb02129.x
Yamada, T., Palm, C. J., Brooks, B., & Kosuge, T. (1985). Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proceedings of the National Academy of Sciences, 82(19), 6522–6526. https://doi.org/10.1073/pnas.82.19.6522
Yu, Z., Zhang, F., Friml, J., & Ding, Z. (2022). Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology, 64(2), 371–392. https://doi.org/10.1111/jipb.13225
Zaman, N. R., Chowdhury, U. F., Reza, R. N., Chowdhury, F. T., Sarker, M., Hossain, M. M., Akbor, Md. A., Amin, A., Islam, M. R., & Khan, H. (2021). Plant growth promoting endophyte Burkholderia contaminans NZ antagonizes phytopathogen Macrophomina phaseolina through melanin synthesis and pyrrolnitrin inhibition. PLOS ONE, 16(9), e0257863. https://doi.org/10.1371/journal.pone.0257863
Zhang, B.-X., Li, P.-S., Wang, Y.-Y., Wang, J.-J., Liu, X.-L., Wang, X.-Y., & Hu, X.-M. (2021). Characterization and synthesis of indole-3-acetic acid in plant growth promoting Enterobacter sp. RSC Advances, 11(50), 31601–31607. https://doi.org/10.1039/d1ra05659j
Zhang, H., Yang, Q., Zhao, J., Chen, J., Wang, S., Ma, M., Liu, H., Zhang, Q., Zhao, H., Zhou, D., Wang, X., Gao, J., & Zhao, H. (2022). Metabolites from Bacillus subtilis J-15 Affect Seedling Growth of Arabidopsis thaliana and Cotton Plants. Plants, 11(23), Article 23. https://doi.org/10.3390/plants11233205
Zhang, M., Gao, C., Xu, L., Niu, H., Liu, Q., Huang, Y., Lv, G., Yang, H., & Li, M. (2022). Melatonin and Indole-3-Acetic Acid Synergistically Regulate Plant Growth and Stress Resistance. Cells, 11(20), 3250. https://doi.org/10.3390/cells11203250
Zhang, P., Jin, T., Kumar Sahu, S., Xu, J., Shi, Q., Liu, H., & Wang, Y. (2019). The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis. Molecules, 24(7), 1411. https://doi.org/10.3390/molecules24071411
Zhang, Q., Gong, M., Xu, X., Li, H., & Deng, W. (2022). Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells, 11(17), 2761. https://doi.org/10.3390/cells11172761
Zhao, Y. (2012). Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants. Molecular Plant, 5(2), 334–338. https://doi.org/10.1093/mp/ssr104
Ziegler, S. F., White, F. F., & Nester, E. W. (1987). Genes Involved in Indole Acetic Acid Production in Plant Pathogenic Bacteria. En E. L. Civerolo, A. Collmer, R. E. Davis, & A. G. Gillaspie (Eds.), Plant Pathogenic Bacteria (Vol. 4, pp. 18–25). Springer Netherlands. https://doi.org/10.1007/978-94-009-3555-6_3
Zuther, K., Mayser, P., Hettwer, U., Wu, W., Spiteller, P., Kindler, B. L. J., Karlovsky, P., Basse, C. W., & Schirawski, J. (2008). The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan-dependent pigment synthesis in Ustilago maydis. Molecular Microbiology, 68(1), 152–172. https://doi.org/10.1111/j.1365-2958.2008.06144.x
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv PDF
dc.coverage.spatial.spa.fl_str_mv Pereira
institution Universidad Libre
bitstream.url.fl_str_mv http://repository.unilibre.edu.co/bitstream/10901/30432/5/Tesis%20AIA%20-%20Jaramillo-Z%c3%a1rate.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/30432/6/Formato%20autorizaci%c3%b3n%20biblioteca.pdf.jpg
http://repository.unilibre.edu.co/bitstream/10901/30432/4/license.txt
http://repository.unilibre.edu.co/bitstream/10901/30432/1/Tesis%20AIA%20-%20Jaramillo-Z%c3%a1rate.pdf
http://repository.unilibre.edu.co/bitstream/10901/30432/3/Formato%20autorizaci%c3%b3n%20biblioteca.pdf
bitstream.checksum.fl_str_mv f9ea05254461c9d0b5bde44b745d14e9
8d6e879be3d189b33e2a6909a8ed8f0a
8a4605be74aa9ea9d79846c1fba20a33
bb80112cfd0142cc70ff2da273fb093d
c6e758860154d734e506afcc5dae8e19
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Unilibre
repository.mail.fl_str_mv repositorio@unilibrebog.edu.co
_version_ 1831929212229910528
spelling Rivera Rodríguez, SilviaJaramillo Zárate, María JoséPereira2025-01-20T15:11:11Z2025-01-20T15:11:11Z2024-06-12https://hdl.handle.net/10901/30432El ácido indolacético (AIA) es una de las principales fitohormonas responsables de la morfogénesis de las plantas y un metabolito secundario bacteriano de interés en las Bacterias Promotoras de Crecimiento Vegetal (BPCV). En las aplicaciones biotecnológicas que se dan en la agricultura, como la formulación de bioinsumos, se requiere de una caracterización amplia y detallada de las propiedades y mecanismos con los que el microorganismo puede impactar positivamente la planta y/o el entorno de esta. No obstante, la biosíntesis del AIA en BPCV no cuenta con una exploración amplia, y la bioinformática representa una herramienta valiosa para develar información sobre este metabolismo de forma integral. En esta investigación se realizó el análisis bioinformático de los cinco morfotipos con mayor producción de AIA dentro del proyecto “Biotecnología Agrícola para Producción de Hortalizas en Risaralda” (Bueno-López, 2023) a partir de las secuencias ARNr 16S y sus genomas homólogos, para comprobar las bases genéticas y moleculares de este proceso metabólico, en conjunto con propiedades genómicas que justifican su potencialidad para procesos biotecnológicos. Se demuestra que las especies homólogas son pertenecientes de Pseudomonas, Burkholderia y Bacillus, géneros relevantes en las BPCV. Se determinó la existencia de los genes para dos rutas biosintéticas dependientes de TRP y cómo su filiación a un mismo grupo de genes homólogos, clusters y relaciones filogenéticas se constituyen desde las regiones conservadas en los genomas de Pseudomonas y Burkholderia, y del enfoque de investigación del AIA para estos dos géneros. Se encuentra que la producción de AIA in vitro en BPCV suele estar asociada a otras actividades promotoras de crecimiento vegetal que suman a la respuesta de la planta hacia el estrés ambiental. Este estudio termina sumándole valor agregado a los candidatos para la propuesta de formulación de un bioinsumo, y destaca la importancia de la aplicación de herramientas in silico en pro del desarrollo agrícola y de los contextos de investigación desde la academia.Universidad Libre seccional Pereira -- Facultad de Ciencias de la Salud, Exactas y Naturales -- MicrobiologíaIndole-3-acetic acid (IAA) is one of the main phytohormones responsible for plant morphogenesis and a bacterial secondary metabolite of interest in Plant Growth Promoting Bacteria (PGPB). Biotechnological applications in agriculture, such as the formulation of biofertilizers, require extensive and detailed characterization of the properties and mechanisms by which the microorganism can positively impact the plant and/or its environment. However, the biosynthesis of IAA in PGPB is not widely explored, and bioinformatics represents a valuable tool to unveil information about this metabolism in a comprehensive manner. In this research, the bioinformatic analysis of the five morphotypes with the highest IAA production within the project “Biotecnología Agrícola para Producción de Hortalizas en Risaralda” (Bueno-López, 2023) is carried out based on 16S rRNA sequences and their homologous genomes, to verify the genetic and molecular basis of this metabolic process, together with genomic properties that justify its potential for biotechnological processes. It is demonstrated that the homologous species belong to Pseudomonas, Burkholderia and Bacillus, relevant genera in PGPB. We determine the existence of genes for two TRP-dependent biosynthetic pathways and how their affiliation to the same homologous gene group, clusters and phylogenetic relationships are constituted from conserved regions in the genomes of Pseudomonas and Burkholderia, and from the research focus of IAA for these two genera. It is found that in vitro IAA production in PGPB is often associated with other plant growth-promoting activities that add to the plant's response to environmental stress. This study ends up adding value to the candidates for the proposed formulation of a biofertilizer and highlights the importance of the application of in silico tools for agricultural development and research contexts from academiaPDFhttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiainfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ácidos indolacéticosGenesEnzimasMetabolismoBPCV (bacterias promotoras de crecimiento vegetal)Indoleacetic AcidsGenesEnzymesMetabolismPGPB (Plant Growth Promoting Bacteria)Análisis in silico de genes vinculados a la biosíntesis de ácido indolacético (AIA) asociados a aislamientos bacterianos de suelos agrícolas del Eje CafeteroIn silico analysis of genes linked to indoleacetic acid (IAA) biosynthesis associated with bacterial isolates from agricultural soils of the Eje Cafetero.Tesis de Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fBueno-López, L. (2023). Informe Técnico de Avance Final de Programas y Proyectos de CTeI: “Bio-tecnología Agrícola para producción de hortalizas en Risaralda. Cod. 1208-893-82785, CT. 435-2021 (Final 4; p. Anexos 11 y 12). Universidad Libre seccional PereiraAgosti, D., Benichou, L., Addink, W., Arvanitidis, C., Catapano, T., Cochrane, G., Dillen, M., Döring, M., Georgiev, T., Gérard, I., Groom, Q., Kishor, P., Kroh, A., Kvaček, J., Mergen, P., Mietchen, D., Pauperio, J., Sautter, G., & Penev, L. (2022). Recommendations for use of annotations and persistent identifiers in taxonomy and biodiversity publishing. Research Ideas and Outcomes, 8, e97374. https://doi.org/10.3897/rio.8.e97374Ahmad, E., Sharma, S. K., & Sharma, P. K. (2021). Deciphering operation of tryptophanindependent pathway in high indole-3-acetic acid (IAA) producing Micrococcus aloeverae DCB-20. FEMS Microbiology Letters, 367(24), fnaa190. https://doi.org/10.1093/femsle/fnaa190Ait Bessai, S., Bensidhoum, L., & Nabti, E. (2022). Optimization of IAA production by telluric bacteria isolated from northern Algeria. Biocatalysis and Agricultural Biotechnology, 41, 102319. https://doi.org/10.1016/j.bcab.2022.102319Alkhalaf, L. M., & Ryan, K. S. (2015). Biosynthetic Manipulation of Tryptophan in Bacteria: Pathways and Mechanisms. Chemistry & Biology, 22(3), 317–328. https://doi.org/10.1016/j.chembiol.2015.02.005Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2Amezquita-Aviles, C. F., Coronel-Acosta, C. B., Santos-Villalobos, S. de los, Santoyo, G., Parra-Cota, F. I., Amezquita-Aviles, C. F., Coronel-Acosta, C. B., Santos-Villalobos, S. de los, Santoyo, G., & Parra-Cota, F. I. (2022). Characterization of native plant growth-promoting bacteria (PGPB) and their effect on the development of maize (Zea mays L.). Biotecnia, 24(1), 15–22. https://doi.org/10.18633/biotecnia.v24i1.1353Aron, S., Jongeneel, C. V., Chauke, P. A., Chaouch, M., Kumuthini, J., Zass, L., Radouani, F., Kassim, S. K., Fadlelmola, F. M., & Mulder, N. (2021). Ten simple rules for developing bioinformatics capacity at an academic institution. PLOS Computational Biology, 17(12), e1009592. https://doi.org/10.1371/journal.pcbi.1009592Barbosa-Nuñez, J. A., Palacios, O. A., de-Bashan, L. E., Snell-Castro, R., Corona-González, R. I., & Choix, F. J. (2022). Active indole-3-acetic acid biosynthesis by the bacterium 48 Azospirillum brasilense cultured under a biogas atmosphere enables its beneficial association with microalgae. Journal of Applied Microbiology, 132(5), 3650–3663. https://doi.org/10.1111/jam.15509Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(Database issue), D36- 42. https://doi.org/10.1093/nar/gks1195Bernal, P., Civantos, C., Pacheco-Sánchez, D., Quesada, J. M., Filloux, A., & Llamas, M. A. (2023). Transcriptional organization and regulation of the Pseudomonas putida K1 type VI secretion system gene cluster. Microbiology (Reading, England), 169(1), 001295. https://doi.org/10.1099/mic.0.001295Boonmahome, P., & Mongkolthanaruk, W. (2022). Characterization of indole-3-acetic acid biosynthesis and stability from Micrococcus luteus. Journal of Applied Biology & Biotechnology. https://doi.org/10.7324/JABB.2023.117202Bose, R., Buneman, P., & Ecklund, D. J. (2006). Annotating scientific data: Why it is important and why it is difficult. Proceedings of the 2006 UK e-Science all hands meeting, 739–747. https://api.semanticscholar.org/CorpusID:13817766Briggs, S. P. (1998). Plant genomics: More than food for thought. Proceedings of the National Academy of Sciences, 95(5), 1986–1988. https://doi.org/10.1073/pnas.95.5.1986Brown, L., Villegas, J. M., Elean, M., Fadda, S., Mozzi, F., Saavedra, L., & Hebert, E. M. (2017). YebC, a putative transcriptional factor involved in the regulation of the proteolytic system of Lactobacillus. Scientific Reports, 7(1), 8579. https://doi.org/10.1038/s41598-017-09124-1Capuchina González, S. M., Rodríguez-Castillejos, G., Lizarazo-Ortega, C., Sánchez-Yáñez, J. M., Cano, E. G., Oliva-Hernández, A. A., Jiménez, M. C. H., & HernándezMendoza, J. L. (2021). Study of indole-3-acetic acid biosynthesis pathways in Bradyrhizobium japonicum BJBV-05. Interciencia, 46(5), 198–203.Cerboneschi, M., Decorosi, F., Biancalani, C., Ortenzi, M. V., Macconi, S., Giovannetti, L., Viti, C., Campanella, B., Onor, M., Bramanti, E., & Tegli, S. (2016). Indole-3-acetic acid in plant–pathogen interactions: A key molecule for in planta bacterial virulence and fitness. Research in Microbiology, 167(9–10), 774–787. https://doi.org/10.1016/j.resmic.2016.09.002Chen, B., Luo, S., Wu, Y., Ye, J., Wang, Q., Xu, X., Pan, F., Khan, K. Y., Feng, Y., & Yang, X. (2017). The Effects of the Endophytic Bacterium Pseudomonas fluorescens Sasm05 and IAA on the Plant Growth and Cadmium Uptake of Sedum alfredii Hance. Frontiers in Microbiology, 8, 2538. https://doi.org/10.3389/fmicb.2017.02538Cheng, F., & Cheng, Z. (2015). Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.01020Coenye, T., Vandamme, P., Govan, J. R. W., & LiPuma, J. J. (2001). Taxonomy and Identification of the Burkholderia cepacia Complex. Journal of Clinical Microbiology, 39(10), 3427–3436. https://doi.org/10.1128/JCM.39.10.3427- 3436.2001Cohen, J. D., & Strader, L. C. (2024). An auxin research odyssey: 1989–2023. The Plant Cell, 36(5), 1410–1428. https://doi.org/10.1093/plcell/koae054Dezfulian, M. H., Foreman, C., Jalili, E., Pal, M., Dhaliwal, R. K., Roberto, D. K. A., Imre, K. M., Kohalmi, S. E., & Crosby, W. L. (2017). Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched-chain amino acid synthesis and Arabidopsis development. BMC Plant Biology, 17(1), 71. https://doi.org/10.1186/s12870-017-1022-6Duca, D. R., Rose, D. R., & Glick, B. R. (2018). Indole acetic acid overproduction transformants of the rhizobacterium Pseudomonas sp. UW4. Antonie van Leeuwenhoek, 111(9), 1645–1660. https://doi.org/10.1007/s10482-018-1051-7Eberl, L., & Tümmler, B. (2004). Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: Genome evolution, interactions and adaptation. International Journal of Medical Microbiology, 294(2–3), 123–131. https://doi.org/10.1016/j.ijmm.2004.06.022Espinosa-Victoria, D., López-Reyes, L., Carcaño-Montiel, M. G., & Serret-López, M. (2020). The Burkholderia genus: Between mutualism and pathogenicity. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 38(3). https://doi.org/10.18781/R.MEX.FIT.2004-5Figueredo, E. F., Cruz, T. A. D., Almeida, J. R. D., Batista, B. D., Marcon, J., Andrade, P. A. M. D., Hayashibara, C. A. D. A., Rosa, M. S., Azevedo, J. L., & Quecine, M. C. (2023). The key role of indole-3-acetic acid biosynthesis by Bacillus thuringiensis RZ2MS9 in promoting maize growth revealed by the ipdC gene knockout mediated by the CRISPR-Cas9 system. Microbiological Research, 266, 127218. https://doi.org/10.1016/j.micres.2022.127218Fujibuchi, W., Goto, S., Migimatsu, H., Uchiyama, I., Ogiwara, A., Akiyama, Y., & Kanehisa, M. (1998). DBGET/LinkDB: An integrated database retrieval system. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 683–694Gamalero, E., Bona, E., & Glick, B. R. (2022). Current Techniques to Study Beneficial PlantMicrobe Interactions. Microorganisms, 10(7), 1380. https://doi.org/10.3390/microorganisms10071380Gang, S., Saraf, M., Waite, C. J., Buck, M., & Schumacher, J. (2018). Mutualism between Klebsiella SGM 81 and Dianthus caryophyllus in modulating root plasticity and rhizospheric bacterial density. Plant and Soil, 424(1), 273–288. https://doi.org/10.1007/s11104-017-3440-5Gang, S., Sharma, S., Saraf, M., Buck, M., & Schumacher, J. (2019). Analysis of Indole-3- acetic Acid (IAA) Production in Klebsiellaby LC-MS/MS and the Salkowski Method. Bio-Protocol, 9(9), e3230. https://doi.org/10.21769/BioProtoc.3230Gaweska, H. M., Taylor, A. B., Hart, P. J., & Fitzpatrick, P. F. (2013). Structure of the Flavoprotein Tryptophan 2-Monooxygenase, a Key Enzyme in the Formation of Galls in Plants. Biochemistry, 52(15), 2620–2626. https://doi.org/10.1021/bi4001563Ghadamgahi, F., Tarighi, S., Taheri, P., Saripella, G. V., Anzalone, A., Kalyandurg, P. B., Catara, V., Ortiz, R., & Vetukuri, R. R. (2022). Plant Growth-Promoting Activity of Pseudomonas aeruginosa FG106 and Its Ability to Act as a Biocontrol Agent against Potato, Tomato and Taro Pathogens. Biology, 11(1), 140. https://doi.org/10.3390/biology11010140Goddijn, O. J. M., Lohman, F. P., de Kam, R. J., hilperoort, R. A., & Hoge, J. H. C. (1994). Nucleotide sequence of the tryptophan decarboxylase gene of Catharanthus roseus and expression of tdc-gusA gene fusions in Nicotiana tabacum. Molecular and General Genetics MGG, 242(2), 217–225. https://doi.org/10.1007/BF00391016Gomes, G. L. B., & Scortecci, K. C. (2021). Auxin and its role in plant development: Structure, signalling, regulation and response mechanisms. Plant Biology, 23(6), 894–904. https://doi.org/10.1111/plb.13303Gómez-Godínez, L. J., Ochoa, V., Faggioli, V., & Cristancho, M. (2024). EXPLORING THE SOIL-ASSOCIATED BACTERIAL MICROBIOME OF COFFEE PLANTATIONS IN DIFFERENT REGIONS OF COLOMBIA: A METABARCODING APPROACH. Tropical and Subtropical Agroecosystems, 27(2). https://doi.org/10.56369/tsaes.5196Gonçalves, S., Nunes-Costa, D., Cardoso, S. M., Empadinhas, N., & Marugg, J. D. (2022). Enzyme Promiscuity in Serotonin Biosynthesis, From Bacteria to Plants and Humans. Frontiers in Microbiology, 13, 873555. https://doi.org/10.3389/fmicb.2022.873555Guenter, J., & Lenartowski, R. (2016). Molecular characteristic and physiological role of DOPA-decarboxylase. Postępy Higieny i Medycyny Doświadczalnej, 70, 1424–1440. https://doi.org/10.5604/17322693.1227773Hashem, A., Tabassum, B., & Fathi Abd Allah, E. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004Heine, T., van Berkel, W. J. H., Gassner, G., van Pée, K.-H., & Tischler, D. (2018). TwoComponent FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. Biology, 7(3), 42. https://doi.org/10.3390/biology7030042Johnson, J. M. B., & Kunkel, B. N. (2024). AefR, a TetR Family Transcriptional Repressor, Regulates Several Auxin Responses in Pseudomonas syringae Strain Pto DC3000. Molecular Plant-Microbe Interactions®, 37(2), 155–165. https://doi.org/10.1094/MPMI-10-23-0170-RKanehisa, M. (1997). Linking databases and organisms: GenomeNet resources in Japan. Trends in Biochemical Sciences, 22(11), 442–444. https://doi.org/10.1016/S0968- 0004(97)01130-4Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. (2016). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research, 44(D1), D457–D462. https://doi.org/10.1093/nar/gkv1070Kanehisa, M., Sato, Y., & Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. Journal of Molecular Biology, 428(4), 726–731. https://doi.org/10.1016/j.jmb.2015.11.006Kanethisa, M., Klein, P., Greif, P., & DeLisi, C. (1984). Computer analysis and structure prediction of nucleic acid and proteins. Nucleic Acids Research, 12(1Part1), 417–428. https://doi.org/10.1093/nar/12.1Part1.417Kavana, M., & Moran, G. R. (2003). Interaction of (4-Hydroxyphenyl)pyruvate Dioxygenase with the Specific Inhibitor 2-[2-Nitro-4-(trifluoromethyl)benzoyl]-1,3- cyclohexanedione. Biochemistry, 42(34), 10238–10245. https://doi.org/10.1021/bi034658bKeswani, C., Singh, S. P., Cueto, L., García-Estrada, C., Mezaache-Aichour, S., Glare, T. R., Borriss, R., Singh, S. P., Blázquez, M. A., & Sansinenea, E. (2020). Auxins of microbial origin and their use in agriculture. Applied Microbiology and Biotechnology, 104(20), 8549–8565. https://doi.org/10.1007/s00253-020-10890-8Khan, N., Bano, A., Ali, S., & Babar, Md. A. (2020). Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regulation, 90(2), 189–203. https://doi.org/10.1007/s10725-020-00571-xKoga, J., Adachi, T., & Hidaka, H. (1991). Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Molecular and General Genetics MGG, 226(1), 10–16. https://doi.org/10.1007/BF00273581Kohlen, W., Ng, J. L. P., Deinum, E. E., & Mathesius, U. (2018). Auxin transport, metabolism, and signalling during nodule initiation: Indeterminate and determinate nodules. Journal of Experimental Botany, 69(2), 229–244. https://doi.org/10.1093/jxb/erx308Kong, P., & Hong, C. (2020). Endophytic Burkholderia sp. SSG as a potential biofertilizer promoting boxwood growth. PeerJ, 8, e9547. https://doi.org/10.7717/peerj.9547Koshiba, T., Saito, E., Ono, N., Yamamoto, N., & Sato, M. (1996). Purification and Properties of Flavin- and Molybdenum-Containing Aldehyde Oxidase from Coleoptiles of Maize. Plant Physiology, 110(3), 781–789. https://doi.org/10.1104/pp.110.3.781Koyanagi, T., Nakagawa, A., Sakurama, H., Yamamoto, K., Sakurai, N., Takagi, Y., Minami, H., Katayama, T., & Kumagai, H. (2012). Eukaryotic-type aromatic amino acid decarboxylase from the root colonizer Pseudomonas putida is highly specific for 3,4- dihydroxyphenyl-l-alanine, an allelochemical in the rhizosphere. Microbiology, 158(12), 2965–2974. https://doi.org/10.1099/mic.0.062463-0Kumari, E., Kumari, S., Das, S. S., Mahapatra, M., & Sahoo, J. P. (2023). Plant GrowthPromoting Bacteria (PGPB) for Sustainable Agriculture: Current Prospective and Future Challenges. AgroEnvironmental Sustainability, 1(3), Article 3. https://doi.org/10.59983/s2023010309Kunkel, B. N., & Harper, C. P. (2018). The roles of auxin during interactions between bacterial plant pathogens and their hosts. Journal of Experimental Botany, 69(2), 245–254. https://doi.org/10.1093/jxb/erx447Kunkel, B. N., & Johnson, J. M. B. (2021). Auxin Plays Multiple Roles during Plant– Pathogen Interactions. Cold Spring Harbor Perspectives in Biology, 13(9), a040022. https://doi.org/10.1101/cshperspect.a040022Laird, T. S., Flores, N., & Leveau, J. H. J. (2020). Bacterial catabolism of indole-3-acetic acid. Applied Microbiology and Biotechnology, 104(22), 9535–9550. https://doi.org/10.1007/s00253-020-10938-9Law, S. R., Mathes, F., Paten, A. M., Alexandre, P. A., Regmi, R., Reid, C., Safarchi, A., Shaktivesh, S., Wang, Y., Wilson, A., Rice, S. A., & Gupta, V. V. S. R. (2024). Life at the borderlands: Microbiomes of interfaces critical to One Health. FEMS Microbiology Reviews, 48(2), fuae008. https://doi.org/10.1093/femsre/fuae008León-Sicard, T., Prager, M. S. de, Rojas, L. J., Ortiz, J. C., Alviar, J. A. B., Osorio, Á. A., & Leiton, A. A. (2015). Hacia una historia de la agroecología en Colombia. Agroecología, 10(2), Article 2.Li, M., Guo, R., Yu, F., Chen, X., Zhao, H., Li, H., & Wu, J. (2018). Indole-3-Acetic Acid Biosynthesis Pathways in the Plant-Beneficial Bacterium Arthrobacter pascens ZZ21. International Journal of Molecular Sciences, 19(2), Article 2. https://doi.org/10.3390/ijms19020443Liang, H., Li, L., Dong, Z., Surette, M. G., & Duan, K. (2008). The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. Journal of Bacteriology, 190(18), 6217–6227. https://doi.org/10.1128/JB.00428-08Liang, J., Han, Q., Tan, Y., Ding, H., & Li, J. (2019). Current Advances on Structure-Function Relationships of Pyridoxal 5′-Phosphate-Dependent Enzymes. Frontiers in Molecular Biosciences, 6, 4. https://doi.org/10.3389/fmolb.2019.00004Lin, H.-R., Shu, H.-Y., & Lin, G.-H. (2018). Biological roles of indole-3-acetic acid in Acinetobacter baumannii. Microbiological Research, 216, 30–39. https://doi.org/10.1016/j.micres.2018.08.004Liu, W.-H., Chen, F.-F., Wang, C.-E., Fu, H.-H., Fang, X.-Q., Ye, J.-R., & Shi, J.-Y. (2019). Indole-3-Acetic Acid in Burkholderia pyrrocinia JK-SH007: Enzymatic Identification of the Indole-3-Acetamide Synthesis Pathway. Frontiers in Microbiology, 10, 2559. https://doi.org/10.3389/fmicb.2019.02559Lobo, L. L. B., Da Silva, M. S. R. D. A., Carvalho, R. F., & Rigobelo, E. C. (2023). The Negative Effect of Coinoculation of Plant Growth-Promoting Bacteria Is Not Related to Indole-3-Acetic Acid Synthesis. Journal of Plant Growth Regulation, 42(4), 2317– 2326. https://doi.org/10.1007/s00344-022-10706-1Lobo, L. L. B., De Andrade Da Silva, M. S. R., Castellane, T. C. L., Carvalho, R. F., & Rigobelo, E. C. (2022). Effect of Indole-3-Acetic Acid on Tomato Plant Growth. Microorganisms, 10(11), 2212. https://doi.org/10.3390/microorganisms10112212Lozano-González, J. M., Valverde, S., Montoya, M., Martín, M., Rivilla, R., Lucena, J. J., & López-Rayo, S. (2023). Evaluation of Siderophores Generated by Pseudomonas Bacteria and Their Possible Application as Fe Biofertilizers. Plants (Basel, Switzerland), 12(23), 4054. https://doi.org/10.3390/plants12234054Maddocks, S. E., & Oyston, P. C. F. (2008). Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology, 154(12), 3609–3623. https://doi.org/10.1099/mic.0.2008/022772-0Mano, Y., Nemoto, K., Suzuki, M., Seki, H., Fujii, I., & Muranaka, T. (2010). The AMI1 gene family: Indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. Journal of Experimental Botany, 61(1), 25–32. https://doi.org/10.1093/jxb/erp292Mashiguchi, K., Hisano, H., Takeda-Kamiya, N., Takebayashi, Y., Ariizumi, T., Gao, Y., Ezura, H., Sato, K., Zhao, Y., Hayashi, K., & Kasahara, H. (2019). Agrobacterium tumefaciens Enhances Biosynthesis of Two Distinct Auxins in the Formation of Crown Galls. Plant and Cell Physiology, 60(1), 29–37. https://doi.org/10.1093/pcp/pcy182McClerklin, S. A., Lee, S. G., Harper, C. P., Nwumeh, R., Jez, J. M., & Kunkel, B. N. (2018). Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. PLOS Pathogens, 14(1), e1006811. https://doi.org/10.1371/journal.ppat.1006811Mitter, E. K., Tosi, M., Obregón, D., Dunfield, K. E., & Germida, J. J. (2021). Rethinking Crop Nutrition in Times of Modern Microbiology: Innovative Biofertilizer Technologies. Frontiers in Sustainable Food Systems, 5. https://www.frontiersin.org/articles/10.3389/fsufs.2021.606815Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition, 13(3), 0–0. https://doi.org/10.4067/S0718-95162013005000051Mukherjee, A., Gaurav, A. K., Singh, S., Yadav, S., Bhowmick, S., Abeysinghe, S., & Verma, J. P. (2022). The bioactive potential of phytohormones: A review. Biotechnology Reports, 35, e00748. https://doi.org/10.1016/j.btre.2022.e00748Nafisi, M., Goregaoker, S., Botanga, C. J., Glawischnig, E., Olsen, C. E., Halkier, B. A., & Glazebrook, J. (2007). Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis. The Plant Cell, 19(6), 2039–2052. https://doi.org/10.1105/tpc.107.051383Oberhansli, T., Defago, G., & Haas, D. (1991). Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: Role of tryptophan side chain 56 oxidase. Journal of General Microbiology, 137(10), 2273–2279. https://doi.org/10.1099/00221287-137-10-2273Ojeda, C., Blanco, J. F., Montaña, A. C. G., Monroy, J. S., Monsalve, J. C., Poveda, D., Rojas, M. K. T., & Castro, J. S. (2021). FUNDAMENTOS EN AGROECOLOGÍA, UNA REVISIÓN EN LA BÚSQUEDA DE ALTERNATIVAS SOSTENIBLES EN CULTIVOS HORTÍCOLAS COMO RESPUESTA A LOS EFECTOS DE LA PANDEMIA POR CORONAVIRUS SARS-COV-2. CON-CIENCIA Y TÉCNICA, 5(1), Article 1.Ortiz-García, P., González Ortega-Villaizán, A., Onejeme, F. C., Müller, M., & Pollmann, S. (2023). Do Opposites Attract? Auxin-Abscisic Acid Crosstalk: New Perspectives. International Journal of Molecular Sciences, 24(4), Article 4. https://doi.org/10.3390/ijms24043090Pal, G., Saxena, S., Kumar, K., Verma, A., Sahu, P. K., Pandey, A., White, J. F., & Verma, S. K. (2022). Endophytic Burkholderia: Multifunctional roles in plant growth promotion and stress tolerance. Microbiological Research, 265, 127201. https://doi.org/10.1016/j.micres.2022.127201Pandit, M. A., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., Rawat, C. D., Mishra, V., & Kaur, J. (2022). Major Biological Control Strategies for Plant Pathogens. Pathogens, 11(2), 273. https://doi.org/10.3390/pathogens11020273Pardo Díaz, S., Mazo Molina, D. C., & Rojas Tapias, D. F. (2021). Bacterias promotoras del crecimiento vegetal: Filogenia, microbioma, y perspectivas. En Bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible. Editorial AGROSAVIA. https://doi.org/10.21930/agrosavia.analisis.7405019Parthasarathy, A., Cross, P. J., Dobson, R. C. J., Adams, L. E., Savka, M. A., & Hudson, A. O. (2018). A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Frontiers in Molecular Biosciences, 5, 29. https://doi.org/10.3389/fmolb.2018.00029Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68(8), 3795–3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002Pruesse, E., Peplies, J., & Glöckner, F. O. (2012). SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics, 28(14), 1823–1829. https://doi.org/10.1093/bioinformatics/bts252Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219Ramírez-Melo, M., Ruíz-Flores, N., Vásquez-Murrieta, S., Rodríguez-Tovar, A., GuerreroZúñiga, A., & Rodríguez-Dorantes, A. (2013). Plant growth promotion and protecting effect to heavy metals of rhizobacteria on inoculated Lens esculenta seeds. International Journal of AgriScience, 3(5), 414–422.Ratnaningsih, H. R., Noviana, Z., Dewi, T. K., Loekito, S., Wiyono, S., Gafur, A., & Antonius, S. (2023). IAA and ACC deaminase producing-bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon, 9(6), e16306. https://doi.org/10.1016/j.heliyon.2023.e16306Reséndez, A. M., Mendoza, V. G., Carrillo, J. L. R., Arroyo, J. V., & Ríos, P. C. (2018). Rizobacterias promotoras del crecimiento vegetal: Una alternativa de biofertilización para la agricultura sustentable. Revista Colombiana de Biotecnología, 20(1), Article 1. https://doi.org/10.15446/rev.colomb.biote.v20n1.73707Roberts, J., & Rosenfeld, H. J. (1977). Isolation, crystallization, and properties of indolyl-3- alkane alpha-hydroxylase. A novel tryptophan-metabolizing enzyme. The Journal of Biological Chemistry, 252(8), 2640–2647Rojas, M. M., Rives, N., Tejera, B., Acebo, Y., & Heydrich, M. (2012). PRODUCCIÓN DE ANTISUEROS PARA LA DETECCIÓN DE ÁCIDO INDOLACÉTICO EN CULTIVOS DE BACTERIAS PROMOTORAS DEL CRECIMIENTO VEGETAL. Acta biol. Colomb, 17(2), 271–280.Rojas-Rojas, F. U., López-Sánchez, D., Meza-Radilla, G., Méndez-Canarios, A., Ibarra, J. A., & Estrada-de Los Santos, P. (2019). El controvertido complejo Burkholderia cepacia, un grupo de especies promotoras del crecimiento vegetal y patógenas de plantas, animales y humanos. Revista Argentina de Microbiología, 51(1), 84–92. https://doi.org/10.1016/j.ram.2018.01.002Sagar, A., Yadav, S. S., Sayyed, R. Z., Sharma, S., & Ramteke, P. W. (2022). Bacillus subtilis: A Multifarious Plant Growth Promoter, Biocontrol Agent, and Bioalleviator of Abiotic Stress. En M. T. Islam, M. Rahman, & P. Pandey (Eds.), Bacilli in Agrobiotechnology (pp. 561–580). Springer International Publishing. https://doi.org/10.1007/978-3-030-85465-2_24Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454Sánchez-Yáñez, J. M., Alonso-Bravo, J. N., Dasgupta-Schuber, N., & Márquez-Benavides, L. (2015). Biorremediación de suelo contaminado con 55000 y 65000 de aceite residual automotriz y fitorremediación con Sorghum bicolor inoculado con Burkholderia cepacia y Penicillium chrysogenum. Journal of the Selva Andina Biosphere, 3(2), 86–94.Sardar, P., & Kempken, F. (2018). Characterization of indole-3-pyruvic acid pathwaymediated biosynthesis of auxin in Neurospora crassa. PLoS ONE, 13(2), e0192293. https://doi.org/10.1371/journal.pone.0192293Savoia, D., Deplano, C., & Zucca, M. (2008). Pseudomonas aeruginosa and Burkholderia cenocepacia Infections in Patients Affected by Cystic Fibrosis: Serum Resistance and Antibody Response. Immunological Investigations, 37(1), 19–27. https://doi.org/10.1080/08820130701741775Schoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database, 2020, baaa062. https://doi.org/10.1093/database/baaa062Schroth, M. N., Hildebrand, D. C., & Panopoulos, N. (2006). Phytopathogenic Pseudomonads and Related Plant-Associated Pseudomonads. En M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes (pp. 714–740). Springer New York. https://doi.org/10.1007/0-387-30746-X_23Sekimoto, H., Seo, M., Kawakami, N., Komano, T., Desloire, S., Liotenberg, S., MarionPoll, A., Caboche, M., Kamiya, Y., & Koshiba, T. (1998). Molecular Cloning and 59 Characterization of Aldehyde Oxidases in Arabidopsis thaliana. Plant and Cell Physiology, 39(4), 433–442. https://doi.org/10.1093/oxfordjournals.pcp.a029387Shao, J., Li, S., Zhang, N., Cui, X., Zhou, X., Zhang, G., Shen, Q., & Zhang, R. (2015). Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microbial Cell Factories, 14(1), 130. https://doi.org/10.1186/s12934-015-0323-4Shao, J., Li, Y., Li, Z., Xu, Z., Xun, W., Zhang, N., Feng, H., Miao, Y., Shen, Q., & Zhang, R. (2021). Participating mechanism of a major contributing gene ysnE for auxin biosynthesis in Bacillus amyloliquefaciens SQR9. Journal of Basic Microbiology, 61(6), 569–575. https://doi.org/10.1002/jobm.202100098Shitut, S., Ahsendorf, T., Pande, S., Egbert, M., & Kost, C. (2019). Nanotube‐mediated cross‐ feeding couples the metabolism of interacting bacterial cells. Environmental Microbiology, 21(4), 1306–1320. https://doi.org/10.1111/1462-2920.14539Singh, M., Singh, D., Gupta, A., Pandey, K. D., Singh, P. K., & Kumar, A. (2019). Chapter Three - Plant Growth Promoting Rhizobacteria: Application in Biofertilizers and Biocontrol of Phytopathogens. En A. K. Singh, A. Kumar, & P. K. Singh (Eds.), PGPR Amelioration in Sustainable Agriculture (pp. 41–66). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-815879-1.00003-3Siow, Y. L., & Dakshinamurti, K. (1990). Neuronal DOPA Decarboxylase. Annals of the New York Academy of Sciences, 585(1 Vitamin B6), 173–188. https://doi.org/10.1111/j.1749-6632.1990.tb28052.xSpaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4), 425–448. https://doi.org/10.1111/j.1574-6976.2007.00072.xStecher, G., Tamura, K., & Kumar, S. (2020). Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Molecular Biology and Evolution, 37(4), 1237–1239. https://doi.org/10.1093/molbev/msz312Sun, H., Zhang, J., Liu, W., E, W., Wang, X., Li, H., Cui, Y., Zhao, D., Liu, K., Du, B., Ding, Y., & Wang, C. (2022). Identification and combinatorial engineering of indole-3- acetic acid synthetic pathways in Paenibacillus polymyxa. Biotechnology for Biofuels and Bioproducts, 15(1), 81. https://doi.org/10.1186/s13068-022-02181-3Sun, X., Xu, Z., Xie, J., Hesselberg-Thomsen, V., Tan, T., Zheng, D., Strube, M. L., Dragoš, A., Shen, Q., Zhang, R., & Kovács, Á. T. (2022). Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. The ISME Journal, 16(3), 774–787. https://doi.org/10.1038/s41396- 021-01125-3Tagele, S. B., Kim, S. W., Lee, H. G., Kim, H. S., & Lee, Y. S. (2018). Effectiveness of multitrait Burkholderia contaminans KNU17BI1 in growth promotion and management of banded leaf and sheath blight in maize seedling. Microbiological Research, 214, 8– 18. https://doi.org/10.1016/j.micres.2018.05.004Takai, K., Ushiro, H., Noda, Y., Narumiya, S., & Tokuyama, T. (1977). Crystalline hemoprotein from Pseudomonas that catalyzes oxidation of side chain of tryptophan and other indole derivatives. The Journal of Biological Chemistry, 252(8), 2648– 2656.Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 11030–11035. https://doi.org/10.1073/pnas.0404206101Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120Tang, J., Li, Y., Zhang, L., Mu, J., Jiang, Y., Fu, H., Zhang, Y., Cui, H., Yu, X., & Ye, Z. (2023). Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms, 11(8), 2077. https://doi.org/10.3390/microorganisms11082077Tariq, A., & Ahmed, A. (2022). Auxins-Interkingdom Signaling Molecules. En C. Hano (Ed.), Plant Hormones—Recent Advances, New Perspectives and Applications (p. Ch. 1). IntechOpen. https://doi.org/10.5772/intechopen.102599Taylor, B. L., & Zhulin, I. B. (1999). PAS domains: Internal sensors of oxygen, redox potential, and light. Microbiology and Molecular Biology Reviews: MMBR, 63(2), 479–506. https://doi.org/10.1128/MMBR.63.2.479-506.1999Terán Pérez, W. (2023). CARACTERIZACIÓN DE LA DIVERSIDAD GENÉTICA Y FUNCIONAL DE MICROORGANISMOS DEL SISTEMA SUELO-RAÍZ EN SISTEMAS PRODUCTIVOS DE LA ZONA CAFETERA CENTRAL DE COLOMBIA (1.1) [dataset]. SiB Colombia. https://ipt.biodiversidad.co/permisos/resource?r=213_bacteriasuelosejecafetero_201 90401&v=1.1Vassileva, M., Mocali, S., Canfora, L., Malusá, E., García Del Moral, L. F., Martos, V., FlorPeregrin, E., & Vassilev, N. (2022). Safety Level of Microorganism-Bearing Products Applied in Soil-Plant Systems. Frontiers in Plant Science, 13, 862875. https://doi.org/10.3389/fpls.2022.862875Wagi, S., & Ahmed, A. (2019). Bacillus spp.: Potent microfactories of bacterial IAA. PeerJ, 7, e7258. https://doi.org/10.7717/peerj.7258Wang, Z., Lu, K., Liu, X., Zhu, Y., & Liu, C. (2023). Comparative Functional Genome Analysis Reveals the Habitat Adaptation and Biocontrol Characteristics of Plant Growth-Promoting Bacteria in NCBI Databases. Microbiology Spectrum, 11(3), e05007-22. https://doi.org/10.1128/spectrum.05007-22Wei Wang, M. S. (2009). Phylogenetic relationships between Bacillus species and related genera inferred from 16s rDNA sequences. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 40(3), 505–521. https://doi.org/10.1590/S1517-838220090003000013Weijers, D., Nemhauser, J., & Yang, Z. (2018). Auxin: Small molecule, big impact. Journal of Experimental Botany, 69(2), 133–136. https://doi.org/10.1093/jxb/erx463Williams, K. P., Gillespie, J. J., Sobral, B. W. S., Nordberg, E. K., Snyder, E. E., Shallom, J. M., & Dickerman, A. W. (2010). Phylogeny of Gammaproteobacteria. Journal of Bacteriology, 192(9), 2305–2314. https://doi.org/10.1128/JB.01480-09Wu, X., Monchy, S., Taghavi, S., Zhu, W., Ramos, J., & Van Der Lelie, D. (2011). Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiology Reviews, 35(2), 299–323. https://doi.org/10.1111/j.1574-6976.2010.00249.xYabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T., & Arakawa, M. (1992). Proposal of Burkholderia gen. Nov. And Transfer of Seven 62 Species of the Genus Pseudomonas Homology Group II to the New Genus, with the Type Species Burkholderia cepacia (Palleroni and Holmes 1981) comb. Nov. Microbiology and Immunology, 36(12), 1251–1275. https://doi.org/10.1111/j.1348- 0421.1992.tb02129.xYamada, T., Palm, C. J., Brooks, B., & Kosuge, T. (1985). Nucleotide sequences of the Pseudomonas savastanoi indoleacetic acid genes show homology with Agrobacterium tumefaciens T-DNA. Proceedings of the National Academy of Sciences, 82(19), 6522–6526. https://doi.org/10.1073/pnas.82.19.6522Yu, Z., Zhang, F., Friml, J., & Ding, Z. (2022). Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology, 64(2), 371–392. https://doi.org/10.1111/jipb.13225Zaman, N. R., Chowdhury, U. F., Reza, R. N., Chowdhury, F. T., Sarker, M., Hossain, M. M., Akbor, Md. A., Amin, A., Islam, M. R., & Khan, H. (2021). Plant growth promoting endophyte Burkholderia contaminans NZ antagonizes phytopathogen Macrophomina phaseolina through melanin synthesis and pyrrolnitrin inhibition. PLOS ONE, 16(9), e0257863. https://doi.org/10.1371/journal.pone.0257863Zhang, B.-X., Li, P.-S., Wang, Y.-Y., Wang, J.-J., Liu, X.-L., Wang, X.-Y., & Hu, X.-M. (2021). Characterization and synthesis of indole-3-acetic acid in plant growth promoting Enterobacter sp. RSC Advances, 11(50), 31601–31607. https://doi.org/10.1039/d1ra05659jZhang, H., Yang, Q., Zhao, J., Chen, J., Wang, S., Ma, M., Liu, H., Zhang, Q., Zhao, H., Zhou, D., Wang, X., Gao, J., & Zhao, H. (2022). Metabolites from Bacillus subtilis J-15 Affect Seedling Growth of Arabidopsis thaliana and Cotton Plants. Plants, 11(23), Article 23. https://doi.org/10.3390/plants11233205Zhang, M., Gao, C., Xu, L., Niu, H., Liu, Q., Huang, Y., Lv, G., Yang, H., & Li, M. (2022). Melatonin and Indole-3-Acetic Acid Synergistically Regulate Plant Growth and Stress Resistance. Cells, 11(20), 3250. https://doi.org/10.3390/cells11203250Zhang, P., Jin, T., Kumar Sahu, S., Xu, J., Shi, Q., Liu, H., & Wang, Y. (2019). The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis. Molecules, 24(7), 1411. https://doi.org/10.3390/molecules24071411Zhang, Q., Gong, M., Xu, X., Li, H., & Deng, W. (2022). Roles of Auxin in the Growth, Development, and Stress Tolerance of Horticultural Plants. Cells, 11(17), 2761. https://doi.org/10.3390/cells11172761Zhao, Y. (2012). Auxin Biosynthesis: A Simple Two-Step Pathway Converts Tryptophan to Indole-3-Acetic Acid in Plants. Molecular Plant, 5(2), 334–338. https://doi.org/10.1093/mp/ssr104Ziegler, S. F., White, F. F., & Nester, E. W. (1987). Genes Involved in Indole Acetic Acid Production in Plant Pathogenic Bacteria. En E. L. Civerolo, A. Collmer, R. E. Davis, & A. G. Gillaspie (Eds.), Plant Pathogenic Bacteria (Vol. 4, pp. 18–25). Springer Netherlands. https://doi.org/10.1007/978-94-009-3555-6_3Zuther, K., Mayser, P., Hettwer, U., Wu, W., Spiteller, P., Kindler, B. L. J., Karlovsky, P., Basse, C. W., & Schirawski, J. (2008). The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan-dependent pigment synthesis in Ustilago maydis. Molecular Microbiology, 68(1), 152–172. https://doi.org/10.1111/j.1365-2958.2008.06144.xTHUMBNAILTesis AIA - Jaramillo-Zárate.pdf.jpgTesis AIA - Jaramillo-Zárate.pdf.jpgIM Thumbnailimage/jpeg12288http://repository.unilibre.edu.co/bitstream/10901/30432/5/Tesis%20AIA%20-%20Jaramillo-Z%c3%a1rate.pdf.jpgf9ea05254461c9d0b5bde44b745d14e9MD55Formato autorización biblioteca.pdf.jpgFormato autorización biblioteca.pdf.jpgIM Thumbnailimage/jpeg28674http://repository.unilibre.edu.co/bitstream/10901/30432/6/Formato%20autorizaci%c3%b3n%20biblioteca.pdf.jpg8d6e879be3d189b33e2a6909a8ed8f0aMD56LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repository.unilibre.edu.co/bitstream/10901/30432/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINALTesis AIA - Jaramillo-Zárate.pdfTesis AIA - Jaramillo-Zárate.pdfapplication/pdf7156403http://repository.unilibre.edu.co/bitstream/10901/30432/1/Tesis%20AIA%20-%20Jaramillo-Z%c3%a1rate.pdfbb80112cfd0142cc70ff2da273fb093dMD51Formato autorización biblioteca.pdfFormato autorización biblioteca.pdfAUTORIZACIÓN PARA LA PUBLICACIÓN DIGITAL DE OBRAS EN EL REPOSITORIO INSTITUCIONAL DE LA UNIVERSIDAD LIBREapplication/pdf279973http://repository.unilibre.edu.co/bitstream/10901/30432/3/Formato%20autorizaci%c3%b3n%20biblioteca.pdfc6e758860154d734e506afcc5dae8e19MD5310901/30432oai:repository.unilibre.edu.co:10901/304322025-01-21 06:01:18.541Repositorio Institucional Unilibrerepositorio@unilibrebog.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=