Detección de modos de transporte usando datos GPS

El uso de dispositivos móviles y el aprovechamiento de la tecnología GPS, permiten la implementación de sistemas para analizar el contexto y actividades típicas de transporte de un usuario, a través del análisis de los datos de localización y sensores de aceleración. Este trabajo de investigación co...

Full description

Autores:
Adarme Jaimes, Marco Antonio
Heredia-Vizcaino, Diana
Puerto Cuadros, Eduard Gilberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Francisco de Paula Santander
Repositorio:
Repositorio Digital UFPS
Idioma:
spa
OAI Identifier:
oai:repositorio.ufps.edu.co:ufps/490
Acceso en línea:
http://repositorio.ufps.edu.co/handle/ufps/490
Palabra clave:
Detección de modos de transporte
transporte multimodal
Transportation mode detection
GPS
multimodal transport
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Description
Summary:El uso de dispositivos móviles y el aprovechamiento de la tecnología GPS, permiten la implementación de sistemas para analizar el contexto y actividades típicas de transporte de un usuario, a través del análisis de los datos de localización y sensores de aceleración. Este trabajo de investigación comprende el procesamiento de datos obtenidos vía GPS. Con este procesamiento se pretende detectar el modo de transporte de un usuario en segmentos de recorridos predefinidos. Para la clasificación de éstos, se usan perfiles de velocidad que identifican los modos de transporte en cada uno de los segmentos, mediante un sistema software en lenguaje de programación Java y la utilización de Matlab para el análisis y filtros de datos. El sistema software se desarrolla en dos componentes, el primero comprende el filtro y transformación de datos. Estos datos se representan en coordenadas decimales a coordenadas cartesianas. El segundo presenta la clasificación, para la detección de modos de transportes con las coordenadas cartesianas. También contiene el análisis de estados de movimientos cinemáticos. Las pruebas se realizan a través de un dataset tomado del proyecto GeoLife de Microsoft Asia. Los resultados obtenidos muestran una detección coherente sobre los medios de transporte que usan los diferentes usuarios. Estos usuarios se comparan a partir de perfiles de velocidad predefinidos.