Aplicación de halochlorella rubescens_ufps012 para la captura de co2 residual de la planta coquizadora ct1 de la empresa ci excomin S.A.S

En este trabajo se ha demostrado que la microalga Halochlorella rubescens es capaz de tolerar altas concentraciones de CO2, obteniendo una biomasa con más de un 60% proteína, 40% de carbohidratos y 15% de lípidos. Se determinó que para establecer las condiciones Óptimas, la microalga Halochlorella r...

Full description

Autores:
Parada Solano, Renso José
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Francisco de Paula Santander
Repositorio:
Repositorio Digital UFPS
Idioma:
OAI Identifier:
oai:repositorio.ufps.edu.co:ufps/7727
Acceso en línea:
https://repositorio.ufps.edu.co/handle/ufps/7727
Palabra clave:
Microalgas
Halochlorella rubescens
Emisión de gases de efecto invernadero
Captura de CO2
Biomasa
Gases de efecto invernadero
Microalgas
Biomasa
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id RUFPS2_ac422f06048f0d17b16b84008c0f6805
oai_identifier_str oai:repositorio.ufps.edu.co:ufps/7727
network_acronym_str RUFPS2
network_name_str Repositorio Digital UFPS
repository_id_str
dc.title.spa.fl_str_mv Aplicación de halochlorella rubescens_ufps012 para la captura de co2 residual de la planta coquizadora ct1 de la empresa ci excomin S.A.S
title Aplicación de halochlorella rubescens_ufps012 para la captura de co2 residual de la planta coquizadora ct1 de la empresa ci excomin S.A.S
spellingShingle Aplicación de halochlorella rubescens_ufps012 para la captura de co2 residual de la planta coquizadora ct1 de la empresa ci excomin S.A.S
Microalgas
Halochlorella rubescens
Emisión de gases de efecto invernadero
Captura de CO2
Biomasa
Gases de efecto invernadero
Microalgas
Biomasa
title_short Aplicación de halochlorella rubescens_ufps012 para la captura de co2 residual de la planta coquizadora ct1 de la empresa ci excomin S.A.S
title_full Aplicación de halochlorella rubescens_ufps012 para la captura de co2 residual de la planta coquizadora ct1 de la empresa ci excomin S.A.S
title_fullStr Aplicación de halochlorella rubescens_ufps012 para la captura de co2 residual de la planta coquizadora ct1 de la empresa ci excomin S.A.S
title_full_unstemmed Aplicación de halochlorella rubescens_ufps012 para la captura de co2 residual de la planta coquizadora ct1 de la empresa ci excomin S.A.S
title_sort Aplicación de halochlorella rubescens_ufps012 para la captura de co2 residual de la planta coquizadora ct1 de la empresa ci excomin S.A.S
dc.creator.fl_str_mv Parada Solano, Renso José
dc.contributor.advisor.none.fl_str_mv Barajas Solano, Andrés Fernando
Urbina Suárez, Néstor Andrés
dc.contributor.author.none.fl_str_mv Parada Solano, Renso José
dc.contributor.jury.none.fl_str_mv López Barrera, German Luciano
Contreras Rojas, Mayra
dc.subject.lemb.spa.fl_str_mv Microalgas
Halochlorella rubescens
Emisión de gases de efecto invernadero
Captura de CO2
Biomasa
topic Microalgas
Halochlorella rubescens
Emisión de gases de efecto invernadero
Captura de CO2
Biomasa
Gases de efecto invernadero
Microalgas
Biomasa
dc.subject.proposal.spa.fl_str_mv Gases de efecto invernadero
Microalgas
Biomasa
description En este trabajo se ha demostrado que la microalga Halochlorella rubescens es capaz de tolerar altas concentraciones de CO2, obteniendo una biomasa con más de un 60% proteína, 40% de carbohidratos y 15% de lípidos. Se determinó que para establecer las condiciones Óptimas, la microalga Halochlorella rubescens se debe sembrar a 0,4 schf de CO2 y 15,615 horas luz, maximisando la fijación de dióxido de carbono y dando el mayor rendimiento de productos.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-06-13T20:44:57Z
dc.date.available.none.fl_str_mv 2024-06-13T20:44:57Z
dc.type.none.fl_str_mv Trabajo de grado - Maestría
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/mastherThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.ufps.edu.co/handle/ufps/7727
dc.identifier.instname.none.fl_str_mv instname:Universidad Francisco de Paula Santander
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Digital UFPS
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.ufps.edu.co/
dc.identifier.signature.spa.fl_str_mv PMCB V00011/2023
url https://repositorio.ufps.edu.co/handle/ufps/7727
identifier_str_mv instname:Universidad Francisco de Paula Santander
reponame:Repositorio Digital UFPS
repourl:https://repositorio.ufps.edu.co/
PMCB V00011/2023
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Francisco de Paula Santander, 2023
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Derechos Reservados - Universidad Francisco de Paula Santander, 2023
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.format.extent.none.fl_str_mv 65 páginas. ilustraciones. 1.368 KB
dc.publisher.spa.fl_str_mv Universidad Francisco de Paula Santander
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Básicas
dc.publisher.place.spa.fl_str_mv San José de Cúcuta
dc.publisher.program.spa.fl_str_mv Maestría en Ciencias Biológicas
dc.source.none.fl_str_mv http://catalogobiblioteca.ufps.edu.co/cgi-bin/koha/opac-retrieve-file.pl?id=0a4e8fc3daf047aefc5e60fdd87a41a0
institution Universidad Francisco de Paula Santander
bitstream.url.fl_str_mv https://repositorio.ufps.edu.co/bitstream/ufps/7727/1/TG_2400022%20.pdf
https://repositorio.ufps.edu.co/bitstream/ufps/7727/3/TG_2400022%20.pdf.txt
https://repositorio.ufps.edu.co/bitstream/ufps/7727/2/TG_2400022%20.pdf.jpg
bitstream.checksum.fl_str_mv 7e8b743c51a5aa3cacc42dd736695dcf
8635770755405cd472ce1ae3a23ac65d
1bb81c0adfbf7c298988dded53a597c6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Francisco de Paula Santander
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814095011405365248
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)Derechos Reservados - Universidad Francisco de Paula Santander, 2023https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barajas Solano, Andrés Fernandoc609b9c20964befdda83be0c6761a91bUrbina Suárez, Néstor Andrés8bf2af90f098d22eb888c1c35f151385500Parada Solano, Renso José60fb7fe6d77542c741d1847fa8f9127e-1López Barrera, German LucianoContreras Rojas, Mayra2024-06-13T20:44:57Z2024-06-13T20:44:57Z2023https://repositorio.ufps.edu.co/handle/ufps/7727instname:Universidad Francisco de Paula Santanderreponame:Repositorio Digital UFPSrepourl:https://repositorio.ufps.edu.co/PMCB V00011/2023En este trabajo se ha demostrado que la microalga Halochlorella rubescens es capaz de tolerar altas concentraciones de CO2, obteniendo una biomasa con más de un 60% proteína, 40% de carbohidratos y 15% de lípidos. Se determinó que para establecer las condiciones Óptimas, la microalga Halochlorella rubescens se debe sembrar a 0,4 schf de CO2 y 15,615 horas luz, maximisando la fijación de dióxido de carbono y dando el mayor rendimiento de productos.pág. Resumen Abstract Introducción 1. Estado del arte 1.1 Biofijación de CO2 1.2 Microalgas que toleran el CO2 1.3 Medios de cultivo y producción de biomasa 1.4 Productos de valor agregado 1.5 Análisis de co-ocurrencia 1.6 Justificación 1.7 Objetivos Objetivo general Objetivos específicos. 2. Materiales y métodos 2.1 Población y muestra Microorganismos 2.2 Fases de la investigación Caracterización de biomasa Efecto del ciclo de luz-oscuridad y concentración de CO2 en la producción de biomasa y captura de CO2 Comprobación del efecto del ciclo de luz-oscuridad y concentración de CO2 en la producción de biomasa y captura de CO2 10 12 13 17 18 19 21 24 25 28 29 29 29 31 31 31 31 31 32 33 Simulación y análisis técnico-económico de planta de captura de CO2 33 3. Resultados 3.1 Efecto del ciclo de luz-oscuridad y concentración de co2 en la producción de biomasa y captura de CO2 Análisis ANOVA del diseño 3.2 Comprobación en la producción de biomasa y captura de CO2 3.3 Simulación y análisis técnico-económico de planta de captura de CO2 4. Conclusiones Referencias Anexos 34 34 35 39 45 51 52 64Archivo Medios ElectrónicosMaestríaMagíster en Ciencias Biológicasapplication/pdf65 páginas. ilustraciones. 1.368 KBUniversidad Francisco de Paula SantanderFacultad de Ciencias BásicasSan José de CúcutaMaestría en Ciencias Biológicashttp://catalogobiblioteca.ufps.edu.co/cgi-bin/koha/opac-retrieve-file.pl?id=0a4e8fc3daf047aefc5e60fdd87a41a0Aplicación de halochlorella rubescens_ufps012 para la captura de co2 residual de la planta coquizadora ct1 de la empresa ci excomin S.A.STrabajo de grado - MaestríaTextinfo:eu-repo/semantics/mastherThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionMicroalgasHalochlorella rubescensEmisión de gases de efecto invernaderoCaptura de CO2BiomasaGases de efecto invernaderoMicroalgasBiomasaAbdel-Raouf N, AA Al-Homaidan & IBM Ibraheem. 2012. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences 19: 257-275.Abomohra, A. E. F., Wagner, M., El-Sheekh, M., & Hanelt, D. (2012). Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: screening studies towards biodiesel production. Journal of Applied Phycology 2012 25:4, 25(4), 931–936. https://doi.org/10.1007/S10811-012-9917-YAbu-Ghosh, S., Fixler, D., Dubinsky, Z., & Iluz, D. (2016). Flashing light in microalgae biotechnology. Bioresource Technology, 203, 357–363. https://doi.org/10.1016/J.BIORTECH.2015.12.057Acien, F.G., González-López, C. v., Fernández Sevilla, J. M., & Molina Grima, E. (2012). Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Applied Microbiology and Biotechnology, 96(3), 577–586. https://doi.org/10.1007/S00253-012-4362-ZAlami, A. H., Alasad, S., Ali, M., & Alshamsi, M. (2021). Investigating algae for CO2 capture and accumulation and simultaneous production of biomass for biodiesel production. Science of the Total Environment, 759. https://doi.org/10.1016/J.SCITOTENV.2020.143529Andersen, R., Berges, J., Harrison, P., & Watanabe, M. (2005). Recipes for Freshwater and Seawater Media. In Andersen, R. A. (Ed.). (2005). Algal culturing techniques. Elsevier.Barajas S, A., Godoy R, C., Monroy D, J., Barajas F, C., & Kafarov, V. (2012). Mejoramiento del secuestro de CO2 por Chlorella vulgaris UTEX 1803 en fotobiorreactores a escala laboratorio. Revista ION, 25(2), 39–47. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120100X2012000200005&ln g=en&nrm=iso&tlng=esBasu, S., Roy, A. S., Mohanty, K., & Ghoshal, A. K. (2014). CO2 biofixation and carbonic anhydrase activity in Scenedesmus obliquus SA1 cultivated in large scale open system. Bioresource Technology, 164, 323–330. https://doi.org/10.1016/J.BIORTECH.2014.05.017Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207210. https://doi.org/10.1016/J.BIOTECHADV.2006.11.002Bhuyar, P., Sundararaju, S., Rahim, M. H. A., Ramaraj, R., Maniam, G. P., & Govindan, N. (2019). Microalgae cultivation using palm oil mill effluent as growth medium for lipid production with the effect of CO2 supply and light intensity. Biomass Conversion and Biorefinery 2019 11:5, 11(5), 1555–1563. https://doi.org/10.1007/S13399-019-00548-5Chauton, M. S., Olsen, Y., & Vadstein, O. (2013). Biomass production from the microalga Phaeodactylum tricornutum: Nutrient stress and chemical composition in exponential fedbatch cultures. Biomass and Bioenergy, 58, 87–94. https://doi.org/10.1016/J.BIOMBIOE.2013.10.004Cheah, W. Y., Show, P. L., Chang, J. S., Ling, T. C., & Juan, J. C. (2015). Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology, 184, 190–201. https://doi.org/10.1016/J.BIORTECH.2014.11.026Chen, W. H., Huang, M. Y., Chang, J. S., & Chen, C. Y. (2014). Thermal decomposition dynamics and severity of microalgae residues in torrefaction. Bioresource Technology, 169, 258–264. https://doi.org/10.1016/J.BIORTECH.2014.06.086Cherubini, F., Jungmeier, G., Wellisch, M., Willke, T., Skiadas, I., van Ree, R., & de Jong, E. (2009). Toward a common classification approach for biorefinery systems. Biofuels, Bioproducts and Biorefining, 3(5), 534–546. https://doi.org/10.1002/BBB.172China, S., & Fujii, K. (2018). Isolation of high-CO2-acclimated Micractinium sp. strains from eutrophic reservoir water. Algal Research, 34, 126–133. https://doi.org/10.1016/J.ALGAL.2018.07.015Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99(9), 3389–3396. https://doi.org/10.1016/J.BIORTECH.2007.08.013Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2), 833–838. https://doi.org/10.1016/J.BIORTECH.2008.06.061Choi, H. il, Hwang, S. W., & Sim, S. J. (2019). Comprehensive approach to improving life-cycle CO2 reduction efficiency of microalgal biorefineries: A review. Bioresource Technology, 291, 121879. https://doi.org/10.1016/J.BIORTECH.2019.121879Cullinane, J.T. & Rochelle, G.T. (2004). The thermodynamics of aqueous potassium carbonate/piperazine for CO2 capture. ACS Div Fuel Chem Prepr 49(1)Daneshvar, E., Wicker, R. J., Show, P. L., & Bhatnagar, A. (2022). Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization – A review. Chemical Engineering Journal, 427, 130884. https://doi.org/10.1016/J.CEJ.2021.130884Fulke, A. B., Krishnamurthi, K., Giripunje, M. D., Devi, S. S., & Chakrabarti, T. (2015). Biosequestration of carbon dioxide, biomass, calorific value and biodiesel precursors production using a novel flask culture photobioreactor. Biomass and Bioenergy, 72, 136142.García-Cubero, R. (2012). "Production of carbohydrate-rich microalgal biomass coupled to photosynthetic CO2 abatement" FEBS Special Issue, J 279: 554-554.Garcia-Martinez, B.; Ayala-Torres, E.; Reyes-Gomez, O.; Zuorro, A.; Barajas-Solano, A.; Barajas-Ferreira, C. (2016). Evaluation of a Two-Phase Extraction System of Carbohydrates and Proteins from Chlorella Vulgaris Utex 1803. Chem. Eng. Trans, 49, 355-360 SEResearch Articles. https://doi.org/10.3303/CET1649060.Global Energy Review: Emisiones de CO2 en 2020 - Análisis - IEA. (2021). Retrieved November 29, 2021, from https://www.iea.org/articles/global-energy-review-co2-emissions-in-2020Gonzalez, E. G., de Carvalho, J. C., Aulestia, D. T. M., Gonzalez, O. I. M., & Soccol, C. R. (2020). Bioprospection of green microalgae native to Paraná, Brazil using a multi-criteria analysis: Potential for the production of lipids, proteins, and carotenoids. Bioresource Technology Reports, 10, 100398. https://doi.org/10.1016/J.BITEB.2020.100398Grobbelaar JU. (2004). Algal nutrition: mineral nutrition. In: Richmond A (ed). Handbook of microalgal culture: Biotechnology and applied phycology, pp. 97-115. Blackwell Science, Iowa.Gupta, P. L., Choi, H. J., Pawar, R. R., Jung, S. P., & Lee, S. M. (2016). Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source. Journal of Environmental Management, 184, 585–595. https://doi.org/10.1016/J.JENVMAN.2016.10.018Herzog, H., Eliasson, B. & Kaarstad, O. (2000). Capturing greenhouse gases. Sci Am 282:72–79Ho, S. H., Chen, C. N. N., Lai, Y. Y., Lu, W. bin, & Chang, J. S. (2014). Exploring the high lipid production potential of a thermotolerant microalga using statistical optimization and semicontinuous cultivation. Bioresource Technology, 163, 128–135. https://doi.org/10.1016/J.BIORTECH.2014.04.028Ho, S. H., Chen, W. M., & Chang, J. S. (2010). Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresource technology, 101(22), 8725–8730. https://doi.org/10.1016/j.biortech.2010.06.112Hynstova, V.; Sterbova, D.; Klejdus, B.; Hedbavny, J.; Huska, D.; Adam, V. (2018). Separation, Identification and Quantification of Carotenoids and Chlorophylls in Dietary Supplements Containing Chlorella Vulgaris and Spirulina Platensis Using High Performance Thin Layer Chromatography. J. Pharm. Biomed. Anal. 148, 108–118. https://doi.org/https://doi.org/10.1016/j.jpba.2017.09.018.Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and microbial technology, 27(8), 631635. https://doi.org/10.1016/s0141-0229(00)00266-0Iwasaki, I., Hu, Q., Kurano, N., & Miyachi, S. (1998). Effect of extremely high-CO2 stress on energy distribution between photosystem I and photosystem II in a “high-CO2” tolerant green alga, Chlorococcum littorale and the intolerant green alga Stichococcus bacillaris. Journal of Photochemistry and Photobiology B: Biology, 44(3), 184–190. https://doi.org/10.1016/S1011-1344(98)00140-7Kawata, M., Nanba, M., Matsukawa, R., Chihara, M. y Karube, I. (1998). Aislamiento y caracterización de un alga verde Neochloris sp. para la fijación de CO2. Estudios en ciencia de superficies y catálisis, 114 , 637-640.Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories 2018 17:1, 17(1), 1–21. https://doi.org/10.1186/S12934-018-0879-XKin-Chung, W., Chi-Chung, L., On-Kit, H y Ho-Man, Y. (2013). A Study on Algal Growth Behavior under different Sparging Period of CO2 Supplementation. Ponecia presentadaen1st International Conference on Beneficial Uses of Algal Biomass, ICBUAB, Hong Kong.Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F. X., & van Langenhove, H. (2010). Enhanced CO(2) fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology, 28(7), 371–380. https://doi.org/10.1016/J.TIBTECH.2010.04.004Lam, M. K., & Lee, K. T. (2011). Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection. Biotechnology Advances, 29(1), 124–141. https://doi.org/10.1016/J.BIOTECHADV.2010.10.001Lam, M. K., Lee, K. T., & Mohamed, A. R. (2012). Current status and challenges on microalgaebased carbon capture. International Journal of Greenhouse Gas Control, 10, 456–469. https://doi.org/10.1016/J.IJGGC.2012.07.010Leite, G. B., Paranjape, K., Abdelaziz, A. E. M., & Hallenbeck, P. C. (2015). Utilization of biodiesel-derived glycerol or xylose for increased growth and lipid production by indigenous microalgae. Bioresource Technology, 184, 123–130. https://doi.org/10.1016/J.BIORTECH.2014.10.117Levasseur, W., Perré, P., & Pozzobon, V. (2020). A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances, 41, 107545. https://doi.org/10.1016/J.BIOTECHADV.2020.107545Lowrey, J., Brooks, M. S., & McGinn, P. J. (2014). Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges a critical review. Journal of Applied Phycology 2014 27:4, 27(4), 1485–1498. https://doi.org/10.1007/S10811-014-0459-3 microalgae (Chlorella sp.) in an outdoor open thin layer photobioreactor."Journal of Applied Phycology 17: 403-412.Mandalam, R. K., & Palsson, B. O. (1998). Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnology and bioengineering, 59(5), 605–611. https://doi.org/10.1002/(sici)10970290(19980905)59:5<605::aid-bit11>3.0.co;2-8Matsumoto, H., Hamasaki, A., Sioji, N., & Ikuta, Y. (1997). Influence of CO2, SO2 and no in flue gas on microalgae productivity. Journal of Chemical Engineering of Japan, 30(4), 620624. https://doi.org/10.1252/JCEJ.30.620Mishra, S. K.; Suh, W. I.; Farooq, W.; Moon, M.; Shrivastav, A.; Park, M. S.; Yang, J. W. (2014). Rapid Quantification of Microalgal Lipids in Aqueous Medium by a Simple Colorimetric Method. Bioresour. Technol. 155, 330–333. https://doi.org/10.1016/j.biortech.2013.12.077.Montalvo, G. E. B., Thomaz-Soccol, V., Vandenberghe, L. P. S., Carvalho, J. C., Faulds, C. B., Bertrand, E., Prado, M. R. M., Bonatto, S. J. R., & Soccol, C. R. (2019). Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptides production. Bioresource Technology, 273, 103–113. https://doi.org/10.1016/J.BIORTECH.2018.10.081Moreira, D., & Pires, J. C. M. (2016). Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresource technology, 215, 371–379. https://doi.org/10.1016/j.biortech.2016.03.060Mota, M. F. S.; Souza, M. F.; Bon, E. P. S.; Rodrigues, M. A.; Freitas, S. P. (2018). Colorimetric Protein Determination in Microalgae (Chlorophyta): Association of Milling and SDS Treatment for Total Protein Extraction. J. Phycol, 54 (4), 577–580. https://doi.org/10.1111/jpy.12754.Murakami, M., & Ikenouchi, M. (1997). The biological CO2 fixation and utilization project by rite (2) — Screening and breeding of microalgae with high capability in fixing CO2 —. Energy Conversion and Management, 38(SUPPL. 1), S493–S497. https://doi.org/10.1016/S0196-8904(96)00316-0NOAA. (2020). National Centers for Environmental Information, State of the Climate: Global Climate Report for January 2020, J. ClimPeter, A. P., Khoo, K. S., Chew, K. W., Ling, T. C., Ho, S. H., Chang, J. S., & Show, P. L. (2021). Microalgae for biofuels, wastewater treatment and environmental monitoring. Environmental Chemistry Letters 2021 19:4, 19(4), 2891–2904. https://doi.org/10.1007/S10311-021-01219-6Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., & Simões, M. (2012). Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renewable and Sustainable Energy Reviews, 16(5), 3043–3053. https://doi.org/10.1016/J.RSER.2012.02.055Rahaman, M. S. A., Cheng, L. H., Xu, X. H., Zhang, L., & Chen, H. L. (2011). A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes. Renewable and Sustainable Energy Reviews, 15(8), 4002–4012. https://doi.org/10.1016/J.RSER.2011.07.031Ramos-Ibarra, J. R., Snell-Castro, R., Neria-Casillas, J. A., & Choix, F. J. (2019). Biotechnological potential of Chlorella sp. and Scenedesmus sp. microalgae to endure high CO2 and methane concentrations from biogas. Bioprocess and Biosystems Engineering 2019 42:10, 42(10), 1603–1610. https://doi.org/10.1007/S00449-019-02157-YRazzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & de Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing—A review. Renewable and Sustainable Energy Reviews, 27, 622–653. https://doi.org/10.1016/J.RSER.2013.05.063Rebolloso-Fuentes, M. M., Navarro-Pérez, A., García-Camacho, F., Ramos-Miras, J. J., & GuilGuerrero, J. L. (2001). Biomass nutrient profiles of the microalga Nannochloropsis. Journal of Agricultural and Food Chemistry, 49(6), 2966–2972. https://doi.org/10.1021/JF0010376Reitan, K. I., Rainuzzo, J. R., & Olsen, Y. (1994). EFFECT OF NUTRIENT LIMITATION ON FATTY ACID AND LIPID CONTENT OF MARINE MICROALGAE1. Journal of Phycology, 30(6), 972–979. https://doi.org/10.1111/J.0022-3646.1994.00972.XRiebesell, U., Revill, A. T., Holdsworth, D. G., & Volkman, J. K. (2000). The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi. Geochimica et Cosmochimica Acta, 64(24), 4179–4192. https://doi.org/10.1016/S0016-7037(00)00474-9Sankar, V., Daniel, D. K., & Krastanov, A. (2014). Carbon Dioxide Fixation by Chlorella Minutissima Batch Cultures in a Stirred Tank Bioreactor. Http://Mc.Manuscriptcentral.Com/Tbeq, 25(3), 2468–2476. https://doi.org/10.5504/BBEQ.2011.0058Shabani, M., Sayadi, M. H., & Rezaei, M. R. (2016). CO2 bio-sequestration by Chlorella vulgaris and Spirulina platensis in response to different levels of salinity and CO2. Proceedings of the International Academy of Ecology and Environmental Sciences, 6(2), 53–61. www.iaees.orgSingh, D., Croiset, E., Douglas, P. L., & Douglas, M. A. (2003). Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion. Energy Conversion and Management, 44(19), 3073–3091. https://doi.org/10.1016/S0196-8904(03)00040-2Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102(3), 3071–3076. https://doi.org/10.1016/J.BIORTECH.2010.10.047Tongprawhan, W., Srinuanpan, S., & Cheirsilp, B. (2014). Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid. Bioresource Technology, 170, 90–99. https://doi.org/10.1016/J.BIORTECH.2014.07.094Van den Hende, S., Vervaeren, H., & Boon, N. (2012). Flue gas compounds and microalgae: Biochemical interactions leading to biotechnological opportunities. Biotechnology Advances, 30(6), 1405–1424. https://doi.org/10.1016/J.BIOTECHADV.2012.02.015Van Eck N. J. & Waltman, L. (2010). “Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping”, Scientometrics, Vol 84, no. 2, pp. 523–538, doi:10.1007/s11192009-0146-3.Varshney, P., Beardall, J., Bhattacharya, S., & Wangikar, P. P. (2018). Isolation and biochemical characterisation of two thermophilic green algal species- Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Research, 30, 28–37. https://doi.org/10.1016/J.ALGAL.2017.12.006Venkata Mohan, S., Modestra, J. A., Amulya, K., Butti, S. K., & Velvizhi, G. (2016). A Circular Bioeconomy with Biobased Products from CO2 Sequestration. Trends in Biotechnology, 34(6), 506–519. https://doi.org/10.1016/J.TIBTECH.2016.02.012Vuppaladadiyam, A. K., Yao, J. G., Florin, N., George, A., Wang, X., Labeeuw, L., Jiang, Y., Davis, R. W., Abbas, A., Ralph, P., Fennell, P. S., & Zhao, M. (2018). Impact of Flue Gas Compounds on Microalgae and Mechanisms for Carbon Assimilation and Utilization. ChemSusChem, 11(2), 334–355. https://doi.org/10.1002/CSSC.201701611Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO (2) bio-mitigation using microalgae. Applied microbiology and biotechnology, 79(5), 707–718. https://doi.org/10.1007/s00253-008-1518yWang, H., Nche-Fambo, F. A., Yu, Z., & Chen, F. (2018). Using microalgal communities for high CO2-tolerant strain selection. Algal Research, 35, 253–261. https://doi.org/10.1016/J.ALGAL.2018.08.038Watanabe, K., & Fujii, K. (2016). Isolation of high-level-CO2-preferring Picochlorum sp. strains and their biotechnological potential. Algal Research, 18, 135–143. https://doi.org/10.1016/J.ALGAL.2016.06.013Wilbanks, T.J. & Fernandez, S., (2014). Climate Change and Infrastructure, Urban Systems, and Vulnerabilities: Technical Report for the US Department of Energy in Support of the National Climate Assessment. Island Press.Wilson, M., Tontiwachwuthikul, P., Chakma, A., Idem, R., Veawab, A., Aroonwilas, A., Gelowitz, D., Barrie, J., & Mariz, C. (2004). Test results from a CO2 extraction pilot plant at boundary dam coal-fired power station. Energy, 29(9–10), 1259–1267. https://doi.org/10.1016/J.ENERGY.2004.03.085Xie, Y. P., Ho, S. H., Chen, C. Y., Chen, C. N. N., Liu, C. C., Ng, I. S., Jing, K. J., Yang, S. C., Chen, C. H., Chang, J. S., & Lu, Y. H. (2014). Simultaneous enhancement of CO2 fixation and lutein production with thermo-tolerant Desmodesmus sp. F51 using a repeated fed-batch cultivation strategy. Biochemical Engineering Journal, 86, 33–40. https://doi.org/10.1016/J.BEJ.2014.02.015Yen, H. W., Hu, I. C., Chen, C. Y., Ho, S. H., Lee, D. J., & Chang, J. S. (2013). Microalgaebased biorefinery – From biofuels to natural products. Bioresource Technology, 135, 166174. https://doi.org/10.1016/J.BIORTECH.2012.10.099Yun, H. S., Ji, M. K., Park, Y. T., Salama, el-S., & Choi, J. (2016). Microalga, Acutodesmus obliquus KGE 30 as a potential candidate for CO2 mitigation and biodiesel production. Environmental science and pollution research international, 23(17), 1783117839. https://doi.org/10.1007/s11356-016-6971-zZeng, X., Danquah, M. K., Chen, X. D., & Lu, Y. (2011). Microalgae bioengineering: From CO2 fixation to biofuel production. Renewable and Sustainable Energy Reviews, 15(6), 32523260. https://doi.org/10.1016/J.RSER.2011.04.014Zhao, B., & Su, Y. (2014). Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renewable and Sustainable Energy Reviews, 31, 121–132. https://doi.org/10.1016/J.RSER.2013.11.054ORIGINALTG_2400022 .pdfTG_2400022 .pdfProyecto de Pregradoapplication/pdf1374333https://repositorio.ufps.edu.co/bitstream/ufps/7727/1/TG_2400022%20.pdf7e8b743c51a5aa3cacc42dd736695dcfMD51open accessTEXTTG_2400022 .pdf.txtTG_2400022 .pdf.txtExtracted texttext/plain84688https://repositorio.ufps.edu.co/bitstream/ufps/7727/3/TG_2400022%20.pdf.txt8635770755405cd472ce1ae3a23ac65dMD53open accessTHUMBNAILTG_2400022 .pdf.jpgTG_2400022 .pdf.jpgGenerated Thumbnailimage/jpeg13914https://repositorio.ufps.edu.co/bitstream/ufps/7727/2/TG_2400022%20.pdf.jpg1bb81c0adfbf7c298988dded53a597c6MD52open accessufps/7727oai:repositorio.ufps.edu.co:ufps/77272024-09-25 03:00:10.219An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-sa/4.0/open accessRepositorio Universidad Francisco de Paula Santanderbdigital@metabiblioteca.com