Optimization of the Tensile Properties of Polymeric Matrix Composites Reinforced with Magnetite Particles by Experimental Design

A full-factorial 33 experiment was used in this study to determine the optimal values of the tensile properties of three composite materials manufactured based on three polymeric resins: Derakane Momentum epoxy vinyl ester based on bisphenol-A (DM-411), polyester based on terephthalic acid (P115-A),...

Full description

Autores:
LARA GONZÁLEZ, LUIS ÁNGEL
RODRÍGUEZ LÓPEZ, WILMAR GUILLERMO
Pineda Triana, Yaneth
Peña Rodriguez, Gabriel
Felipe, Hugo
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Francisco de Paula Santander
Repositorio:
Repositorio Digital UFPS
Idioma:
eng
OAI Identifier:
oai:repositorio.ufps.edu.co:ufps/1412
Acceso en línea:
http://repositorio.ufps.edu.co/handle/ufps/1412
https://doi.org/10.22430/22565337.1499
Palabra clave:
Tensile properties
Design Of Experiments
Magnetite
Composite
Response Surface Methodology
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Description
Summary:A full-factorial 33 experiment was used in this study to determine the optimal values of the tensile properties of three composite materials manufactured based on three polymeric resins: Derakane Momentum epoxy vinyl ester based on bisphenol-A (DM-411), polyester based on terephthalic acid (P115-A), and isophthalic polyester (P2000). Such materials were reinforced with magnetite powders at concentrations of 10, 20, and 30 wt %, and the particle sizes were classified with three sieves: #200 (46–75 μm), #325 (26–45 μm), and #500 (0–25 μm). The compounds were manufactured using the hand lay-up method at room temperature in accordance with ASTM D638-14 for M1-type specimens. A tensile test was conducted on a universal Microtest EM2/300/FR machine at a test speed of 5 ± 25 % mm/min using an Epsilon extensometer calibrated in accordance with the ASTM E83 standard at 20 ± 2 °C. The magnetite powders and compound morphology were studied by Scanning Electron Microscopy. The mechanical properties of the compounds and the optimal response found by Analysis of Variance (ANOVA) and Response Surface Methodology (RSM) are also reported. The best response to the mechanical stimuli occurs with the composite material prepared with the epoxy vinyl ester resin DM-411, a concentration of 29.4 % of magnetite (Fe3O4), a particle size of 58.5 microns, and a 200 sieve.