Operating Mode Effect on Lipids Production from Rhodotorula mucilaginosa: Modelling and Simulation Trends

A sustainable alternative for fossil fuels substitution is the production of biodiesel from natural lipids. Mainly, such oil used is in the form of triglycerides and is characterized by being potentially renewable, non-toxic, and biodegradable, thus making it a sustainable product. For producing suc...

Full description

Autores:
Gelves Gelves, Elizabeth
Duran, K
Cardozo, L
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Francisco de Paula Santander
Repositorio:
Repositorio Digital UFPS
Idioma:
eng
OAI Identifier:
oai:repositorio.ufps.edu.co:ufps/6578
Acceso en línea:
https://repositorio.ufps.edu.co/handle/ufps/6578
Palabra clave:
Rights
openAccess
License
Published under licence by IOP Publishing Ltd
Description
Summary:A sustainable alternative for fossil fuels substitution is the production of biodiesel from natural lipids. Mainly, such oil used is in the form of triglycerides and is characterized by being potentially renewable, non-toxic, and biodegradable, thus making it a sustainable product. For producing such biofuel, yeast oil is one of the most viable and currently known options, obtaining theoretically optimal results. In this article, kinetic parameters from the oleaginous yeast Rhodotorula mucilaginosa will simulate lipid accumulation capacity based on different bioreactor operating modes. Likewise, The Matlab software is used to simulate batch and continuous operating modes to establish comparisons between the productions obtained and their respective yields. The results obtained for the batch mode were: 14 g/L for the growth of biomass and an estimate of 0.22 g/g for lipid production. Likewise, for the continuous mode, its results were: 19 g/L for biomass growth and a value of 0.30 g/g in lipid production. The simulated results in continuous mode would demonstrate the effectiveness of its implementation since a more significant lipid accumulation is reached.