Sliding and corrosion wear of magnetron sputtered tio2 films deposited with different argon and oxygen mixtures

Were produced TiO2 thin coatings prepared, on substrates pure Titanium using a deposition by magnetron sputtering technique, the percentage of oxygen was varied, to study the behavior in terms of friction coefficient corrosive fluids such as those related to the human body. Electrochemical Impedance...

Full description

Autores:
Aperador Chaparro, Willian
Bautista-Ruiz, Jorge
angulo caicedo, julio cesar
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Francisco de Paula Santander
Repositorio:
Repositorio Digital UFPS
Idioma:
eng
OAI Identifier:
oai:repositorio.ufps.edu.co:ufps/6655
Acceso en línea:
https://repositorio.ufps.edu.co/handle/ufps/6655
Palabra clave:
Titanium oxide
Corrosion
Tribology
Titanium
Surface modification
Rights
openAccess
License
© 2021 Published by Faculty of Engineering
Description
Summary:Were produced TiO2 thin coatings prepared, on substrates pure Titanium using a deposition by magnetron sputtering technique, the percentage of oxygen was varied, to study the behavior in terms of friction coefficient corrosive fluids such as those related to the human body. Electrochemical Impedance Spectroscopy (EIS), wear tests with a tribometer, were performed to obtain the tribo-corrosion mechanism of deterioration, taking into account the dual corrosion wear system. The phases were identified by X-ray Photoelectron Spectroscopy (XPS) high resolution. It is determined through the tests performed that the surface treatment has a different effect for each percentage of oxygen influenced by the simulated body environments. The wear performance analysis indicated that the TiO2 film's protection had increased as the percentage of oxygen in the gas mixture (Ar/O2) varied and other synthesis parameters such as deposition time, target power, and substrate temperature remained constant.