Numerical study of the physical processes of gas leakage in the compression ring in diesel engines

In this research, the construction of a numerical model is proposed for the analysis of the friction processes and the thickness of the lubrication film present in the compression ring of internal combustion engines. The model is built using MATLAB software, and three load conditions are used as ref...

Full description

Autores:
Pabón León, J A
Rojas Suárez, J P
Orjuela Abril, M S
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
Repositorio:
Repositorio Digital UFPS
Idioma:
eng
OAI Identifier:
oai:repositorio.ufps.edu.co:ufps/6636
Acceso en línea:
https://repositorio.ufps.edu.co/handle/ufps/6636
Palabra clave:
Rights
openAccess
License
© Copyright 2022 IOP Publishing
Description
Summary:In this research, the construction of a numerical model is proposed for the analysis of the friction processes and the thickness of the lubrication film present in the compression ring of internal combustion engines. The model is built using MATLAB software, and three load conditions are used as reference (2 Nm, 4 Nm, and 6 Nm) with a rotation speed of 3600 rpm, which correspond to a stationary single-cylinder diesel engine. Comparison between model estimates and experimental results show that the development model could predict the actual engine conditions. The deviation between the numerical model and the experimental data was 17%. It was shown that the increase in engine load causes a 16% increase in the friction force of the compression ring, which implies a 50% increase in power loss due to friction processes. In general, the model developed allows the analysis of the friction processes in the compression ring and its effect on the lubrication film, considering the leakage of the combustion gases. In this way, the construction of a more complex mathematical model is achieved, which allows improving the precision in the analyzes related to the interaction between the compression ring and the cylinder liner.