Proposal for a system model for offline seismic event detection in Colombia

This paper presents an integrated model for seismic events detection in Colombia using machine learning techniques. Machine learning is used to identify P-wave windows in historic records and hence detect seismic events. The proposed model has five modules that group the basic detection system proce...

Full description

Autores:
Miranda, Julian
Flórez Abril, Angélica
Ospina, Gustavo
Gamboa, Ciro Alberto
Altuve, Miguel
FLOREZ-GONGORA, CARLOS
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Francisco de Paula Santander
Repositorio:
Repositorio Digital UFPS
Idioma:
eng
OAI Identifier:
oai:repositorio.ufps.edu.co:ufps/710
Acceso en línea:
http://repositorio.ufps.edu.co/handle/ufps/710
https://doi.org/10.3390/fi12120231
Palabra clave:
seismic event detection
detection model
seismology
classification
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
Description
Summary:This paper presents an integrated model for seismic events detection in Colombia using machine learning techniques. Machine learning is used to identify P-wave windows in historic records and hence detect seismic events. The proposed model has five modules that group the basic detection system procedures: the seeking, gathering, and storage seismic data module, the reading of seismic records module, the analysis of seismological stations module, the sample selection module, and the classification process module. An explanation of each module is given in conjunction with practical recommendations for its implementation. The resulting model allows understanding the integration of the phases required for the design and development of an offline seismic event detection system.