Silver colloidal nanoparticles by electrochemistry: temporal evaluation and surface plasmon resonance

The electrochemical technique for obtaining silver nanoparticles has advantages over other methods. For the synthesis, a colloidal silver generator (Colloidal Silver Generator® model 1001) was used, where two electrodes coupled to high purity silver rods (99.99%) were used, with a potential differen...

Full description

Autores:
Padilla Sierra, H A
Peña Rodríguez, G
Chaves Bedoya, Giovanni
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER
Repositorio:
Repositorio Digital UFPS
Idioma:
eng
OAI Identifier:
oai:repositorio.ufps.edu.co:ufps/6589
Acceso en línea:
https://repositorio.ufps.edu.co/handle/ufps/6589
Palabra clave:
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
Description
Summary:The electrochemical technique for obtaining silver nanoparticles has advantages over other methods. For the synthesis, a colloidal silver generator (Colloidal Silver Generator® model 1001) was used, where two electrodes coupled to high purity silver rods (99.99%) were used, with a potential difference of 24 V. Nanoparticle concentration was measured by total dissolved solids, using the SI-Analytic HandyLab 680 FK multiparameter in 200 mL of Milli-Q deionized water, reporting 18 ppm at 1 hour at room temperature. The determination of the resonance wavelength of the surface plasmons was carried out by finding the maximum absorbance by UVVisible spectrophotometry with λ = 423 nm. The morphology and size of the nanoparticles was determined by Transmission Electron Microscopy, observing spherical morphology and sizes smaller than 50 nm. The chemical composition was determined by X-ray energy dispersed spectroscopy, finding a weight concentration of 93.22% of silver. The results show an optimal synthesis of colloidal silver, with characteristics that will allow the inhibition of microorganisms of interest.