Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling

Digital

Autores:
Pinzón-Reyes, Efraín Hernando
Sierra-Bueno, Daniel Alfonso
Suarez-Barrera, Miguel Orlando
Rueda-Forero, Nohora Juliana
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad de Santander
Repositorio:
Repositorio Universidad de Santander
Idioma:
eng
OAI Identifier:
oai:repositorio.udes.edu.co:001/6632
Acceso en línea:
https://doi.org/10.1177/1176934320924681
https://repositorio.udes.edu.co/handle/001/6632
Palabra clave:
Heuristics
Directed molecular evolution
Protein engineering
Bacillus thuringiensis
Rights
openAccess
License
© The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions
id RUDES2_eed96f72e3591c8c1999d4e8cea5f953
oai_identifier_str oai:repositorio.udes.edu.co:001/6632
network_acronym_str RUDES2
network_name_str Repositorio Universidad de Santander
repository_id_str
dc.title.spa.fl_str_mv Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling
title Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling
spellingShingle Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling
Heuristics
Directed molecular evolution
Protein engineering
Bacillus thuringiensis
title_short Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling
title_full Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling
title_fullStr Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling
title_full_unstemmed Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling
title_sort Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling
dc.creator.fl_str_mv Pinzón-Reyes, Efraín Hernando
Sierra-Bueno, Daniel Alfonso
Suarez-Barrera, Miguel Orlando
Rueda-Forero, Nohora Juliana
dc.contributor.author.none.fl_str_mv Pinzón-Reyes, Efraín Hernando
Sierra-Bueno, Daniel Alfonso
Suarez-Barrera, Miguel Orlando
Rueda-Forero, Nohora Juliana
dc.contributor.researchgroup.spa.fl_str_mv Biomol
dc.subject.proposal.eng.fl_str_mv Heuristics
Directed molecular evolution
Protein engineering
Bacillus thuringiensis
topic Heuristics
Directed molecular evolution
Protein engineering
Bacillus thuringiensis
description Digital
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-07-27
dc.date.accessioned.none.fl_str_mv 2022-04-27T15:47:48Z
dc.date.available.none.fl_str_mv 2022-04-27T15:47:48Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1177/1176934320924681
dc.identifier.eissn.spa.fl_str_mv 1176-9343
dc.identifier.uri.none.fl_str_mv https://repositorio.udes.edu.co/handle/001/6632
url https://doi.org/10.1177/1176934320924681
https://repositorio.udes.edu.co/handle/001/6632
identifier_str_mv 1176-9343
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 14
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 16
dc.relation.cites.none.fl_str_mv Pinzón-Reyes EH, Sierra-Bueno DA, Suarez-Barrera MO, Rueda-Forero NJ, Abaunza-Villamizar S, Rondón-Villareal P. Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling. Evolutionary Bioinformatics. January 2020. doi:10.1177/1176934320924681
dc.relation.indexed.spa.fl_str_mv Scopus
dc.relation.ispartofjournal.spa.fl_str_mv Evolutionary Bioinformatics
dc.rights.spa.fl_str_mv © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 p
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Nueva Zelanda
dc.source.spa.fl_str_mv https://journals.sagepub.com/doi/pdf/10.1177/1176934320924681
institution Universidad de Santander
bitstream.url.fl_str_mv https://repositorio.udes.edu.co/bitstreams/f9e8bd4b-d302-4d0d-956b-91a054911b8e/download
https://repositorio.udes.edu.co/bitstreams/eca1ad6b-a1ad-404d-a641-5e4c0e2911af/download
https://repositorio.udes.edu.co/bitstreams/399ca64e-90c7-4626-ba37-c3f2f1c8f064/download
https://repositorio.udes.edu.co/bitstreams/eab7d4cf-2a4b-41be-8904-558c07b533c5/download
bitstream.checksum.fl_str_mv 45ef86464ce1ea2ca637dcc032939fa2
38d94cf55aa1bf2dac1a736ac45c881c
5dbe86c1111d64f45ba435df98fdc825
f1a63f9ac663caa141bc6b5e7207e212
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Santander
repository.mail.fl_str_mv soporte@metabiblioteca.com
_version_ 1814158756448043008
spelling Pinzón-Reyes, Efraín Hernandof32016a4-7947-488c-95ea-7917c3cd3944-1Sierra-Bueno, Daniel Alfonso28665535-87e0-45e4-95f0-f2ab67cdb48a-1Suarez-Barrera, Miguel Orlandof29bdf0a-38a9-4ff0-a936-6eca5b5e1e8a-1Rueda-Forero, Nohora Juliana8a2dca8e-5326-487a-924d-96760e98b2bd-1Biomol2022-04-27T15:47:48Z2022-04-27T15:47:48Z2020-07-27DigitalDirected evolution methods mimic in vitro Darwinian evolution, inducing random mutations and selective pressure in genes to obtain proteins with enhanced characteristics. These techniques are developed using trial-and-error testing at an experimental level with a high degree of uncertainty. Therefore, in silico modeling of directed evolution is required to support experimental assays. Several in silico approaches have reproduced directed evolution, using statistical, thermodynamic, and kinetic models in an attempt to recreate experimental conditions. Likewise, optimization techniques using heuristic models have been used to understand and find the best scenarios of directed evolution. Our study uses an in silico model named HeurIstics DirecteD EvolutioN, which is based on a genetic algorithm designed to generate chimeric libraries from 2 parental genes, cry11Aa and cry11Ba, of Bacillus thuringiensis. These genes encode crystal-shaped δ-endotoxins with 3 conserved domains. Cry11 toxins are of biotechnological interest because they have shown to be effective as biopesticides for disease-spreading vectors. With our heuristic model, we considered experimental parameters such as DNA fragmentation length, number of generations or simulation cycles, and mutation rate, to get characteristics of Cry11 chimeric libraries such as percentage of population identity, truncation of variants obtained from the presence of internal stop codons, percentage of thermodynamic diversity, and stability of variants. Our study allowed us to focus on experimental conditions that may be useful for the design of in vitro and in silico experiments of directed evolution with Cry toxins of 3 conserved domains. Furthermore, we obtained in silico libraries of Cry11 variants, in which structural characteristics of wild Cry families were observed in a review of a sample of in silico sequences. We consider that future studies could use our in silico libraries and heuristic computational models, as the one suggested here, to support in vitro experiments of directed evolution.Ciencias Exactas y Naturales14 papplication/pdfhttps://doi.org/10.1177/11769343209246811176-9343https://repositorio.udes.edu.co/handle/001/6632engNueva Zelanda14116Pinzón-Reyes EH, Sierra-Bueno DA, Suarez-Barrera MO, Rueda-Forero NJ, Abaunza-Villamizar S, Rondón-Villareal P. Generation of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling. Evolutionary Bioinformatics. January 2020. doi:10.1177/1176934320924681ScopusEvolutionary Bioinformatics© The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissionsinfo:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/http://purl.org/coar/access_right/c_abf2https://journals.sagepub.com/doi/pdf/10.1177/1176934320924681HeuristicsDirected molecular evolutionProtein engineeringBacillus thuringiensisGeneration of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational ModelingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Todas las AudienciasPublicationORIGINALGeneration of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling.pdfGeneration of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling.pdfapplication/pdf234538https://repositorio.udes.edu.co/bitstreams/f9e8bd4b-d302-4d0d-956b-91a054911b8e/download45ef86464ce1ea2ca637dcc032939fa2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-859https://repositorio.udes.edu.co/bitstreams/eca1ad6b-a1ad-404d-a641-5e4c0e2911af/download38d94cf55aa1bf2dac1a736ac45c881cMD52TEXTGeneration of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling.pdf.txtGeneration of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling.pdf.txtExtracted texttext/plain5https://repositorio.udes.edu.co/bitstreams/399ca64e-90c7-4626-ba37-c3f2f1c8f064/download5dbe86c1111d64f45ba435df98fdc825MD53THUMBNAILGeneration of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling.pdf.jpgGeneration of Cry11 Variants of Bacillus thuringiensis by Heuristic Computational Modeling.pdf.jpgGenerated Thumbnailimage/jpeg12235https://repositorio.udes.edu.co/bitstreams/eab7d4cf-2a4b-41be-8904-558c07b533c5/downloadf1a63f9ac663caa141bc6b5e7207e212MD54001/6632oai:repositorio.udes.edu.co:001/66322023-10-11 11:10:13.393https://creativecommons.org/licenses/by-nc/4.0/© The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissionshttps://repositorio.udes.edu.coRepositorio Universidad de Santandersoporte@metabiblioteca.comTGljZW5jaWEgZGUgUHVibGljYWNpw7NuIFVERVMKRGlyZWN0cmljZXMgZGUgVVNPIHkgQUNDRVNPCgo=