Diversidad Genética de la Metalobetalactamasa New Delhi en Escherichia coli: Revisión de Alcance
Digital
- Autores:
-
Fuentes-Lopera, Andrés Felipe
Sánchez-Barbosa, Daniela
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Santander
- Repositorio:
- Repositorio Universidad de Santander
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.udes.edu.co:001/10380
- Palabra clave:
- Bacterias Gramnegativas
Endopeptidasas
Resistencia betalactámica
Variación genética
Escherichia coli
Gram-negative bacteria
Endopeptidases
Beta-lactam resistance
Genetic variation
- Rights
- embargoedAccess
- License
- http://purl.org/coar/access_right/c_f1cf
id |
RUDES2_b86ce54c4bae528aba167b2336411dd9 |
---|---|
oai_identifier_str |
oai:repositorio.udes.edu.co:001/10380 |
network_acronym_str |
RUDES2 |
network_name_str |
Repositorio Universidad de Santander |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diversidad Genética de la Metalobetalactamasa New Delhi en Escherichia coli: Revisión de Alcance |
dc.title.translated.none.fl_str_mv |
Genetic Diversity of Metallobetalactamase New Delhi in Escherichia coli: A Scoping Review |
title |
Diversidad Genética de la Metalobetalactamasa New Delhi en Escherichia coli: Revisión de Alcance |
spellingShingle |
Diversidad Genética de la Metalobetalactamasa New Delhi en Escherichia coli: Revisión de Alcance Bacterias Gramnegativas Endopeptidasas Resistencia betalactámica Variación genética Escherichia coli Gram-negative bacteria Endopeptidases Beta-lactam resistance Genetic variation |
title_short |
Diversidad Genética de la Metalobetalactamasa New Delhi en Escherichia coli: Revisión de Alcance |
title_full |
Diversidad Genética de la Metalobetalactamasa New Delhi en Escherichia coli: Revisión de Alcance |
title_fullStr |
Diversidad Genética de la Metalobetalactamasa New Delhi en Escherichia coli: Revisión de Alcance |
title_full_unstemmed |
Diversidad Genética de la Metalobetalactamasa New Delhi en Escherichia coli: Revisión de Alcance |
title_sort |
Diversidad Genética de la Metalobetalactamasa New Delhi en Escherichia coli: Revisión de Alcance |
dc.creator.fl_str_mv |
Fuentes-Lopera, Andrés Felipe Sánchez-Barbosa, Daniela |
dc.contributor.advisor.none.fl_str_mv |
Trejos-Suárez, Juanita |
dc.contributor.author.none.fl_str_mv |
Fuentes-Lopera, Andrés Felipe Sánchez-Barbosa, Daniela |
dc.contributor.jury.none.fl_str_mv |
Méndez-Diaz, Luz Mery Arias Guerrero, Monica |
dc.contributor.researchgroup.none.fl_str_mv |
Instituto de Investigaciones MASIRA |
dc.subject.proposal.spa.fl_str_mv |
Bacterias Gramnegativas Endopeptidasas Resistencia betalactámica Variación genética |
topic |
Bacterias Gramnegativas Endopeptidasas Resistencia betalactámica Variación genética Escherichia coli Gram-negative bacteria Endopeptidases Beta-lactam resistance Genetic variation |
dc.subject.proposal.other.fl_str_mv |
Escherichia coli |
dc.subject.proposal.eng.fl_str_mv |
Gram-negative bacteria Endopeptidases Beta-lactam resistance Genetic variation |
description |
Digital |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-06-05 |
dc.date.accessioned.none.fl_str_mv |
2024-05-09T15:40:39Z |
dc.date.available.none.fl_str_mv |
2024-05-09T15:40:39Z 2025-09-29 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/submittedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
submittedVersion |
dc.identifier.instname.none.fl_str_mv |
Universidad de Santander |
dc.identifier.local.none.fl_str_mv |
T 17.23 F826d |
dc.identifier.reponame.none.fl_str_mv |
Repositorio Digital Institucional Universidad de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.udes.edu.co |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.udes.edu.co/handle/001/10380 |
identifier_str_mv |
Universidad de Santander T 17.23 F826d Repositorio Digital Institucional Universidad de Santander |
url |
https://repositorio.udes.edu.co https://repositorio.udes.edu.co/handle/001/10380 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Bedenić, B., Sardelić, S., Luxner, J., et al. (2016). Molecular characterization of class b carbapenemases in advanced stage of dissemination and emergence of class d carbapenemases in Enterobacteriaceae from Croatia. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 43, 74–82. https://doi.org/10.1016/j.meegid.2016.05.011 Van Duin, D., & Doi, Y. (2017). The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence, 8(4), 460–469. https://doi.org/10.1080/21505594.2016.1222343 Raghunath, D. (2010). New metallo β-lactamase NDM-1. The Indian Journal of Medical Research, 132, 478–481. Rolain, J. M., Parola, P., & Cornaglia, G. (2010). New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 16(12), 1699–1701. https://doi.org/10.1111/j.1469-0691.2010.03385.x Walsh, T. R., Weeks, J., Livermore, D. M., et al. (2011). Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. The Lancet Infectious Diseases, 11(5), 355–362. https://doi.org/10.1016/S1473-3099(11)70059-7 Solé, M., Pitart, C., Roca, I., et al. (2011). First description of an Escherichia coli strain producing NDM-1 carbapenemase in Spain. Antimicrobial Agents and Chemotherapy, 55(9), 4402–4404. https://doi.org/10.1128/AAC.00642-11 Choi, Y. J., Kim, Y. A., Junglim, K., et al. (2023). Emergence of NDM-1-producing Pseudomonas aeruginosa sequence type 773 clone: Shift of carbapenemase molecular epidemiology and spread of 16S rRNA methylase genes in Korea. Annals of Laboratory Medicine, 43(2), 196–199. https://doi.org/10.3343/alm.2023.43.2.196 Maaroufi, R., Dziri, O., Hadjadj, L., et al. (2021). Occurrence of NDM-1 and VIM-2 co-producing Escherichia coli and OprD alteration in Pseudomonas aeruginosa isolated from hospital environment samples in northwestern Tunisia. Diagnostics (Basel, Switzerland), 11(9), 1617. https://doi.org/10.3390/diagnostics11091617 Warnes, S. L., Highmore, C. J., & Keevil, C. W. (2012). Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: Implications for public health. mBio, 3(6). https://doi.org/10.1128/mbio.00489-12 Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., et al. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. The Lancet Infectious Diseases, 10(9), 597–602. https://doi.org/10.1016/s1473-3099(10)70143-2 Dortet, L., Nordmann, P., & Poirel, L. (2012). Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 56(4), 1693–1697. https://doi.org/10.1128/aac.05583-11 Savard, P., Gopinath, R., Zhu, W., et al. (2011). First NDM-Positive Salmonella sp. Strain Identified in the United States. Antimicrobial Agents and Chemotherapy, 55(12), 5957–5958. https://doi.org/10.1128/aac.05719-11 Poirel, L., Fortineau, N., & Nordmann, P. (2011). International transfer of NDM-1-producing Klebsiella pneumoniae from Iraq to France. Antimicrobial Agents and Chemotherapy, 55(4), 1821–1822. https://doi.org/10.1128/aac.01761-10 Kaase, M., Nordmann, P., Wichelhaus, T. A., et al. (2011). NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. The Journal of Antimicrobial Chemotherapy, 66(6), 1260–1262. https://doi.org/10.1093/jac/dkr135 Mulvey, M. R., Grant, J. M., Plewes, K., et al. (2011). New Delhi Metallo-β-Lactamase inKlebsiella pneumoniae and Escherichia coli ,Canada. Emerging infectious diseases, 17(1), 103–106. https://doi.org/10.3201/eid1701.101358 Chen, Z., Wang, Y., Tian, L., et al. (2015). First report in China of Enterobacteriaceae clinical isolates coharboring blaNDM-1 and blaIMP-4 drug resistance genes. Microbial Drug Resistance (Larchmont, N.Y.), 21(2), 167–170. https://doi.org/10.1089/mdr.2014.0087 Poirel, L., Schrenzel, J., Cherkaoui, A., et al. (2011). Molecular analysis of NDM-1-producing enterobacterial isolates from Geneva, Switzerland. The Journal of Antimicrobial Chemotherapy, 66(8), 1730–1733. https://doi.org/10.1093/jac/dkr174 Yamamoto, T., Takano, T., Iwao, Y., et al. (2011). Emergence of NDM-1-positive capsulated Escherichia coli with high resistance to serum killing in Japan. Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy, 17(3), 435–439. https://doi.org/10.1007/s10156-011-0232-3 Camara, L. (2020). Carbapenemasa nueva delhi tipo 1 (ndm): descripción fenotípica y epidemiológica. [Tesis doctoral, Universidad Peruana Cayetano Heredia]. Repositorio UPCH. https://repositorio.upch.edu.pe/bitstream/handle/20.500.12866/8572/Carbapenemasa_CamaraLopez_Lizet.pdf?sequence=1&isAllowed=y Correa, C., Castro, E., Salamanca, D., et al. (2016). Escherichia coli productora de Nueva Delhi metalo-β-lactamasa en Colombia: reporte de caso. Infectio: revista de la Asociacion Colombiana de Infectologia. https://doi.org/10.1016/j.infect.2016.05.002 Enrique, M., Durán, M., Patricia, A., et al. (2013). Circulación de Carbapenemasas tipo New Delhi Metalo-βlactamasa (NDM), Colombia, 2011 a 2013. Recuperado el 6 de junio de 2023, de https://www.ins.gov.co/buscador/IQEN/IQEN%20vol%2018%202013%20num%2011.pdf Li, J., Bi, Z., Ma, S., et al. (2019). Inter-host transmission of carbapenemase-producing Escherichia coli among humans and backyard animals. Environmental Health Perspectives, 127(10). https://doi.org/10.1289/ehp5251 Berrazeg, M., Diene, S. M., Medjahed, L., et al. (2014). New Delhi Metallo-beta-lactamase around the world: An eReview using Google Maps. Euro Surveillance : Bulletin Europeen Sur Les Maladies Transmissibles [Euro Surveillance : European Communicable Disease Bulletin], 19(20). https://doi.org/10.2807/1560-7917.es2014.19.20.20809 Vera-Leiva, A., Barría-Loaiza, C., Carrasco-Anabalón, S., et al. (2017). KPC: Klebsiella pneumoniae carbapenemasa, principal carbapenemasa en enterobacterias. Revista Chilena de Infectologia: Organo Oficial de La Sociedad Chilena de Infectologia, 34(5), 476–484. https://doi.org/10.4067/s0716-10182017000500476 Khong, W. X., Xia, E., Marimuthu, K., et al. (2016). Local transmission and global dissemination of New Delhi Metallo-Beta-Lactamase (NDM): a whole genome analysis. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-2740-0 Jean, S.-S., Harnod, D., & Hsueh, P.-R. (2022). Global threat of carbapenem-resistant Gram-negative bacteria. Frontiers in cellular and infection microbiology, 12. https://doi.org/10.3389/fcimb.2022.823684 Patel, S. (2012). NDM-1: ¿el nuevo supermicrobio? Nursing, 30(7), 46. https://doi.org/10.1016/s0212-5382(12)70105-x Antimicrobial resistance: revisiting the “tragedy of the commons”. (2010). Bulletin of the World Health Organization, 88(11), 805–806. https://doi.org/10.2471/blt.10.031110 Chen, C.-J., Wu, T.-L., Lu, P.-L., et al. (2014). Closely Related NDM-1-Encoding Plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. PloS One, 9(8), e104899. https://doi.org/10.1371/journal.pone.0104899 Wu, W., Feng, Y., Tang, G., et al. (2019). NDM metallo-β-lactamases and their bacterial producers in health care settings. Clinical Microbiology Reviews, 32(2). https://doi.org/10.1128/cmr.00115-18 Shen, P., Yi, M., Fu, Y., et al. (2017). Detection of an Escherichia coli sequence type 167 strain with two tandem copies of bla NDM-1 in the chromosome. Journal of Clinical Microbiology, 55(1), 199–205. https://doi.org/10.1128/jcm.01581-16 Wailan, A. M., Sartor, A. L., Zowawi, H. M., et al. (2015). Genetic contexts of bla NDM-1 in patients carrying multiple NDM-producing strains. Antimicrobial Agents and Chemotherapy, 59(12), 7405–7410. https://doi.org/10.1128/aac.01319-15 Xiang, T., Chen, C., Wen, J., et al. (2020). Resistance of Klebsiella pneumoniae strains carrying blaNDM–1 gene and the genetic environment of blaNDM–1. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00700 Wang, T., Zhou, Y., Zou, C., et al. (2021). Identification of a novel bla NDM variant, bla NDM-33, in an Escherichia coli isolate from hospital wastewater in China. mSphere, 6(5). https://doi.org/10.1128/msphere.00776-21 Tran, V.-T., Tran, V.-H., Nguyen, D.-N., et al. (2022). The effects of one-point mutation on the New Delhi metallo beta-lactamase-1 resistance toward carbapenem antibiotics and β-lactamase inhibitors: An in silico systematic approach. International Journal of Molecular Sciences, 23(24), 16083. https://doi.org/10.3390/ijms2324160 RCSB Protein Data Bank. RCSB PDB- 3ZR9: Structure of New Delhi Metallo-Beta-lactamase 1 (NDM-1) [Internet]. 2011 [cited 2023 May 28]. https://www.rcsb.org/structure/3ZR9 (accessed 2023 May 28) Zhang, G., & Hao, Q. (2011). Crystal structure of NDM‐1 reveals a common β‐lactam hydrolysis mechanism. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 25(8), 2574–2582. https://doi.org/10.1096/fj.11-184036 Rogers, B. A., Sidjabat, H. E., Silvey, A., Anderson, T. L., et al. (2013). Treatment options for New Delhi metallo-beta-lactamase-harboring Enterobacteriaceae. Microbial Drug Resistance (Larchmont, N.Y.), 19(2), 100–103. https://doi.org/10.1089/mdr.2012.0063 Nordmann, P., Boulanger, A. E., & Poirel, L. (2012). NDM-4 Metallo-β-Lactamase with Increased Carbapenemase Activity from Escherichia coli. Antimicrobial Agents and Chemotherapy, 56(4), 2184–2186. https://doi.org/10.1128/aac.05961-11 Hornsey, M., Phee, L., & Wareham, D. W. (2011). A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrobial Agents and Chemotherapy, 55(12), 5952–5954. https://doi.org/10.1128/aac.05108-11 Williamson, D. A., Sidjabat, H. E., Freeman, J. T., et al. (2012). Identification and molecular characterisation of New Delhi metallo-β-lactamase-1 (NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. International Journal of Antimicrobial Agents, 39(6), 529–533. https://doi.org/10.1016/j.ijantimicag.2012.02.017 Cuzon, G., Bonnin, R. A., & Nordmann, P. (2013). First identification of novel NDM carbapenemase, NDM-7, in Escherichia coli in France. PloS One, 8(4), e61322. https://doi.org/10.1371/journal.pone.0061322 Tada, T., Miyoshi-Akiyama, T., Dahal, R. K., et al. (2013). NDM-8 Metallo-β-Lactamase in a Multidrug-Resistant Escherichia coli Strain Isolated in Nepal. Antimicrobial Agents and Chemotherapy, 57(5), 2394–2396. https://doi.org/10.1128/aac.02553-12 Wang, X., Li, H., Zhao, C., et al. (2014). Novel NDM-9 metallo-β-lactamase identified from a ST107 Klebsiella pneumoniae strain isolated in China. International Journal of Antimicrobial Agents, 44(1), 90–91. https://doi.org/10.1016/j.ijantimicag.2014.04.010 Khajuria, A., Praharaj, A. K., Kumar, M., et al. (2016). Presence of a novel variant NDM-10, of the New Delhi metallo-beta-lactamase in a Klebsiella pneumoniae isolate. Indian Journal of Medical Microbiology, 34(1), 121–123. https://doi.org/10.4103/0255-0857.174101 Tada, T., Shrestha, B., Miyoshi-Akiyama, T., et al. (2014). NDM-12, a novel New Delhi metallo-β-lactamase variant from a carbapenem-resistant Escherichia coli clinical isolate in Nepal. Antimicrobial Agents and Chemotherapy, 58(10), 6302–6305. https://doi.org/10.1128/aac.03355-14 Shrestha, B., Tada, T., Miyoshi-Akiyama, T., et al. (2015). Identification of a novel NDM variant, NDM-13, from a multidrug-resistant Escherichia coli clinical isolate in Nepal. Antimicrobial Agents and Chemotherapy, 59(9), 5847–5850. https://doi.org/10.1128/aac.00332-1 Zou, D., Huang, Y., Zhao, X., et al. (2015). A novel New Delhi metallo-β-lactamase variant, NDM-14, isolated in a Chinese hospital possesses increased enzymatic activity against carbapenems. Antimicrobial Agents and Chemotherapy, 59(4), 2450–2453. https://doi.org/10.1128/aac.05168-14 Basu, S. and Mitra, S. (2020). A new metallo-beta-lactamase NDM-15 in an Escherichia coli isolated from the blood of a septicaemic neonate in West Bengal, India. https://www.ncbi.nlm.nih.gov/protein/AKF43458.1 (accessed 2023 May 22) Kazmierczak, K. M., Rabine, S., Hackel, M., et al. (2016). Multiyear, multinational survey of the incidence and global distribution of Metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 60(2), 1067–1078. https://doi.org/10.1128/aac.02379-15 Liu, Z., Wang, Y., Walsh, T. R., et al. (2017). Plasmid-mediated novel bla NDM-17 gene encoding a carbapenemase with enhanced activity in a sequence type 48 Escherichia coli strain. Antimicrobial Agents and Chemotherapy, 61(5). https://doi.org/10.1128/aac.02233-16 Ntshobeni, N. B., Allam, M., Ismail, A., et al. (2019). Draft genome sequence of Providencia rettgeri APW139_S1, an NDM-18-producing clinical strain originating from hospital effluent in South Africa. Microbiology Resource Announcements, 8(21). https://doi.org/10.1128/mra.00259-19 Mancini, S., Keller, P. M., Greiner, M., et al. (2019). Detection of NDM-19, a novel variant of the New Delhi metallo-β-lactamase with increased carbapenemase activity under zinc-limited conditions, in Switzerland. Diagnostic Microbiology and Infectious Disease, 95(3), 114851. https://doi.org/10.1016/j.diagmicrobio.2019.06.003 Liu, Z., Li, J., Wang, X., et al. (2018). Novel Variant of New Delhi Metallo-β-lactamase, NDM-20, in Escherichia coli. Frontiers in microbiology, 9. https://doi.org/10.3389/fmicb.2018.00248 Liu, L., Feng, Y., McNally, A., & Zong, Z. (2018). bla NDM-21, a new variant of blaNDM in an Escherichia coli clinical isolate carrying blaCTX-M-55 and rmtB. The Journal of Antimicrobial Chemotherapy, 73(9), 2336–2339. https://doi.org/10.1093/jac/dky226 Kalamatas,J., Li,H., Salgado,D., et al. (2020) Subclass B1 metallo-beta-lactamase NDM-22 [Enterobacter cloacae]. [cited 2023 May 28]. https://www.ncbi.nlm.nih.gov/protein/AWI33311.1 (accessed 2023 May 28) García-González, N., Beamud, B., Fuster, B., et al. (2023). Tracking the emergence and dissemination of a bla NDM-23 gene in a multidrug resistance Plasmid of Klebsiella pneumoniae. Microbiology Spectrum, 11(2). https://doi.org/10.1128/spectrum.02585-22 Liu, Z., Piccirilli A., Liu, D. et al. (2019). Deciphering the Role of V88L Substitution in NDM-24 metallo-β-lactamase. Catalysts (Basel, Switzerland), 9(9), 744. https://doi.org/10.3390/catal909074 El-Badawy, M. F., El-Far, S. W., Althobaiti, S. S., et al. (2020). The first Egyptian report showing the co-existence of blaNDM-25, blaOXA-23, blaOXA-181, and blaGES-1 among carbapenem-resistant K. pneumoniae clinical isolates genotyped by BOX-PCR. Infection and Drug Resistance, 13, 1237–1250. https://doi.org/10.2147/idr.s244064 Lv,L., Song,Q., Zhang,Q. and Liu,J. (2019). Subclass B1 metallo-beta-lactamase NDM-26 [Escherichia coli]. https://www.ncbi.nlm.nih.gov/protein/AYN72942.1 (accessed 2023 May 28) Stanton,R.A. and McAllister,G. (2018). Subclass B1 metallo-beta-lactamase NDM-27 [Escherichia coli]. https://www.ncbi.nlm.nih.gov/protein/AYP70146.1 (accessed 2023 May 28) Singh,A., Singh,S., Singh,K., et al. (2019). Subclass B1 metallo-beta-lactamase NDM-28 [Klebsiella pneumoniae]. https://www.ncbi.nlm.nih.gov/protein/QAT97614.1 (accessed 2023 May 28) Zhu, Y., Jia, X., Jia, P., et al. (2021). Genetic and Phenotypic Characterization of the Novel Metallo-β-Lactamase NDM-29 From Escherichia coli. Frontiers in microbiology, 12. https://doi.org/10.3389/fmicb.2021.743981 Park, J., Yun, S.-J., Shin, E., et al. (2022). First identification of novel variants of New Delhi metallo-β-lactamase, NDM-30 and NDM-31, in the Republic of Korea. Journal of Global Antimicrobial Resistance, 29, 20–22. https://doi.org/10.1016/j.jgar.2022.01.009 Ariyoshi, T., Aoki, K., Kubota, H., et al. (2022). Molecular characterization of bla NDM -carrying IncX3 plasmids: bla NDM-16b likely emerged from a mutation of bla NDM-5 on IncX3 Plasmid. Microbiology Spectrum, 10(4). https://doi.org/10.1128/spectrum.01449-22 Zheng,Z. & Ye,L. (2021). Subclass B1 metallo-beta-lactamase NDM-34 [Vibrio parahaemolyticus]. https://www.ncbi.nlm.nih.gov/protein/QVU28093.1 (accessed 2023 May 28) Poirel, L., Ortiz de la Rosa, J. M., Sakaoglu, Z., et al. (2022). NDM-35-producing ST167 Escherichia coli highly resistant to β-lactams including cefiderocol. Antimicrobial Agents and Chemotherapy, 66(8). https://doi.org/10.1128/aac.00311-22 Ma, W., Zhu, B., Wang, W., et al. (2023). Genetic and enzymatic characterization of two novel blaNDM-36, -37 variants in Escherichia coli strains. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 42(4), 471–480. https://doi.org/10.1007/s10096-023-04576-y Li, H. & Wise, M. (2021). Subclass B1 metallo-beta-lactamase NDM-38 [Providencia rettgeri]. https://www.ncbi.nlm.nih.gov/protein/QWO25674.1 (accessed 2023 May 28) Mataseje, L., Boyd, D., & Mulvey, M. (2021). Subclass B1 metallo-beta-lactamase NDM-39 [Klebsiella pneumoniae].https://www.ncbi.nlm.nih.gov/protein/QYZ89892.1 (accessed 2023 May 28) Mataseje, L., Boyd, D. & Mulvey, M. (2021). Subclass B1 metallo-beta-lactamase NDM-40 [Acinetobacter baumannii]. https://www.ncbi.nlm.nih.gov/protein/QYZ89893.1 (accessed 2023 May 28) Wen,H., Feng,Y. and Zong,Z. (2021). Subclass B1 metallo-beta-lactamase NDM-41 (plasmid) [Klebsiella pneumoniae]. https://www.ncbi.nlm.nih.gov/protein/UAX43328.1 (accessed 2023 May 28) Quiñones Pérez, D., Aung, M. S., Carmona Cartaya, Y., et al. (2022). Clonal diversity of Acinetobacter clinical isolates producing NDM-type carbapenemase in Cuba, 2013–19. IJID Regions (Online), 5, 93–96. https://doi.org/10.1016/j.ijregi.2022.08.008 Pardeshenas,M., Shahri,M., Khodakarami,F., & Kalantar-Neyestanaki,D. (2022). Subclass B1 metallo-beta-lactamase NDM-43 [Klebsiella pneumoniae]. https://www.ncbi.nlm.nih.gov/protein/UTQ48691.1 (accessed 2023 May 28) Hamed,S.L. & Hasoon,N.A. (2022) Subclass B1 metallo-beta-lactamase NDM-44 [Klebsiella pneumoniae]. https://www.ncbi.nlm.nih.gov/protein/UVJ50740.1 (accessed 2023 May 28) Zhai, Y., Lee, S., Teng, L., et al. (2021). Dissemination mechanisms of NDM genes in hospitalized patients. JAC-Antimicrobial Resistance, 3(1). https://doi.org/10.1093/jacamr/dlab032 Takayama, Y., Sekizuka, T., Matsui, H., et al. (2020). Characterization of the IncFII-IncFIB(pB171) Plasmid carrying blaNDM-5 in Escherichia coli ST405 clinical isolate in japan. Infection and Drug Resistance, 13, 561–566. https://doi.org/10.2147/idr.s232943 Naeem, S., Bilal, H., Muhammad, H., et al. (2021). Detection of blaNDM-1 gene in ESBL producing Escherichia coli and Klebsiella pneumoniae isolated from urine samples. Journal of infection in developing countries, 15(04), 516–522. https://doi.org/10.3855/jidc.12850 Tsilipounidaki, K., Florou, Z., Skoulakis, A., et al. (2023). Diversity of bacterial clones and plasmids of NDM-1 producing Escherichia coli clinical isolates in Central Greece. Microorganisms, 11(2), 516. https://doi.org/10.3390/microorganisms11020516 Muggeo, A., Maiga, A., Maiga, I., et al. (2020). First description of IncX3 NDM-5-producing plasmid within Escherichia coli ST448 in Mali. Journal of Medical Microbiology, 69(5), 685–688. https://doi.org/10.1099/jmm.0.001182 Harada, S., Suzuki, M., Sasaki, T., Sakurai, A., Inaba, M., Takuya, H., Wakuda, M., & Doi, Y. (2021). Transmission of NDM-5-producing and OXA-48-producing Escherichia coli sequence type 648 by international visitors without previous medical exposure. Microbiology Spectrum, 9(3). https://doi.org/10.1128/spectrum.01827-21 Haeili, M., Barmudeh, S., Omrani, M., et al. (2023). Whole-genome sequence analysis of clinically isolated carbapenem resistant Escherichia coli from Iran. BMC Microbiology, 23(1). https://doi.org/10.1186/s12866-023-02796-y Huang, L., Hu, H., Xu, C., et al. (2023). Characterization of NDM-5-producing Escherichia coli strains isolated from pediatric patients with bloodstream infections in a Chinese hospital. Genes, 14(2), 520. https://doi.org/10.3390/genes14020520 Kulp, A., & Kuehn, M. J. (2010). Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annual Review of Microbiology, 64(1), 163–184. https://doi.org/10.1146/annurev.micro.091208.073413 Lee, J., Kim, O., & Gho, Y. (2016). Proteomic profiling of Gram‐negative bacterial outer membrane vesicles: Current perspectives. Proteomics. Clinical Applications, 10(9–10), 897–909. https://doi.org/10.1002/prca.201600032 López, C., Prunotto, A., Bahr, G., et al. (2021). Specific protein-membrane interactions promote packaging of metallo-β-lactamases into outer membrane vesicles. Antimicrobial Agents and Chemotherapy, 65(10). https://doi.org/10.1128/aac.00507-21 Martínez, M., Bonomo, R., Vila, A., et al. (2021). On the offensive: The role of outer membrane vesicles in the successful dissemination of New Delhi metallo-β-lactamase (NDM-1). mBio, 12(5). https://doi.org/10.1128/mbio.01836-21 Khan, A., Maryam, L., & Zarrilli, R. (2017). Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiology, 17(1). https://doi.org/10.1186/s12866-017-1012-8 Barton, C. (2019). Introduction. One Health: over a decade of progress on the road to sustainability: -EN- -FR- Introduction. Une seule santé : plus d’une décennie d’avancées vers la durabilité -ES- Introducción. Una sola salud: más de un decenio de avances en la senda de la sostenibilidad. Revue scientifique et technique (International Office of Epizootics), 38(1), 21–50. https://doi.org/10.20506/rst.38.1.2939 Park, Y., Choi, Q., Kwon, G. C., & Koo, S. H. (2020). Emergence and transmission of New Delhi metallo‐beta‐lactamase‐5‐producing Escherichia coli Sequence Type 361 in a Tertiary Hospital in South Korea. Journal of Clinical Laboratory Analysis, 34(2). https://doi.org/10.1002/jcla.23041 Rousham, E., Asaduzzaman, M., Mozmader, T, et al. (2021). Human colonization with extended-spectrum beta-lactamase-producing E. coli in relation to animal and environmental exposures in Bangladesh: An observational one health study. Environmental Health Perspectives, 129(3). https://doi.org/10.1289/ehp7670 Lüneberg, K., Amábile-Cuevas, C, Mucito-Varela, E., et al. (2022). Metallo-beta-lactamase-producing Escherichia coli in the sewage of Mexico City: where do they come from? Canadian Journal of Microbiology, 68(2), 139–145. https://doi.org/10.1139/cjm-2021-0284 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_f1cf Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.extent.none.fl_str_mv |
22 p |
dc.format.mimetype.none.fl_str_mv |
application/pdf application/msword |
dc.publisher.none.fl_str_mv |
Universidad de Santander |
dc.publisher.branch.none.fl_str_mv |
Bucaramanga |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Médicas y de la Salud |
dc.publisher.place.none.fl_str_mv |
Bucaramanga, Colombia |
dc.publisher.program.none.fl_str_mv |
Bacteriología y Laboratorio Clínico |
publisher.none.fl_str_mv |
Universidad de Santander |
institution |
Universidad de Santander |
bitstream.url.fl_str_mv |
https://repositorio.udes.edu.co/bitstreams/612cb4dd-3c0f-4826-85af-add6b143dba8/download https://repositorio.udes.edu.co/bitstreams/499da63e-3715-40c9-bb54-61ac3b8b1a51/download https://repositorio.udes.edu.co/bitstreams/a2f397c9-2216-4f13-a6ed-ca454aaa0aab/download https://repositorio.udes.edu.co/bitstreams/1cedfd6c-32f7-4afc-8087-371e71558dee/download https://repositorio.udes.edu.co/bitstreams/88f46237-661b-4b11-ad2f-19858229a72b/download https://repositorio.udes.edu.co/bitstreams/d00c21a1-587a-4765-95a4-2d0d6a52c136/download https://repositorio.udes.edu.co/bitstreams/8172e59e-92ca-4624-ace5-72397856116a/download https://repositorio.udes.edu.co/bitstreams/c05ed92b-8a7e-40b5-8e3b-0cbcca78cdad/download https://repositorio.udes.edu.co/bitstreams/2e3aa43a-dc58-461b-9726-d706a2fa5632/download https://repositorio.udes.edu.co/bitstreams/5287f26c-35ef-4b6e-b5da-854be1c91643/download https://repositorio.udes.edu.co/bitstreams/aebb8c12-d022-4401-be79-aeac2f3e19e8/download https://repositorio.udes.edu.co/bitstreams/47e8c943-d2a6-4f4e-8efe-6e25d5c57c6a/download https://repositorio.udes.edu.co/bitstreams/2b9c16bd-f995-4d91-a53d-3e737c6061ce/download https://repositorio.udes.edu.co/bitstreams/10484983-8e02-4dd2-99f0-b1a5500e0877/download https://repositorio.udes.edu.co/bitstreams/070b8748-caf8-42aa-83fe-03817a19c3e7/download https://repositorio.udes.edu.co/bitstreams/d5697a55-06a0-4865-a380-2785f6951ec9/download https://repositorio.udes.edu.co/bitstreams/fd55543f-a999-44b7-b8c7-e5884e0f507a/download https://repositorio.udes.edu.co/bitstreams/b7e90e8f-f813-476b-87b6-26fbf5658e06/download https://repositorio.udes.edu.co/bitstreams/e874d945-864a-483f-9bd4-712d6eff4e80/download https://repositorio.udes.edu.co/bitstreams/42d52eae-c160-489c-86e9-003eade9bb73/download https://repositorio.udes.edu.co/bitstreams/f77b671e-90a1-4f17-b697-b0ea86306c10/download |
bitstream.checksum.fl_str_mv |
fd05d876db93ff45add6a048c65237b7 61bbf8f8624e17700b609e0ccbb3a759 0382ac15867bc4bdc796a3426f14018b 8b156c1494ca452f6b07840f0f00aa8e 2dd74f4617c8e9ec0a8f6f4fc28d2422 2dd74f4617c8e9ec0a8f6f4fc28d2422 be8b4abc00a780143446faf3e2a71b7e 205e88a81ea955ea359f1f5c697023c3 e1c06d85ae7b8b032bef47e42e4c08f9 e1c06d85ae7b8b032bef47e42e4c08f9 33895090ba1bbeb195dc8ff727603028 94753e7c0d1046ff5e83ce9ddbf80754 c14629c86903f85524505e13e5655f49 40e2f857e6f69c2e0f88cc447e173651 789b6057454d0f4b90bf27be9390a76b 599f658e24eede46ca372a91d864e98d 36012743478ac78924a991ddc6266c86 7af98833de604e9cb0d4a7db4fe05e42 7fe8be5c72591044e5b6813e5f29b5a9 94147091891738c0b7c794e9d4b8846d 73a5432e0b76442b22b026844140d683 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Santander |
repository.mail.fl_str_mv |
soporte@metabiblioteca.com |
_version_ |
1808490911116558336 |
spelling |
Trejos-Suárez, Juanitab654cd2e-011c-4bdb-a2a5-15263cdaac76600Fuentes-Lopera, Andrés Felipefc28f410-787d-498b-aa2e-52e7a2d18eaa-1Sánchez-Barbosa, Danielabe35b0af-200d-44e9-8421-10ade70be7d3-1Méndez-Diaz, Luz Mery6c309546-763e-47a4-b153-87c2e7113ef6-1Arias Guerrero, Monicaa17e125d-3e6e-493a-8ee4-4bd815b584fd-1Instituto de Investigaciones MASIRA2024-05-09T15:40:39Z2025-09-292024-05-09T15:40:39Z2023-06-05DigitalEl descubrimiento global de bacterias portadoras de New Delhi Metalobetalactamasa (NDM) ha surgido como un alarmante problema de salud pública, asociado a la migración transcontinental y al aumento de la mortalidad por enfermedades infecciosas. Bacterias Gramnegativas, como Escherichia coli, presentan desafíos significativos en el tratamiento debido a la limitada disponibilidad de opciones terapéuticas. Se abarcaron bases de datos como Pubmed, Scopus, Google Scholar, EBSCO HOST, OVIDSP, ProQuest y Metarevistas, y clasificó los documentos obtenidos en fuentes primarias, secundarias y terciarias. El período analizado abarcó los últimos 18 años desde la primera descripción de NDM-1, y tuvo como objetivo principal describir la diversidad genética de esta enzima. En esta revisión se identificaron 44 variacionestranscripcionales del gen blaNDM-1, se exploró la estructura y función de la enzima,se analizó el papel de las vesículas de membrana externas en la transferencia de NDM, y se resaltó la importancia del enfoque "una sola salud" en el control de la diseminación de este gen. Se concluye que, aunque existen varias estrategias para abordar la resistencia a los antibióticos que deben considerarse por las autoridades sanitarias, se requieren estudios adicionales para llenar los vacíos de conocimiento y mejorar la comprensión de esta creciente amenaza.The global discovery of bacteria carrying New Delhi Metallo-beta-lactamase (NDM) has emerged as a concerning public health issue, linked to transcontinental migration and an increase in mortality from infectious diseases. Gram-negative bacteria, such as Escherichia coli, pose significant challenges for treatment due to the limited availability of therapeutic options. Various databases including PubMed, Scopus, Google Scholar, EBSCO HOST, OVIDSP, ProQuest, and Metarevistas were included, and the obtained documents were classified as primary, secondary, and tertiary sources. The analysisspanned the last 18 years since the initial identification of NDM-1, with the main objective being to describe the genetic diversity of this enzyme. This review identified 44 transcriptional variations of the blaNDM-1 gene, explored the structure and function of the enzyme, discussed the role of outer membrane vesicles in NDM transfer, and emphasized the importance of the "one-health" approach in controlling the spread of this gene in public health. It is concluded that while there are several strategies to address antibiotic resistance that should be considered by health authorities, additional studies are required to bridge knowledge gaps and enhance understanding of this growing threat.PregradoBacteriólogo(a) y Laboratorista ClínicoEnfermedades Infecciosas22 papplication/pdfapplication/mswordUniversidad de SantanderT 17.23 F826dRepositorio Digital Institucional Universidad de Santanderhttps://repositorio.udes.edu.cohttps://repositorio.udes.edu.co/handle/001/10380spaUniversidad de SantanderBucaramangaFacultad de Ciencias Médicas y de la SaludBucaramanga, ColombiaBacteriología y Laboratorio ClínicoBedenić, B., Sardelić, S., Luxner, J., et al. (2016). Molecular characterization of class b carbapenemases in advanced stage of dissemination and emergence of class d carbapenemases in Enterobacteriaceae from Croatia. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 43, 74–82. https://doi.org/10.1016/j.meegid.2016.05.011Van Duin, D., & Doi, Y. (2017). The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence, 8(4), 460–469. https://doi.org/10.1080/21505594.2016.1222343Raghunath, D. (2010). New metallo β-lactamase NDM-1. The Indian Journal of Medical Research, 132, 478–481.Rolain, J. M., Parola, P., & Cornaglia, G. (2010). New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 16(12), 1699–1701. https://doi.org/10.1111/j.1469-0691.2010.03385.xWalsh, T. R., Weeks, J., Livermore, D. M., et al. (2011). Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. The Lancet Infectious Diseases, 11(5), 355–362. https://doi.org/10.1016/S1473-3099(11)70059-7Solé, M., Pitart, C., Roca, I., et al. (2011). First description of an Escherichia coli strain producing NDM-1 carbapenemase in Spain. Antimicrobial Agents and Chemotherapy, 55(9), 4402–4404. https://doi.org/10.1128/AAC.00642-11Choi, Y. J., Kim, Y. A., Junglim, K., et al. (2023). Emergence of NDM-1-producing Pseudomonas aeruginosa sequence type 773 clone: Shift of carbapenemase molecular epidemiology and spread of 16S rRNA methylase genes in Korea. Annals of Laboratory Medicine, 43(2), 196–199. https://doi.org/10.3343/alm.2023.43.2.196Maaroufi, R., Dziri, O., Hadjadj, L., et al. (2021). Occurrence of NDM-1 and VIM-2 co-producing Escherichia coli and OprD alteration in Pseudomonas aeruginosa isolated from hospital environment samples in northwestern Tunisia. Diagnostics (Basel, Switzerland), 11(9), 1617. https://doi.org/10.3390/diagnostics11091617Warnes, S. L., Highmore, C. J., & Keevil, C. W. (2012). Horizontal transfer of antibiotic resistance genes on abiotic touch surfaces: Implications for public health. mBio, 3(6). https://doi.org/10.1128/mbio.00489-12Kumarasamy, K. K., Toleman, M. A., Walsh, T. R., et al. (2010). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. The Lancet Infectious Diseases, 10(9), 597–602. https://doi.org/10.1016/s1473-3099(10)70143-2Dortet, L., Nordmann, P., & Poirel, L. (2012). Association of the emerging carbapenemase NDM-1 with a bleomycin resistance protein in Enterobacteriaceae and Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 56(4), 1693–1697. https://doi.org/10.1128/aac.05583-11Savard, P., Gopinath, R., Zhu, W., et al. (2011). First NDM-Positive Salmonella sp. Strain Identified in the United States. Antimicrobial Agents and Chemotherapy, 55(12), 5957–5958. https://doi.org/10.1128/aac.05719-11Poirel, L., Fortineau, N., & Nordmann, P. (2011). International transfer of NDM-1-producing Klebsiella pneumoniae from Iraq to France. Antimicrobial Agents and Chemotherapy, 55(4), 1821–1822. https://doi.org/10.1128/aac.01761-10Kaase, M., Nordmann, P., Wichelhaus, T. A., et al. (2011). NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. The Journal of Antimicrobial Chemotherapy, 66(6), 1260–1262. https://doi.org/10.1093/jac/dkr135Mulvey, M. R., Grant, J. M., Plewes, K., et al. (2011). New Delhi Metallo-β-Lactamase inKlebsiella pneumoniae and Escherichia coli ,Canada. Emerging infectious diseases, 17(1), 103–106. https://doi.org/10.3201/eid1701.101358Chen, Z., Wang, Y., Tian, L., et al. (2015). First report in China of Enterobacteriaceae clinical isolates coharboring blaNDM-1 and blaIMP-4 drug resistance genes. Microbial Drug Resistance (Larchmont, N.Y.), 21(2), 167–170. https://doi.org/10.1089/mdr.2014.0087Poirel, L., Schrenzel, J., Cherkaoui, A., et al. (2011). Molecular analysis of NDM-1-producing enterobacterial isolates from Geneva, Switzerland. The Journal of Antimicrobial Chemotherapy, 66(8), 1730–1733. https://doi.org/10.1093/jac/dkr174Yamamoto, T., Takano, T., Iwao, Y., et al. (2011). Emergence of NDM-1-positive capsulated Escherichia coli with high resistance to serum killing in Japan. Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy, 17(3), 435–439. https://doi.org/10.1007/s10156-011-0232-3Camara, L. (2020). Carbapenemasa nueva delhi tipo 1 (ndm): descripción fenotípica y epidemiológica. [Tesis doctoral, Universidad Peruana Cayetano Heredia]. Repositorio UPCH. https://repositorio.upch.edu.pe/bitstream/handle/20.500.12866/8572/Carbapenemasa_CamaraLopez_Lizet.pdf?sequence=1&isAllowed=yCorrea, C., Castro, E., Salamanca, D., et al. (2016). Escherichia coli productora de Nueva Delhi metalo-β-lactamasa en Colombia: reporte de caso. Infectio: revista de la Asociacion Colombiana de Infectologia. https://doi.org/10.1016/j.infect.2016.05.002Enrique, M., Durán, M., Patricia, A., et al. (2013). Circulación de Carbapenemasas tipo New Delhi Metalo-βlactamasa (NDM), Colombia, 2011 a 2013. Recuperado el 6 de junio de 2023, de https://www.ins.gov.co/buscador/IQEN/IQEN%20vol%2018%202013%20num%2011.pdfLi, J., Bi, Z., Ma, S., et al. (2019). Inter-host transmission of carbapenemase-producing Escherichia coli among humans and backyard animals. Environmental Health Perspectives, 127(10). https://doi.org/10.1289/ehp5251Berrazeg, M., Diene, S. M., Medjahed, L., et al. (2014). New Delhi Metallo-beta-lactamase around the world: An eReview using Google Maps. Euro Surveillance : Bulletin Europeen Sur Les Maladies Transmissibles [Euro Surveillance : European Communicable Disease Bulletin], 19(20). https://doi.org/10.2807/1560-7917.es2014.19.20.20809Vera-Leiva, A., Barría-Loaiza, C., Carrasco-Anabalón, S., et al. (2017). KPC: Klebsiella pneumoniae carbapenemasa, principal carbapenemasa en enterobacterias. Revista Chilena de Infectologia: Organo Oficial de La Sociedad Chilena de Infectologia, 34(5), 476–484. https://doi.org/10.4067/s0716-10182017000500476Khong, W. X., Xia, E., Marimuthu, K., et al. (2016). Local transmission and global dissemination of New Delhi Metallo-Beta-Lactamase (NDM): a whole genome analysis. BMC Genomics, 17(1). https://doi.org/10.1186/s12864-016-2740-0Jean, S.-S., Harnod, D., & Hsueh, P.-R. (2022). Global threat of carbapenem-resistant Gram-negative bacteria. Frontiers in cellular and infection microbiology, 12. https://doi.org/10.3389/fcimb.2022.823684Patel, S. (2012). NDM-1: ¿el nuevo supermicrobio? Nursing, 30(7), 46. https://doi.org/10.1016/s0212-5382(12)70105-xAntimicrobial resistance: revisiting the “tragedy of the commons”. (2010). Bulletin of the World Health Organization, 88(11), 805–806. https://doi.org/10.2471/blt.10.031110Chen, C.-J., Wu, T.-L., Lu, P.-L., et al. (2014). Closely Related NDM-1-Encoding Plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. PloS One, 9(8), e104899. https://doi.org/10.1371/journal.pone.0104899Wu, W., Feng, Y., Tang, G., et al. (2019). NDM metallo-β-lactamases and their bacterial producers in health care settings. Clinical Microbiology Reviews, 32(2). https://doi.org/10.1128/cmr.00115-18Shen, P., Yi, M., Fu, Y., et al. (2017). Detection of an Escherichia coli sequence type 167 strain with two tandem copies of bla NDM-1 in the chromosome. Journal of Clinical Microbiology, 55(1), 199–205. https://doi.org/10.1128/jcm.01581-16Wailan, A. M., Sartor, A. L., Zowawi, H. M., et al. (2015). Genetic contexts of bla NDM-1 in patients carrying multiple NDM-producing strains. Antimicrobial Agents and Chemotherapy, 59(12), 7405–7410. https://doi.org/10.1128/aac.01319-15Xiang, T., Chen, C., Wen, J., et al. (2020). Resistance of Klebsiella pneumoniae strains carrying blaNDM–1 gene and the genetic environment of blaNDM–1. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00700Wang, T., Zhou, Y., Zou, C., et al. (2021). Identification of a novel bla NDM variant, bla NDM-33, in an Escherichia coli isolate from hospital wastewater in China. mSphere, 6(5). https://doi.org/10.1128/msphere.00776-21Tran, V.-T., Tran, V.-H., Nguyen, D.-N., et al. (2022). The effects of one-point mutation on the New Delhi metallo beta-lactamase-1 resistance toward carbapenem antibiotics and β-lactamase inhibitors: An in silico systematic approach. International Journal of Molecular Sciences, 23(24), 16083. https://doi.org/10.3390/ijms2324160RCSB Protein Data Bank. RCSB PDB- 3ZR9: Structure of New Delhi Metallo-Beta-lactamase 1 (NDM-1) [Internet]. 2011 [cited 2023 May 28]. https://www.rcsb.org/structure/3ZR9 (accessed 2023 May 28)Zhang, G., & Hao, Q. (2011). Crystal structure of NDM‐1 reveals a common β‐lactam hydrolysis mechanism. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 25(8), 2574–2582. https://doi.org/10.1096/fj.11-184036Rogers, B. A., Sidjabat, H. E., Silvey, A., Anderson, T. L., et al. (2013). Treatment options for New Delhi metallo-beta-lactamase-harboring Enterobacteriaceae. Microbial Drug Resistance (Larchmont, N.Y.), 19(2), 100–103. https://doi.org/10.1089/mdr.2012.0063Nordmann, P., Boulanger, A. E., & Poirel, L. (2012). NDM-4 Metallo-β-Lactamase with Increased Carbapenemase Activity from Escherichia coli. Antimicrobial Agents and Chemotherapy, 56(4), 2184–2186. https://doi.org/10.1128/aac.05961-11Hornsey, M., Phee, L., & Wareham, D. W. (2011). A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrobial Agents and Chemotherapy, 55(12), 5952–5954. https://doi.org/10.1128/aac.05108-11Williamson, D. A., Sidjabat, H. E., Freeman, J. T., et al. (2012). Identification and molecular characterisation of New Delhi metallo-β-lactamase-1 (NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. International Journal of Antimicrobial Agents, 39(6), 529–533. https://doi.org/10.1016/j.ijantimicag.2012.02.017Cuzon, G., Bonnin, R. A., & Nordmann, P. (2013). First identification of novel NDM carbapenemase, NDM-7, in Escherichia coli in France. PloS One, 8(4), e61322. https://doi.org/10.1371/journal.pone.0061322Tada, T., Miyoshi-Akiyama, T., Dahal, R. K., et al. (2013). NDM-8 Metallo-β-Lactamase in a Multidrug-Resistant Escherichia coli Strain Isolated in Nepal. Antimicrobial Agents and Chemotherapy, 57(5), 2394–2396. https://doi.org/10.1128/aac.02553-12Wang, X., Li, H., Zhao, C., et al. (2014). Novel NDM-9 metallo-β-lactamase identified from a ST107 Klebsiella pneumoniae strain isolated in China. International Journal of Antimicrobial Agents, 44(1), 90–91. https://doi.org/10.1016/j.ijantimicag.2014.04.010Khajuria, A., Praharaj, A. K., Kumar, M., et al. (2016). Presence of a novel variant NDM-10, of the New Delhi metallo-beta-lactamase in a Klebsiella pneumoniae isolate. Indian Journal of Medical Microbiology, 34(1), 121–123. https://doi.org/10.4103/0255-0857.174101Tada, T., Shrestha, B., Miyoshi-Akiyama, T., et al. (2014). NDM-12, a novel New Delhi metallo-β-lactamase variant from a carbapenem-resistant Escherichia coli clinical isolate in Nepal. Antimicrobial Agents and Chemotherapy, 58(10), 6302–6305. https://doi.org/10.1128/aac.03355-14Shrestha, B., Tada, T., Miyoshi-Akiyama, T., et al. (2015). Identification of a novel NDM variant, NDM-13, from a multidrug-resistant Escherichia coli clinical isolate in Nepal. Antimicrobial Agents and Chemotherapy, 59(9), 5847–5850. https://doi.org/10.1128/aac.00332-1Zou, D., Huang, Y., Zhao, X., et al. (2015). A novel New Delhi metallo-β-lactamase variant, NDM-14, isolated in a Chinese hospital possesses increased enzymatic activity against carbapenems. Antimicrobial Agents and Chemotherapy, 59(4), 2450–2453. https://doi.org/10.1128/aac.05168-14Basu, S. and Mitra, S. (2020). A new metallo-beta-lactamase NDM-15 in an Escherichia coli isolated from the blood of a septicaemic neonate in West Bengal, India. https://www.ncbi.nlm.nih.gov/protein/AKF43458.1 (accessed 2023 May 22)Kazmierczak, K. M., Rabine, S., Hackel, M., et al. (2016). Multiyear, multinational survey of the incidence and global distribution of Metallo-β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 60(2), 1067–1078. https://doi.org/10.1128/aac.02379-15Liu, Z., Wang, Y., Walsh, T. R., et al. (2017). Plasmid-mediated novel bla NDM-17 gene encoding a carbapenemase with enhanced activity in a sequence type 48 Escherichia coli strain. Antimicrobial Agents and Chemotherapy, 61(5). https://doi.org/10.1128/aac.02233-16Ntshobeni, N. B., Allam, M., Ismail, A., et al. (2019). Draft genome sequence of Providencia rettgeri APW139_S1, an NDM-18-producing clinical strain originating from hospital effluent in South Africa. Microbiology Resource Announcements, 8(21). https://doi.org/10.1128/mra.00259-19Mancini, S., Keller, P. M., Greiner, M., et al. (2019). Detection of NDM-19, a novel variant of the New Delhi metallo-β-lactamase with increased carbapenemase activity under zinc-limited conditions, in Switzerland. Diagnostic Microbiology and Infectious Disease, 95(3), 114851. https://doi.org/10.1016/j.diagmicrobio.2019.06.003Liu, Z., Li, J., Wang, X., et al. (2018). Novel Variant of New Delhi Metallo-β-lactamase, NDM-20, in Escherichia coli. Frontiers in microbiology, 9. https://doi.org/10.3389/fmicb.2018.00248Liu, L., Feng, Y., McNally, A., & Zong, Z. (2018). bla NDM-21, a new variant of blaNDM in an Escherichia coli clinical isolate carrying blaCTX-M-55 and rmtB. The Journal of Antimicrobial Chemotherapy, 73(9), 2336–2339. https://doi.org/10.1093/jac/dky226Kalamatas,J., Li,H., Salgado,D., et al. (2020) Subclass B1 metallo-beta-lactamase NDM-22 [Enterobacter cloacae]. [cited 2023 May 28]. https://www.ncbi.nlm.nih.gov/protein/AWI33311.1 (accessed 2023 May 28)García-González, N., Beamud, B., Fuster, B., et al. (2023). Tracking the emergence and dissemination of a bla NDM-23 gene in a multidrug resistance Plasmid of Klebsiella pneumoniae. Microbiology Spectrum, 11(2). https://doi.org/10.1128/spectrum.02585-22Liu, Z., Piccirilli A., Liu, D. et al. (2019). Deciphering the Role of V88L Substitution in NDM-24 metallo-β-lactamase. Catalysts (Basel, Switzerland), 9(9), 744. https://doi.org/10.3390/catal909074El-Badawy, M. F., El-Far, S. W., Althobaiti, S. S., et al. (2020). The first Egyptian report showing the co-existence of blaNDM-25, blaOXA-23, blaOXA-181, and blaGES-1 among carbapenem-resistant K. pneumoniae clinical isolates genotyped by BOX-PCR. Infection and Drug Resistance, 13, 1237–1250. https://doi.org/10.2147/idr.s244064Lv,L., Song,Q., Zhang,Q. and Liu,J. (2019). Subclass B1 metallo-beta-lactamase NDM-26 [Escherichia coli]. https://www.ncbi.nlm.nih.gov/protein/AYN72942.1 (accessed 2023 May 28)Stanton,R.A. and McAllister,G. (2018). Subclass B1 metallo-beta-lactamase NDM-27 [Escherichia coli]. https://www.ncbi.nlm.nih.gov/protein/AYP70146.1 (accessed 2023 May 28)Singh,A., Singh,S., Singh,K., et al. (2019). Subclass B1 metallo-beta-lactamase NDM-28 [Klebsiella pneumoniae]. https://www.ncbi.nlm.nih.gov/protein/QAT97614.1 (accessed 2023 May 28)Zhu, Y., Jia, X., Jia, P., et al. (2021). Genetic and Phenotypic Characterization of the Novel Metallo-β-Lactamase NDM-29 From Escherichia coli. Frontiers in microbiology, 12. https://doi.org/10.3389/fmicb.2021.743981Park, J., Yun, S.-J., Shin, E., et al. (2022). First identification of novel variants of New Delhi metallo-β-lactamase, NDM-30 and NDM-31, in the Republic of Korea. Journal of Global Antimicrobial Resistance, 29, 20–22. https://doi.org/10.1016/j.jgar.2022.01.009Ariyoshi, T., Aoki, K., Kubota, H., et al. (2022). Molecular characterization of bla NDM -carrying IncX3 plasmids: bla NDM-16b likely emerged from a mutation of bla NDM-5 on IncX3 Plasmid. Microbiology Spectrum, 10(4). https://doi.org/10.1128/spectrum.01449-22Zheng,Z. & Ye,L. (2021). Subclass B1 metallo-beta-lactamase NDM-34 [Vibrio parahaemolyticus]. https://www.ncbi.nlm.nih.gov/protein/QVU28093.1 (accessed 2023 May 28)Poirel, L., Ortiz de la Rosa, J. M., Sakaoglu, Z., et al. (2022). NDM-35-producing ST167 Escherichia coli highly resistant to β-lactams including cefiderocol. Antimicrobial Agents and Chemotherapy, 66(8). https://doi.org/10.1128/aac.00311-22Ma, W., Zhu, B., Wang, W., et al. (2023). Genetic and enzymatic characterization of two novel blaNDM-36, -37 variants in Escherichia coli strains. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 42(4), 471–480. https://doi.org/10.1007/s10096-023-04576-yLi, H. & Wise, M. (2021). Subclass B1 metallo-beta-lactamase NDM-38 [Providencia rettgeri]. https://www.ncbi.nlm.nih.gov/protein/QWO25674.1 (accessed 2023 May 28)Mataseje, L., Boyd, D., & Mulvey, M. (2021). Subclass B1 metallo-beta-lactamase NDM-39 [Klebsiella pneumoniae].https://www.ncbi.nlm.nih.gov/protein/QYZ89892.1 (accessed 2023 May 28)Mataseje, L., Boyd, D. & Mulvey, M. (2021). Subclass B1 metallo-beta-lactamase NDM-40 [Acinetobacter baumannii]. https://www.ncbi.nlm.nih.gov/protein/QYZ89893.1 (accessed 2023 May 28)Wen,H., Feng,Y. and Zong,Z. (2021). Subclass B1 metallo-beta-lactamase NDM-41 (plasmid) [Klebsiella pneumoniae]. https://www.ncbi.nlm.nih.gov/protein/UAX43328.1 (accessed 2023 May 28)Quiñones Pérez, D., Aung, M. S., Carmona Cartaya, Y., et al. (2022). Clonal diversity of Acinetobacter clinical isolates producing NDM-type carbapenemase in Cuba, 2013–19. IJID Regions (Online), 5, 93–96. https://doi.org/10.1016/j.ijregi.2022.08.008Pardeshenas,M., Shahri,M., Khodakarami,F., & Kalantar-Neyestanaki,D. (2022). Subclass B1 metallo-beta-lactamase NDM-43 [Klebsiella pneumoniae]. https://www.ncbi.nlm.nih.gov/protein/UTQ48691.1 (accessed 2023 May 28)Hamed,S.L. & Hasoon,N.A. (2022) Subclass B1 metallo-beta-lactamase NDM-44 [Klebsiella pneumoniae]. https://www.ncbi.nlm.nih.gov/protein/UVJ50740.1 (accessed 2023 May 28)Zhai, Y., Lee, S., Teng, L., et al. (2021). Dissemination mechanisms of NDM genes in hospitalized patients. JAC-Antimicrobial Resistance, 3(1). https://doi.org/10.1093/jacamr/dlab032Takayama, Y., Sekizuka, T., Matsui, H., et al. (2020). Characterization of the IncFII-IncFIB(pB171) Plasmid carrying blaNDM-5 in Escherichia coli ST405 clinical isolate in japan. Infection and Drug Resistance, 13, 561–566. https://doi.org/10.2147/idr.s232943Naeem, S., Bilal, H., Muhammad, H., et al. (2021). Detection of blaNDM-1 gene in ESBL producing Escherichia coli and Klebsiella pneumoniae isolated from urine samples. Journal of infection in developing countries, 15(04), 516–522. https://doi.org/10.3855/jidc.12850Tsilipounidaki, K., Florou, Z., Skoulakis, A., et al. (2023). Diversity of bacterial clones and plasmids of NDM-1 producing Escherichia coli clinical isolates in Central Greece. Microorganisms, 11(2), 516. https://doi.org/10.3390/microorganisms11020516Muggeo, A., Maiga, A., Maiga, I., et al. (2020). First description of IncX3 NDM-5-producing plasmid within Escherichia coli ST448 in Mali. Journal of Medical Microbiology, 69(5), 685–688. https://doi.org/10.1099/jmm.0.001182Harada, S., Suzuki, M., Sasaki, T., Sakurai, A., Inaba, M., Takuya, H., Wakuda, M., & Doi, Y. (2021). Transmission of NDM-5-producing and OXA-48-producing Escherichia coli sequence type 648 by international visitors without previous medical exposure. Microbiology Spectrum, 9(3). https://doi.org/10.1128/spectrum.01827-21Haeili, M., Barmudeh, S., Omrani, M., et al. (2023). Whole-genome sequence analysis of clinically isolated carbapenem resistant Escherichia coli from Iran. BMC Microbiology, 23(1). https://doi.org/10.1186/s12866-023-02796-yHuang, L., Hu, H., Xu, C., et al. (2023). Characterization of NDM-5-producing Escherichia coli strains isolated from pediatric patients with bloodstream infections in a Chinese hospital. Genes, 14(2), 520. https://doi.org/10.3390/genes14020520Kulp, A., & Kuehn, M. J. (2010). Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annual Review of Microbiology, 64(1), 163–184. https://doi.org/10.1146/annurev.micro.091208.073413Lee, J., Kim, O., & Gho, Y. (2016). Proteomic profiling of Gram‐negative bacterial outer membrane vesicles: Current perspectives. Proteomics. Clinical Applications, 10(9–10), 897–909. https://doi.org/10.1002/prca.201600032López, C., Prunotto, A., Bahr, G., et al. (2021). Specific protein-membrane interactions promote packaging of metallo-β-lactamases into outer membrane vesicles. Antimicrobial Agents and Chemotherapy, 65(10). https://doi.org/10.1128/aac.00507-21Martínez, M., Bonomo, R., Vila, A., et al. (2021). On the offensive: The role of outer membrane vesicles in the successful dissemination of New Delhi metallo-β-lactamase (NDM-1). mBio, 12(5). https://doi.org/10.1128/mbio.01836-21Khan, A., Maryam, L., & Zarrilli, R. (2017). Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiology, 17(1). https://doi.org/10.1186/s12866-017-1012-8Barton, C. (2019). Introduction. One Health: over a decade of progress on the road to sustainability: -EN- -FR- Introduction. Une seule santé : plus d’une décennie d’avancées vers la durabilité -ES- Introducción. Una sola salud: más de un decenio de avances en la senda de la sostenibilidad. Revue scientifique et technique (International Office of Epizootics), 38(1), 21–50. https://doi.org/10.20506/rst.38.1.2939Park, Y., Choi, Q., Kwon, G. C., & Koo, S. H. (2020). Emergence and transmission of New Delhi metallo‐beta‐lactamase‐5‐producing Escherichia coli Sequence Type 361 in a Tertiary Hospital in South Korea. Journal of Clinical Laboratory Analysis, 34(2). https://doi.org/10.1002/jcla.23041Rousham, E., Asaduzzaman, M., Mozmader, T, et al. (2021). Human colonization with extended-spectrum beta-lactamase-producing E. coli in relation to animal and environmental exposures in Bangladesh: An observational one health study. Environmental Health Perspectives, 129(3). https://doi.org/10.1289/ehp7670Lüneberg, K., Amábile-Cuevas, C, Mucito-Varela, E., et al. (2022). Metallo-beta-lactamase-producing Escherichia coli in the sewage of Mexico City: where do they come from? Canadian Journal of Microbiology, 68(2), 139–145. https://doi.org/10.1139/cjm-2021-0284Derechos Reservados - Universidad de Santander, 2023. Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/Bacterias GramnegativasEndopeptidasasResistencia betalactámicaVariación genéticaEscherichia coliGram-negative bacteriaEndopeptidasesBeta-lactam resistanceGenetic variationDiversidad Genética de la Metalobetalactamasa New Delhi en Escherichia coli: Revisión de AlcanceGenetic Diversity of Metallobetalactamase New Delhi in Escherichia coli: A Scoping ReviewTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_71e4c1898caa6e32Textinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/submittedVersionTodas las AudienciasPublicationORIGINALActa de sustentación Daniela Sánchez Barbosa.pdfActa de sustentación Daniela Sánchez Barbosa.pdfapplication/pdf477945https://repositorio.udes.edu.co/bitstreams/612cb4dd-3c0f-4826-85af-add6b143dba8/downloadfd05d876db93ff45add6a048c65237b7MD53Acta de sustentación Andrés Felipe Fuentes Lopera.pdfActa de sustentación Andrés Felipe Fuentes Lopera.pdfapplication/pdf477566https://repositorio.udes.edu.co/bitstreams/499da63e-3715-40c9-bb54-61ac3b8b1a51/download61bbf8f8624e17700b609e0ccbb3a759MD54Label.pdfLabel.pdfapplication/pdf3221302https://repositorio.udes.edu.co/bitstreams/a2f397c9-2216-4f13-a6ed-ca454aaa0aab/download0382ac15867bc4bdc796a3426f14018bMD55Cesión-de-derechos-biblioteca.docxCesión-de-derechos-biblioteca.docxapplication/vnd.openxmlformats-officedocument.wordprocessingml.document190451https://repositorio.udes.edu.co/bitstreams/1cedfd6c-32f7-4afc-8087-371e71558dee/download8b156c1494ca452f6b07840f0f00aa8eMD56Diversidad_genética_de_la_Metalobetalactamasa_New_Delhi_en_Escherichia_coli_ Revisión_de_alcance.docxDiversidad_genética_de_la_Metalobetalactamasa_New_Delhi_en_Escherichia_coli_ Revisión_de_alcance.docxapplication/vnd.openxmlformats-officedocument.wordprocessingml.document371888https://repositorio.udes.edu.co/bitstreams/88f46237-661b-4b11-ad2f-19858229a72b/download2dd74f4617c8e9ec0a8f6f4fc28d2422MD57Diversidad_genética_de_la_Metalobetalactamasa_New_Delhi_en_Escherichia_coli_ Revisión_de_alcance.docxDiversidad_genética_de_la_Metalobetalactamasa_New_Delhi_en_Escherichia_coli_ Revisión_de_alcance.docxapplication/vnd.openxmlformats-officedocument.wordprocessingml.document371888https://repositorio.udes.edu.co/bitstreams/d00c21a1-587a-4765-95a4-2d0d6a52c136/download2dd74f4617c8e9ec0a8f6f4fc28d2422MD58Diversidad_genética_de_la_Metalobetalactamasa_New_Delhi_en_Escherichia_coli_ Revisión_de_alcance.pdfDiversidad_genética_de_la_Metalobetalactamasa_New_Delhi_en_Escherichia_coli_ Revisión_de_alcance.pdfapplication/pdf602565https://repositorio.udes.edu.co/bitstreams/8172e59e-92ca-4624-ace5-72397856116a/downloadbe8b4abc00a780143446faf3e2a71b7eMD59Certificado_de_similitud_de_texto.pdfCertificado_de_similitud_de_texto.pdfapplication/pdf642192https://repositorio.udes.edu.co/bitstreams/c05ed92b-8a7e-40b5-8e3b-0cbcca78cdad/download205e88a81ea955ea359f1f5c697023c3MD510TEXTActa de sustentación Daniela Sánchez Barbosa.pdf.txtActa de sustentación Daniela Sánchez Barbosa.pdf.txtExtracted texttext/plain2https://repositorio.udes.edu.co/bitstreams/2e3aa43a-dc58-461b-9726-d706a2fa5632/downloade1c06d85ae7b8b032bef47e42e4c08f9MD511Acta de sustentación Andrés Felipe Fuentes Lopera.pdf.txtActa de sustentación Andrés Felipe Fuentes Lopera.pdf.txtExtracted texttext/plain2https://repositorio.udes.edu.co/bitstreams/5287f26c-35ef-4b6e-b5da-854be1c91643/downloade1c06d85ae7b8b032bef47e42e4c08f9MD513Label.pdf.txtLabel.pdf.txtExtracted texttext/plain767https://repositorio.udes.edu.co/bitstreams/aebb8c12-d022-4401-be79-aeac2f3e19e8/download33895090ba1bbeb195dc8ff727603028MD515Cesión-de-derechos-biblioteca.docx.txtCesión-de-derechos-biblioteca.docx.txtExtracted texttext/plain4098https://repositorio.udes.edu.co/bitstreams/47e8c943-d2a6-4f4e-8efe-6e25d5c57c6a/download94753e7c0d1046ff5e83ce9ddbf80754MD517Diversidad_genética_de_la_Metalobetalactamasa_New_Delhi_en_Escherichia_coli_ Revisión_de_alcance.docx.txtDiversidad_genética_de_la_Metalobetalactamasa_New_Delhi_en_Escherichia_coli_ Revisión_de_alcance.docx.txtExtracted texttext/plain55023https://repositorio.udes.edu.co/bitstreams/2b9c16bd-f995-4d91-a53d-3e737c6061ce/downloadc14629c86903f85524505e13e5655f49MD518Diversidad_genética_de_la_Metalobetalactamasa_New_Delhi_en_Escherichia_coli_ Revisión_de_alcance.pdf.txtDiversidad_genética_de_la_Metalobetalactamasa_New_Delhi_en_Escherichia_coli_ Revisión_de_alcance.pdf.txtExtracted texttext/plain57602https://repositorio.udes.edu.co/bitstreams/10484983-8e02-4dd2-99f0-b1a5500e0877/download40e2f857e6f69c2e0f88cc447e173651MD519Certificado_de_similitud_de_texto.pdf.txtCertificado_de_similitud_de_texto.pdf.txtExtracted texttext/plain60827https://repositorio.udes.edu.co/bitstreams/070b8748-caf8-42aa-83fe-03817a19c3e7/download789b6057454d0f4b90bf27be9390a76bMD521THUMBNAILActa de sustentación Daniela Sánchez Barbosa.pdf.jpgActa de sustentación Daniela Sánchez Barbosa.pdf.jpgGenerated Thumbnailimage/jpeg10646https://repositorio.udes.edu.co/bitstreams/d5697a55-06a0-4865-a380-2785f6951ec9/download599f658e24eede46ca372a91d864e98dMD512Acta de sustentación Andrés Felipe Fuentes Lopera.pdf.jpgActa de sustentación Andrés Felipe Fuentes Lopera.pdf.jpgGenerated Thumbnailimage/jpeg10645https://repositorio.udes.edu.co/bitstreams/fd55543f-a999-44b7-b8c7-e5884e0f507a/download36012743478ac78924a991ddc6266c86MD514Label.pdf.jpgLabel.pdf.jpgGenerated Thumbnailimage/jpeg10553https://repositorio.udes.edu.co/bitstreams/b7e90e8f-f813-476b-87b6-26fbf5658e06/download7af98833de604e9cb0d4a7db4fe05e42MD516Diversidad_genética_de_la_Metalobetalactamasa_New_Delhi_en_Escherichia_coli_ Revisión_de_alcance.pdf.jpgDiversidad_genética_de_la_Metalobetalactamasa_New_Delhi_en_Escherichia_coli_ Revisión_de_alcance.pdf.jpgGenerated Thumbnailimage/jpeg6685https://repositorio.udes.edu.co/bitstreams/e874d945-864a-483f-9bd4-712d6eff4e80/download7fe8be5c72591044e5b6813e5f29b5a9MD520Certificado_de_similitud_de_texto.pdf.jpgCertificado_de_similitud_de_texto.pdf.jpgGenerated Thumbnailimage/jpeg9661https://repositorio.udes.edu.co/bitstreams/42d52eae-c160-489c-86e9-003eade9bb73/download94147091891738c0b7c794e9d4b8846dMD522LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.udes.edu.co/bitstreams/f77b671e-90a1-4f17-b697-b0ea86306c10/download73a5432e0b76442b22b026844140d683MD52001/10380oai:repositorio.udes.edu.co:001/103802024-05-10 03:02:39.051https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad de Santander, 2023. Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.udes.edu.coRepositorio Universidad de Santandersoporte@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |