Feature extraction for nonintrusive load monitoring based on S-Transform
The electric energy demand is dramatically growing worldwide and demand reduction emerges as an outstanding strategy; it implies detailed information about the electricity consumption, namely load disaggregation. Typical automatic methods for load disaggregation require high hardware efforts to inst...
- Autores:
-
Jiménez, Yulieth
Duarte, Cesar A.
Petit, Johann
Carrillo Caicedo, Gilberto
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_c94f
- Fecha de publicación:
- 2014
- Institución:
- Universidad de Santander
- Repositorio:
- Repositorio Universidad de Santander
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.udes.edu.co:001/3549
- Acceso en línea:
- https://repositorio.udes.edu.co/handle/001/3549
- Palabra clave:
- Feature extraction
Nonintrusive load monitoring
Stockwell transform
Support vector machine
Wavelet transform
- Rights
- openAccess
- License
- Derechos Reservados - Universidad de Santander, 2014
id |
RUDES2_a444de710582a3a8d4da0a0d9276a304 |
---|---|
oai_identifier_str |
oai:repositorio.udes.edu.co:001/3549 |
network_acronym_str |
RUDES2 |
network_name_str |
Repositorio Universidad de Santander |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Feature extraction for nonintrusive load monitoring based on S-Transform |
title |
Feature extraction for nonintrusive load monitoring based on S-Transform |
spellingShingle |
Feature extraction for nonintrusive load monitoring based on S-Transform Feature extraction Nonintrusive load monitoring Stockwell transform Support vector machine Wavelet transform |
title_short |
Feature extraction for nonintrusive load monitoring based on S-Transform |
title_full |
Feature extraction for nonintrusive load monitoring based on S-Transform |
title_fullStr |
Feature extraction for nonintrusive load monitoring based on S-Transform |
title_full_unstemmed |
Feature extraction for nonintrusive load monitoring based on S-Transform |
title_sort |
Feature extraction for nonintrusive load monitoring based on S-Transform |
dc.creator.fl_str_mv |
Jiménez, Yulieth Duarte, Cesar A. Petit, Johann Carrillo Caicedo, Gilberto |
dc.contributor.author.spa.fl_str_mv |
Jiménez, Yulieth Duarte, Cesar A. Petit, Johann Carrillo Caicedo, Gilberto |
dc.subject.proposal.eng.fl_str_mv |
Feature extraction Nonintrusive load monitoring Stockwell transform Support vector machine Wavelet transform |
topic |
Feature extraction Nonintrusive load monitoring Stockwell transform Support vector machine Wavelet transform |
description |
The electric energy demand is dramatically growing worldwide and demand reduction emerges as an outstanding strategy; it implies detailed information about the electricity consumption, namely load disaggregation. Typical automatic methods for load disaggregation require high hardware efforts to install one sensor per appliance, whereas Non-intrusive Load Monitoring (NILM) systems diminish the hardware efforts through signal processing and mathematical modeling. One approach to NILM systems is to model the load signatures via artificial intelligence. This paper proposes to employ S-Transform for the feature extraction stage and Support Vector Machines for the pattern recognition problem. Several experiments are presented and the results of the feature extraction with S-Transform and Wavelet Packet Transform are compared. Thus promising feature vectors based on S-Transform are presented with similar or superior performance than the approach based on Wavelet Packet Transform. |
publishDate |
2014 |
dc.date.issued.spa.fl_str_mv |
2014-05-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-08-08T16:18:24Z |
dc.date.available.spa.fl_str_mv |
2019-08-08T16:18:24Z |
dc.type.spa.fl_str_mv |
Documento de Conferencia |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_c94f |
status_str |
publishedVersion |
dc.identifier.doi.spa.fl_str_mv |
10.1109/PSC.2014.6808109 |
dc.identifier.isbn.spa.fl_str_mv |
9781479939602 |
dc.identifier.uri.spa.fl_str_mv |
https://repositorio.udes.edu.co/handle/001/3549 |
identifier_str_mv |
10.1109/PSC.2014.6808109 9781479939602 |
url |
https://repositorio.udes.edu.co/handle/001/3549 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.eng.fl_str_mv |
Clemson University Power Systems Conference, 2014 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad de Santander, 2014 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
rights_invalid_str_mv |
Derechos Reservados - Universidad de Santander, 2014 Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.eng.fl_str_mv |
https://ieeexplore.ieee.org/document/6808109 |
institution |
Universidad de Santander |
bitstream.url.fl_str_mv |
https://repositorio.udes.edu.co/bitstreams/4d6e1385-d7d6-46a6-b9f2-f9bea2932428/download https://repositorio.udes.edu.co/bitstreams/9f78b829-63ce-4c01-8609-1e11eca64f0a/download https://repositorio.udes.edu.co/bitstreams/7851eaf3-4c57-44fe-81a8-71b2b2879dc5/download https://repositorio.udes.edu.co/bitstreams/6ae71d56-3132-4a18-88a0-db0c9243ff1a/download https://repositorio.udes.edu.co/bitstreams/946bc5d5-1cdd-48e8-9d36-4ba831600772/download https://repositorio.udes.edu.co/bitstreams/a340536c-d72a-4f10-b03c-a3b079a5297c/download |
bitstream.checksum.fl_str_mv |
3f9fabd7a5393fac6aac5e3aa094614f e1aa6b9310ed783cb1447725531e1e37 329071f765038ffcd315672a04ad097a 38d94cf55aa1bf2dac1a736ac45c881c 24e03ac3c5077026c892e7c90f7428e5 5dbe86c1111d64f45ba435df98fdc825 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Santander |
repository.mail.fl_str_mv |
soporte@metabiblioteca.com |
_version_ |
1818101548300894208 |
spelling |
Jiménez, Yulieth2ad1d512-8927-474f-9141-b48b751a5936-1Duarte, Cesar A.da6f7d65-9425-4cba-8db9-4cc5a9714e3e-1Petit, Johann5c53bac7-f202-4b3c-b888-94b99305746e-1Carrillo Caicedo, Gilberto86baaec5-9967-480b-a0ea-0738231d0674-12019-08-08T16:18:24Z2019-08-08T16:18:24Z2014-05-01The electric energy demand is dramatically growing worldwide and demand reduction emerges as an outstanding strategy; it implies detailed information about the electricity consumption, namely load disaggregation. Typical automatic methods for load disaggregation require high hardware efforts to install one sensor per appliance, whereas Non-intrusive Load Monitoring (NILM) systems diminish the hardware efforts through signal processing and mathematical modeling. One approach to NILM systems is to model the load signatures via artificial intelligence. This paper proposes to employ S-Transform for the feature extraction stage and Support Vector Machines for the pattern recognition problem. Several experiments are presented and the results of the feature extraction with S-Transform and Wavelet Packet Transform are compared. Thus promising feature vectors based on S-Transform are presented with similar or superior performance than the approach based on Wavelet Packet Transform.application/pdf10.1109/PSC.2014.68081099781479939602https://repositorio.udes.edu.co/handle/001/3549engClemson University Power Systems Conference, 2014Derechos Reservados - Universidad de Santander, 2014info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2https://ieeexplore.ieee.org/document/6808109Feature extractionNonintrusive load monitoringStockwell transformSupport vector machineWavelet transformFeature extraction for nonintrusive load monitoring based on S-TransformDocumento de Conferenciahttp://purl.org/coar/resource_type/c_c94fTextinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PublicationBRANDED_PREVIEWFeature extraction for nonintrusive load monitoring based on S-Transform.PNG.preview.jpgFeature extraction for nonintrusive load monitoring based on S-Transform.PNG.preview.jpgGenerated Branded Previewimage/jpeg7671https://repositorio.udes.edu.co/bitstreams/4d6e1385-d7d6-46a6-b9f2-f9bea2932428/download3f9fabd7a5393fac6aac5e3aa094614fMD54THUMBNAILFeature extraction for nonintrusive load monitoring based on S-Transform.PNG.jpgFeature extraction for nonintrusive load monitoring based on S-Transform.PNG.jpgUDESimage/jpeg2164https://repositorio.udes.edu.co/bitstreams/9f78b829-63ce-4c01-8609-1e11eca64f0a/downloade1aa6b9310ed783cb1447725531e1e37MD53Feature extraction for nonintrusive load monitoring based on S-Transform.pdf.jpgFeature extraction for nonintrusive load monitoring based on S-Transform.pdf.jpgGenerated Thumbnailimage/jpeg7662https://repositorio.udes.edu.co/bitstreams/7851eaf3-4c57-44fe-81a8-71b2b2879dc5/download329071f765038ffcd315672a04ad097aMD57LICENSElicense.txtlicense.txttext/plain; charset=utf-859https://repositorio.udes.edu.co/bitstreams/6ae71d56-3132-4a18-88a0-db0c9243ff1a/download38d94cf55aa1bf2dac1a736ac45c881cMD52ORIGINALFeature extraction for nonintrusive load monitoring based on S-Transform.pdfFeature extraction for nonintrusive load monitoring based on S-Transform.pdfapplication/pdf214036https://repositorio.udes.edu.co/bitstreams/946bc5d5-1cdd-48e8-9d36-4ba831600772/download24e03ac3c5077026c892e7c90f7428e5MD55TEXTFeature extraction for nonintrusive load monitoring based on S-Transform.pdf.txtFeature extraction for nonintrusive load monitoring based on S-Transform.pdf.txtExtracted texttext/plain5https://repositorio.udes.edu.co/bitstreams/a340536c-d72a-4f10-b03c-a3b079a5297c/download5dbe86c1111d64f45ba435df98fdc825MD56001/3549oai:repositorio.udes.edu.co:001/35492023-10-11 12:13:14.004https://creativecommons.org/licenses/by/4.0/Derechos Reservados - Universidad de Santander, 2014https://repositorio.udes.edu.coRepositorio Universidad de Santandersoporte@metabiblioteca.comTGljZW5jaWEgZGUgUHVibGljYWNpw7NuIFVERVMKRGlyZWN0cmljZXMgZGUgVVNPIHkgQUNDRVNPCgo= |