Determinación del Potencial de Citotoxicidad de Parasporinas tipo PS2Aa1 Obtenidas por Evolución Dirigida, en Células de Cáncer de Colon SW-480 y SW-620
Digital
- Autores:
-
Sánchez-Ballesteros, Laura Milena
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Santander
- Repositorio:
- Repositorio Universidad de Santander
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.udes.edu.co:001/5528
- Acceso en línea:
- https://repositorio.udes.edu.co/handle/001/5528
- Palabra clave:
- Bacillus thuringiensis
Parasporins
Site-Directed mutagenesis
Parasporinas
Mutagénesis sitio-dirigida
- Rights
- openAccess
- License
- Derechos Reservados - Universidad de Santander, 2021
id |
RUDES2_92fcad62cb304e9ff19ca7f9d4b52220 |
---|---|
oai_identifier_str |
oai:repositorio.udes.edu.co:001/5528 |
network_acronym_str |
RUDES2 |
network_name_str |
Repositorio Universidad de Santander |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Determinación del Potencial de Citotoxicidad de Parasporinas tipo PS2Aa1 Obtenidas por Evolución Dirigida, en Células de Cáncer de Colon SW-480 y SW-620 |
title |
Determinación del Potencial de Citotoxicidad de Parasporinas tipo PS2Aa1 Obtenidas por Evolución Dirigida, en Células de Cáncer de Colon SW-480 y SW-620 |
spellingShingle |
Determinación del Potencial de Citotoxicidad de Parasporinas tipo PS2Aa1 Obtenidas por Evolución Dirigida, en Células de Cáncer de Colon SW-480 y SW-620 Bacillus thuringiensis Parasporins Site-Directed mutagenesis Parasporinas Mutagénesis sitio-dirigida |
title_short |
Determinación del Potencial de Citotoxicidad de Parasporinas tipo PS2Aa1 Obtenidas por Evolución Dirigida, en Células de Cáncer de Colon SW-480 y SW-620 |
title_full |
Determinación del Potencial de Citotoxicidad de Parasporinas tipo PS2Aa1 Obtenidas por Evolución Dirigida, en Células de Cáncer de Colon SW-480 y SW-620 |
title_fullStr |
Determinación del Potencial de Citotoxicidad de Parasporinas tipo PS2Aa1 Obtenidas por Evolución Dirigida, en Células de Cáncer de Colon SW-480 y SW-620 |
title_full_unstemmed |
Determinación del Potencial de Citotoxicidad de Parasporinas tipo PS2Aa1 Obtenidas por Evolución Dirigida, en Células de Cáncer de Colon SW-480 y SW-620 |
title_sort |
Determinación del Potencial de Citotoxicidad de Parasporinas tipo PS2Aa1 Obtenidas por Evolución Dirigida, en Células de Cáncer de Colon SW-480 y SW-620 |
dc.creator.fl_str_mv |
Sánchez-Ballesteros, Laura Milena |
dc.contributor.advisor.none.fl_str_mv |
Suárez-Barrera, Miguel Orlando Rueda-Forero, Nohora Juliana |
dc.contributor.author.none.fl_str_mv |
Sánchez-Ballesteros, Laura Milena |
dc.subject.proposal.eng.fl_str_mv |
Bacillus thuringiensis Parasporins Site-Directed mutagenesis |
topic |
Bacillus thuringiensis Parasporins Site-Directed mutagenesis Parasporinas Mutagénesis sitio-dirigida |
dc.subject.proposal.spa.fl_str_mv |
Parasporinas Mutagénesis sitio-dirigida |
description |
Digital |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-20T20:25:06Z |
dc.date.available.none.fl_str_mv |
2021-08-20T20:25:06Z |
dc.date.issued.none.fl_str_mv |
2021-01-28 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.local.none.fl_str_mv |
T 33.21 S162d |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.udes.edu.co/handle/001/5528 |
identifier_str_mv |
T 33.21 S162d |
url |
https://repositorio.udes.edu.co/handle/001/5528 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad de Santander, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Derechos Reservados - Universidad de Santander, 2021 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
85 p |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Bucaramanga : Universidad de Santander, 2021 |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Exactas, Naturales y Agropecuarias |
dc.publisher.place.spa.fl_str_mv |
Bucaramanga, Colombia |
dc.publisher.program.spa.fl_str_mv |
Microbiología Industrial |
institution |
Universidad de Santander |
bitstream.url.fl_str_mv |
https://repositorio.udes.edu.co/bitstreams/daae943d-a035-4208-aa94-20274b59a1de/download https://repositorio.udes.edu.co/bitstreams/a67f62b4-c88c-408b-91d1-cfc849d68a86/download https://repositorio.udes.edu.co/bitstreams/3fe5e452-5897-49c8-8c60-f6db70483103/download https://repositorio.udes.edu.co/bitstreams/307a5048-eebc-4f45-a55f-89d282f2aeeb/download |
bitstream.checksum.fl_str_mv |
38d94cf55aa1bf2dac1a736ac45c881c c4fd0a6197271304c8c2ba5485b6bea9 412e5bf1ac322a7c71876fd72ef130f9 90e8554fe971821c1e48b76b4b9be62d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Santander |
repository.mail.fl_str_mv |
soporte@metabiblioteca.com |
_version_ |
1814158627453272064 |
spelling |
Suárez-Barrera, Miguel Orlando335becb1-2371-418a-acf8-21265141ac00Rueda-Forero, Nohora Julianafdefebdb-5a74-4c59-ba33-4ff4cc09bca4Sánchez-Ballesteros, Laura Milena11ac3a08-9050-4fa4-854b-0675d12b00372021-08-20T20:25:06Z2021-08-20T20:25:06Z2021-01-28DigitalBacillus thuringiensis es una bacteria Gram positiva estudiada por la producción de cristales parasporales con potencial insecticida. Recientemente, se descubrió un nuevo grupo de proteínas cristal, denominadas como parasporinas. Dentro de este nuevo grupo, se destaca la parasporina 2(PS2Aa1), que se caracteriza por exhibir efectos citotóxicos frente a diversas líneas celulares de cáncer de colon, estableciéndose como una posible alternativa a los tratamientos tradicionales para combatir esta enfermedad. Sin embargo, actualmente no se encuentra bien definido su mecanismo de acción ni los receptores involucrados. Con la actual investigación se emplearon tecnologías de mutagénesis sitio-dirigidas, con el fin de obtener variantes de PS2Aa1 mejoradas. Para ello, primero se realizó un estudio in silicio de la proteína, para buscar secuencias homologas y dominios conservados, y llevar a cabo el diseño de los primers. Luego se realizó transformación para incorporar el gen de interés con el vector pET30a a las células DE3BL21. Se llevaron a cabo los ensayos de mutagénesis sitio-dirigida asistida con PCR para obtener las mutantes a partir de PS2Aa1; a partir de la biblioteca producida, se hicieron ensayos de citotoxicidad por medio del Kit Sulforhodamine B Cell Cytoxicity Assay en células de cáncer de colon SW-480 y SW-620. A partir de estos, se pudo determinar que PS2Aa1 poseía dominios conservados de familias de proteínas β-PFT de tipo aerolisina. A partir de la mutagénesis se logró obtener una librería de numerosas mutantes, en donde solo 6 presentaron las mutaciones de interés. En los ensayos de citotoxicidad, se evidenciaron 4 mutantes que inhibieron el crecimiento de las células cancerígenas. Sin embargo, las mutantes presentaron inhibición de crecimiento en las células CHO-K1, aunque menor con respecto a la nativa, por lo cual es necesario llevar a cabo más estudios con el fin de establecer si dichos cambios fueron significativos en la estructura-función de la proteína.Bacillus thuringiensis is a Gram-positive bacterium studied for the production of parasporal crystals with insecticide potential. Recently, a new group of crystal proteins, called parasporins, was discovered. Within this new group, parasporin 2 (PS2Aa1) stands out, which is characterized by displaying cytotoxic effects against various colon cancer cell lines, establishing itself as a possible alternative to traditional treatments to combat this disease. However, its mechanism of action and the recipients involved are currently not well defined. Current research used site-directed mutagenesis technologies to obtain improved PS2Aa1 variants. To do this, we first conducted an-in silicon study of the protein, to look for homologous sequences and conserved domains, and to carry out the design of primers. Transformation was then performed to incorporate the gene of interest with the pET30a vector into the DE3BL21 cells. PCR-assisted site-directed mutagenesis assays were conducted to obtain mutants from PS2Aa1; from the produced library, cytotoxicity assays using the Sulforhodamine B Cell Cytoxicity Assay Kit were performed on colon cancer cells SW-480 and SW-620. From these, it was possible to determine that PS2Aa1 possessed conserved domains of family of aerolysine-type β-PFT proteins. From the mutagenesis it was possible to obtain a library of numerous mutants, where only 6 presented mutations of interest. In cytotoxicity trials, 4 mutants were shown to inhibit the growth of cancer cells. However, mutants presented growth inhibition in CHO-K1 cells, although less than native, so it is necessary to carry out more studies in order to establish if such changes were significant in the structure-function of the protein.PregradoMicrobiólogo Industrial1 ed.Resumen ..................................................................................................................................11 Abstract.....................................................................................................................................13 Introducción ..............................................................................................................................15 1. Planteamiento del Problema ..............................................................................................19 2. Justificación .......................................................................................................................21 3. Pregunta de Investigación ..................................................................................................24 4. Hipótesis ............................................................................................................................25 4.1. Hipótesis de Investigación. ..................................................................................25 4.2. Hipótesis Nula. .....................................................................................................25 4.3. Hipótesis Alternativa. ...........................................................................................25 5. Objetivos ............................................................................................................................26 5.1. Objetivo General. .................................................................................................26 5.2. Objetivos Específicos. ..........................................................................................26 6. Marco Referencial ..............................................................................................................27 6.1. Generalidades de Bacillus thuringiensis (Bt) ........................................................27 6.2. Parasporinas........................................................................................................29 6.3. Parasporina 2Aa1 ................................................................................................31 6.4. Estructura de la PS2Aa1 ......................................................................................32 6.5. Mecanismo de Acción de la PS2Aa1 ...................................................................34 6.6. Técnica de Mutagénesis Sitio-Dirigida para el Mejoramiento de Proteínas ..........37 7. Marco Legal .......................................................................................................................40 8. Método ...............................................................................................................................41 8.1. Diseño del Estudio: ..............................................................................................41 8.2. Metodología .........................................................................................................41 8.2.1.Identificación In Sillico de las Regiones de Interés para el Diseño de Primers. 41 8.2.2.Diseño de Primers para la Mutagénesis. .....................................................41 8.2.3.Cepas Bacterianas y Condiciones de Cultivo ..............................................42 8.2.4.Transformación del Plásmido pET30A+PS2Aa1 en Células de E. coli DE3BL21. ..........................................................................................................................42 8.2.5.Extracción de ADN Plasmídico y Ensayos de Restricción de pET30a-PS2Aa1. 43 8.2.6.Ensayos de Mutagénesis por Medio del Kit GeneArt Site-Directed Mutagenesis Plus. ..............................................................................................................44 8.2.7.Extracción de ADN Plasmídico de las Mutantes de PS2Aa1 y Cuantificación. 46 8.2.8.Extracción de Proteínas y Cuantificación por Medio de Método de Bradford 46 8.2.9.Tratamientos con Proteínasa K para la Activación de las Mutantes. ...........47 8.3.Líneas Celulares ............................................................................................47 8.3.1.Ensayos de Citotoxicidad de las Mutantes de PS2Aa1 en Células de Cáncer de Colon SW-480 y SW-620. .............................................................................................47 8.3.2.Análisis Estadístico de los Datos.................................................................48 9. Resultados .........................................................................................................................49 10. Discusión ...........................................................................................................................65 11. Conclusiones .....................................................................................................................72 12. Recomendaciones .............................................................................................................74 Referencias Bibliográficas .........................................................................................................75 Apéndices .................................................................................................................................8585 papplication/pdfT 33.21 S162dhttps://repositorio.udes.edu.co/handle/001/5528spaBucaramanga : Universidad de Santander, 2021Facultad de Ciencias Exactas, Naturales y AgropecuariasBucaramanga, ColombiaMicrobiología IndustrialDerechos Reservados - Universidad de Santander, 2021info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Bacillus thuringiensisParasporinsSite-Directed mutagenesisParasporinasMutagénesis sitio-dirigidaDeterminación del Potencial de Citotoxicidad de Parasporinas tipo PS2Aa1 Obtenidas por Evolución Dirigida, en Células de Cáncer de Colon SW-480 y SW-620Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_71e4c1898caa6e32Todas las AudienciasAbcam. (2018). Sulforhodamine B Cell Cytotoxicity Assay Kit. 408, 2. http://www.biovision.com/documentation/datasheets/K943.pdf.Abe, Yuich, Inoue, H., Ashida, H., Maeda, Y., Kinoshita, T., & Kitada, S. (2017). Glycan region of GPI anchored-protein is required for cytocidal oligomerization of an anticancer parasporin-2, Cry46Aa1 protein, from Bacillus thuringiensis strain A1547. Journal of Invertebrate Pathology, 142, 71–81. https://doi.org/10.1016/j.jip.2016.11.008.Abe, Yuichi, Shimada, H., & Kitada, S. (2008). Raft-targeting and oligomerization of parasporin-2, a Bacillus thuringiensis crystal protein with anti-tumour activity. Journal of Biochemistry, 143(2), 269–275. https://doi.org/10.1093/jb/mvm220.Akiba, T., Abe, Y., Kitada, S., Kusaka, Y., Ito, A., Ichimatsu, T., Katayama, H., Akao, T., Higuchi, K., Mizuki, E., Ohba, M., Kanai, R., & Harata, K. (2004). Crystallization of parasporin-2, a Bacillus thuringiensis crystal protein with selective cytocidal activity against human cells. Acta Crystallographica Section D: Biological Crystallography, 60(12 II), 2355–2357. https://doi.org/10.1107/S0907444904026307.Akiba, T., Mizuki, E., Katayama, H., Higuchi, K., Kusaka, Y., Abe, Y., Harata, K., Ohba, M., Ichimatsu, T., Ito, A., Kitada, S., Kanai, R., & Akao, T. (2009). Crystal Structure of the Parasporin-2 Bacillus thuringiensis Toxin That Recognizes Cancer Cells. Journal of Molecular Biology, 386(1), 121–133. https://doi.org/10.1016/j.jmb.2008.12.002.Akiba, T., & Okumura, S. (2017). Parasporins 1 and 2: Their structure and activity. Journal of Invertebrate Pathology, 142(October), 44–49. https://doi.org/10.1016/j.jip.2016.10.005Aktar, N., Karim, M. M., Khan, S., & Begum, A. (2019). In silico Studies of Parasporin Proteins : Structural and Functional Insights and Proposed Cancer Cell Killing Mechanism for Parasporin 5 and 6. May. https://doi.org/10.25163/microbbioacts.21007A0621280219Al-hilu, S. A. (2020). Dual Role of Bacteria in Carcinoma : Stimulation and Inhibition. 2020.Aldeewan, A., & Zhang, Y. (2016). Bacillus thuringiensis Parasporins Functions on Cancer Cells Bacillus thuringiensis Parasporins Functions on Cancer Cells. International Journal of Pure & Applied Bioscience, 2(4), 67–74.Assaeedi, A. S., & Osman, G. H. (2017). Isolation, Cloning, DNA Sequencing and Bioinformatics Analysis of the Parasporin–1 Gene of Bacillus thuringiensis. Journal of Proteomics & Bioinformatics, 10(5). https://doi.org/10.4172/jpb.1000435Bachman, J. (2013). Site-directed mutagenesis. In Methods in Enzymology (1st ed., Vol. 529). Elsevier Inc. https://doi.org/10.1016/B978-0-12-418687-3.00019-7Baindara, P., & Mandal, S. M. (2020). Biochimie Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie, 177, 164–189. https://doi.org/10.1016/j.biochi.2020.07.020Balabanova, L., Golotin, V., Podvolotskaya, A., & Rasskazov, V. (2015). Genetically modified proteins: Functional improvement and chimeragenesis. Bioengineered, 6(5), 262–274. https://doi.org/10.1080/21655979.2015.1075674Beena, V., Ramnath, V., Sreekumar, K. P., Karthiayini, K., Philomina, P. T., & Girija, D. (2019). Crystal Protein of a Novel Bacillus thuringiensis Strain Inducing Cell Cycle Arrest and Apoptotic Cell Death in Human Leukemic Cells. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-45928-zBlasco, A. (2019). Toxicidad de los tratamientos oncológicos. Sociedad Española de Oncología Médica, 1–4. https://seom.org/guia-actualizada-de-tratamientos/toxicidad-de-los-tratamientos-oncologicos?showall=1Brasseur, K., Auger, P., Asselin, E., Parent, S., Côté, J. C., & Sirois, M. (2015). Parasporin-2 from a new bacillus thuringiensis 4r2 strain induces caspases activation and apoptosis in human cancer cells. PLoS ONE, 10(8), 1–22. https://doi.org/10.1371/journal.pone.0135106Briggs, D. C., Naylor, C. E., Iii, J. G. S., Lukoyanova, N., Robertson, S., Moss, D. S., Mcclane, B. A., & Basak, A. K. (2011). Structure of the Food-Poisoning Clostridium perfringens Enterotoxin Reveals Similarity to the Aerolysin-Like Pore-Forming Toxins. Journal of Molecular Biology, 413(1), 138–149. https://doi.org/10.1016/j.jmb.2011.07.066Castañet-Martínez, C. E., & Moreno-reyes, S. (2016). Bacillus thurinngiennsis : Características y uso en el control de Aedes aegypti.Chakrabarty, A. M., Bernardes, N., & Fialho, A. M. (2014). Bacterial proteins and peptides in cancer therapy. Bioengineered, 5(4), 234–242. https://doi.org/10.4161/bioe.29266Chubicka, T., Girija, D., Deepa, K., Salini, S., Meera, N., Raghavamenon, A. C., Divya, M. K., & Babu, T. D. (2018). A parasporin from Bacillus thuringiensis native to Peninsular India induces apoptosis in cancer cells through intrinsic pathway. Journal of Biosciences, 43(2), 407–416. https://doi.org/10.1007/s12038-018-9759-0Cirauqui, N., Abriata, L. A., Van Der Goot, F. G., & Dal Peraro, M. (2017). Structural, physicochemical and dynamic features conserved within the aerolysin pore-forming toxin family. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-13714-4Crickmore, N., Berry, C., Panneerselvam, S., Mishra, R., Connor, T. R., & Bonning, B. C. (2020). A structure-based nomenclature for Bacillus thuringiensis and other bacteria-derived pesticidal proteins. Journal of Invertebrate Pathology, July, 107438. https://doi.org/10.1016/j.jip.2020.107438De, E., & Min, T. (2019). Medio SOC Test microbiológico. 5–6.Domanska, B. (2016). Mode of action of a human cancer cell active toxin (Parasporin-3) from Bacillus thuringiensis. 318. https://doi.org/http://sro.sussex.ac.uk/66159/1/Domanska,%20Barbara.pdfDubey, K. K., Pramanik, A., Ankush, Khushboo, & Yadav, J. (2019). Enzyme engineering. Biomass, Biofuels, Biochemicals: Advances in Enzyme Technology, 325–347. https://doi.org/10.1016/B978-0-444-64114-4.00012-1Edelheit, O., Hanukoglu, A., & Hanukoglu, I. (2009). Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnology, 9, 1–8. https://doi.org/10.1186/1472-6750-9-61Ekino, K., Okumura, S., Ishikawa, T., Kitada, S., Saitoh, H., Akao, T., Oka, T., Nomura, Y., Ohba, M., Shin, T., & Mizuki, E. (2014). Cloning and characterization of a unique cytotoxic protein parasporin-5 produced by Bacillus thuringiensis a1100 strain. Toxins, 6(6), 1882–1895. https://doi.org/10.3390/toxins6061882Elsevier. (2019). Muerte celular: apoptosis, necrosis y autofagia. Elsevier. https://www.elsevier.com/es-es/connect/medicina/bioquimica-muerte-celular-apoptosis-necrosis-y-autofagiaEngland, P. H. (2017). Cell line profile CHO K1 ECACC. European Collection of Authenticated Cell Cultures, 2780(93112519), 1–3. https://www.phe-culturecollections.org.uk/media/133182/mda-mb-231-cell-line-profile.pdfFederici, Brian A., Park, Hyun-Woo & Bideshi, D. K. (2013). Overview of the Basic Biology of Bacillus thuringiensis with Emphasis on Genetic Engineering of Bacterial Larvicides for Mosquito Control. The Open Toxinology Journal, 3(1), 83–100. https://doi.org/10.2174/1875414701003010083Ge, A. Z., Rivers, D., Milne, R., & Dean, D. H. (1991). Functional domains of Bacillus thuringiensis insecticidal crystal proteins: Refinement of heliothis virescens and Trichoplusia ni specificity domains on CryIA(c). Journal of Biological Chemistry, 266(27), 17954–17958. https://doi.org/10.1016/s0021-9258(18)55221-2GeneArt ® Site-Directed Mutagenesis PLUS System. (2013). 3–5.Globocan. (2019). Colorectal cancer. 876, 1–2.Globocan. (2020). El cáncer será la causa de 10 millones de muertes en este año. https://mundodehoy.com/2020/12/15/segun-globocan-2020-el-cancer-sera-la-causa-de-10-millones-de-muertes-en-este-ano/Gómez, I., Ocelorl, J., Lima, C., Martins, E., Rosales-Juárez, A., Sotero, M., Abad, A., Dong, H., Peña, G., Zhang, J., Nelson, M., Wu, G., Bravo, A., & Soberón, M. (2018). Toxicity to Spodoptera frugiperda by Domain III Mutations Indicates There Are Two Limiting Steps in Toxicity as Defined by Receptor Binding and Protein Stability. American Society for Microbiology, 84(20), 1–11.Gómez, I., Ocelotl, J., Sánchez, J., Aguilar-Medel, S., Peña-Chora, G., Lina-Garcia, L., Bravo, A., & Soberón, M. (2020). Bacillus thuringiensis Cry1Ab Domain III β-22 Mutants with Enhanced Toxicity to Spodoptera frugiperda (J. E. Smith) . Applied and Environmental Microbiology, 86(22). https://doi.org/10.1128/aem.01580-20Gutiérrez, R. C. (2016). Toxicidad aguda por 5- fluorouracilo durante el período de Abril a Diciembre del año 2016 en el Hospital Escuela.Herrera Pineda, D. (2018). Análisis estructural y determinación de la actividad tóxica de las mutantes 8cry11.Hoa, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., & Peasea, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. 77, 51–59.Hou, J., Cong, R., Izumi-Willcoxon, M., Ali, H., Zheng, Y., Bermudez, E., McDonald, M., Nelson, M., & Yamamoto, T. (2019). Engineering of bacillus thuringiensis cry proteins to enhance the activity against western corn rootworm. Toxins, 11(3), 1–18. https://doi.org/10.3390/toxins11030162Hussain, H., & Chong, N. F. M. (2016). Combined Overlap Extension PCR Method for Improved Site Directed Mutagenesis. BioMed Research International, 2016. https://doi.org/10.1155/2016/8041532Hutchison, A., Phillips, S., Edge, H., & Vt, W. (1978). Mutagenesis at a Specific Position in a DNA Sequence *. 253(18), 6551–6560.Ibrahim, M. A., Griko, N., Junker, M., & Bulla, L. A. (2010). Bacillus thuringiensis A genomics and proteomics perspective. Bioengineered Bugs, 1(1), 31–50. https://doi.org/10.4161/bbug.1.1.10519Instituto Nacional del Cáncer. (2015). ¿ Qué es el cáncer ? Conjunto de relacionadas. 1–8.Jurat-Fuentes, J. L., & Crickmore, N. (2017). Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. Journal of Invertebrate Pathology, 142, 5–10. https://doi.org/10.1016/j.jip.2016.07.018Katayama, H., Kusaka, Y., Yokota, H., Akao, T., Kojima, M., Nakamura, O., Mekada, E & Mizuki, E. (2007). Parasporin-1 , a Novel Cytotoxic Protein from Bacillus thuringiensis , Induces Ca ؉ 2 Influx and a Sustained Elevation of the Cytoplasmic Ca 2 ؉ Concentration in Toxin- sensitive Cells *. The Journal of Biological Chemistry, 282(10), 7742–7752. https://doi.org/10.1074/jbc.M611382200Kitada, S., Abe, Y., Shimada, H., Kusaka, Y., Matsuo, Y., Katayama, H., Okumura, S., Akao, T., Mizuki, E., Kuge, O., Sasaguri, Y., Ohba, M., & Ito, A. (2006). Cytocidal Actions of Parasporin-2, an Anti-tumor Crystal Toxin from Bacillus thuringiensis. Journal of Biological Chemistry, 281(36), 26350–26360. https://doi.org/10.1074/JBC.M602589200Laliani, G., Sorboni, S. G., Lari, R., & Yaghoubi, A. (2020). Bacteria and cancer : Di ff erent sides of the same coin. 246(January). https://doi.org/10.1016/j.lfs.2020.117398Luo, Q., Chen, Y., Xia, J., Wang, K. Q., Cai, Y. J., Liao, X. R., & Guan, Z. B. (2018). Functional expression enhancement of Bacillus pumilus CotA-laccase mutant WLF through site-directed mutagenesis. Enzyme and Microbial Technology, 109(July), 11–19. https://doi.org/10.1016/j.enzmictec.2017.07.013Machado, D. H. B., do Livramento, K. G., Máximo, W. P. F., Negri, B. F., Paiva, L. V., & Valicente, F. H. (2020). Molecular characterization of Bacillus thuringiensis strains to control Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) population. Revista Brasileira de Entomologia, 64(1), 1–6. https://doi.org/10.1590/1806-9665-RBENT-2019-47Mahalakshmi, A., & Shenbagarathai, R. (2010). Insilico structural analysis of parasporin 2 protein sequences of non-toxic bacillus thuringiensis. Journal of Biomedical Science and Engineering, 03(04), 415–421. https://doi.org/10.4236/jbise.2010.34057Martin-oliva, D., Martin-oliva, D., Muñoz-gámez, J. A., Aguilar-quesada, R., & Oliver, F. J. (2006). Poli ( ADP-Ribosa ) Polimerasa-1 : una proteína nuclear implicada en procesos inflamatorios , muerte celular y cáncer. May 2014.Martínez, A. (2012). Del cáncer.Martínez, C., & Caballero, P. (2002). Contents of cry genes and insecticidal toxicity of Bacillus thuringiensis strains from terrestrial and aquatic habitats. Journal of Applied Microbiology, 92(4), 745–752. https://doi.org/10.1046/j.1365-2672.2002.01579.xMartínez, T., Benítez, D., Zafra, T., & Pastor, F. (2005). Método isotópico para determinación de la enzima poli-ADP-ribosa polimerasa (PARP-1) en muestras biológicas. Quimica Clinica, 24(6), 464–467.Matus-Santos, J. A., Aguilar-Ponce, J. L., Lara-Medina, F. U., Herrera-Gómez, Á., Meneces-García, A., & López-Gamboa, M. (2016). Revisión del monitoreo farmacocinético del 5-fluorouracilo como herramienta para incrementar eficacia y seguridad. Rev Med Inst Mex Seguro Soc, 54(3), 354–362.Mckee, J. R. (2014). Aminoacidos, péptidos y prteínas. Bioquimica, Las Bases Moleculares de La Vida, 123–182.Mendoza-Almanza, G., Esparza-Ibarra, E. L., Ayala-Luján, J. L., Mercado-Reyes, M., Godina-González, S., Hernández-Barrales, M., & Olmos-Soto, J. (2020). The cytocidal spectrum of Bacillus thuringiensis toxins: From insects to human cancer cells. Toxins, 12(5), 1–22. https://doi.org/10.3390/toxins12050301Mizuki, E., Ohba, M., Akao, T., Yamashita, S., Saitoh, H., & Park, Y. S. (1999). Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions : in vitro cell-killing action on human cancer cells. 477–486.Nagamatsu, Y., Okamura, S., Saitou, H., Mizuki, E., Strain, M., Kill, P., & Hepatocyte, H. (2014). Three Cry Toxins in Two Types from Bacillus thuringiensis Strain M019 Preferentially Kill Human Hepatocyte Cancer and Uterus Cervix Cancer Cells Three Cry Toxins in Two Types from Bacillus thuringiensis. 8451(May). https://doi.org/10.1271/bbb.90615Ohba, M., Mizuki, E., & Uemori, A. (2009). Parasporin , a New Anticancer Protein Group from Bacillus thuringiensis. 434, 427–433.Okassov, A., Nersesyan, A., Kitada, S., & Ilin, A. (2015a). Parasporins as new natural anticancer agents : A review. March.Okassov, A., Nersesyan, A., Kitada, S., & Ilin, A. (2015b). Parasporins as new natural anticancer agents: A review. Journal of B.U.ON., 20(1), 5–16.Okumura, S., Saitoh, H., Ishikawa, T., Inouye, K., & Mizuki, E. (2011). Mode of action of parasporin-4, a cytocidal protein from Bacillus thuringiensis. Biochimica et Biophysica Acta - Biomembranes, 1808(6), 1476–1482. https://doi.org/10.1016/j.bbamem.2010.11.003Organización Mundial de la Salud. (2018). Cáncer. 1–7.Otvos, I. S., Schwartz, J., & Vincent, C. (2007). Proceedings edited by.Palma, L., Muñoz, D., Berry, C., Murillo, J., Caballero, P., & Caballero, P. (2014). Bacillus thuringiensis toxins: An overview of their biocidal activity. Toxins, 6(12), 3296–3325. https://doi.org/10.3390/toxins6123296Patyar, S., Joshi, R., Prasad Byrav, D., Prakash, A., Medhi, B., & Das, B. (2010). Bacteria _ Cancer Treatment Novel Experiment. Journal of Biomedical Science, 17, 21.Podobnik, M., Kisovec, M and Anderluh, G. (2017). Molecular mechanism of pore formation by aerolysin-like proteins.Reinoso-Pozo, Y., Del Rincón-Castro, M. C., & Ibarra, J. E. (2018). Significant increase in toxicity of the Cry1Ac1 protein of Bacillus thuringiensis by the exchange of two amino acids in its domain III. Biological Control, 125(June), 1–6. https://doi.org/10.1016/j.biocontrol.2018.06.006Rincón, G. S. (2019). El premio Nobel de química 2018: evolución dirigida de enzimas y anticuerpos. 30, 3–9. https://doi.org/10.22201/fq.18708404e.2019.1.68210Salas, P. F. (2018). Evolución dirigida, o c. 32, 4–10.Sauka, D. H. (2017). Bacillus thuringiensis : ¿ nuevas aplicaciones para un Bacillus thuringiensis : New applications for an old acquaintance ? 49(2), 124–125.Sher, D., Fishman, Y., Zhang, M., Lebendiker, M., Gaathon, A., Mancheño, J. M., & Zlotkin, E. (2005). Hydralysins, a new category of β-pore-forming toxins in cnidaria. Journal of Biological Chemistry, 280(24), 22847–22855. https://doi.org/10.1074/jbc.M503242200Soberón, M., Monnerat, R., & Bravo, A. (2016). Mode of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms. Microbial Toxins, September, 1–13. https://doi.org/10.1007/978-94-007-6725-6_28-1Soberón, M., Portugal, L., Garcia-Gómez, B. I., Sánchez, J., Onofre, J., Gómez, I., Pacheco, S., & Bravo, A. (2018). Cell lines as models for the study of Cry toxins from Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 93, 66–78. https://doi.org/10.1016/j.ibmb.2017.12.008Song, S., Vuai, M. S., & Zhong, M. (2018). Role of Bacteria in Cancer. Infectious Agents and Cancer, 1–7. https://doi.org/10.1186/s13027-018-0180-ySosa, R. D., Brandan, N., & Jeréz, J. (2012). Apoptosis. Facultad De Medicina Unne., 1, 6. https://med.unne.edu.ar/sitio/multimedia/imagenes/ckfinder/files/files/Carrera-Medicina/BIOQUIMICA/apoptosis.pdf%0Ahttps://med.unne.edu.ar/sitio/multimedia/imagenes/ckfinder/files/files/Carrera-Medicina/BIOQUIMICA/apoptosis.pdfSouissi, W., Kaloki, A., Etherington, S., Domanska, B., West, M. J., & Crickmore, N. (2019). Differential proteolytic activation of the Bacillus thuringiensis Cry41Aa parasporin modulates its anticancer effect. 60, 3805–3816.Studer, R. A., Dessailly, B. H., & Orengo, C. A. (2013). Residue mutations and their impact on protein structure and function: Detecting beneficial and pathogenic changes. Biochemical Journal, 449(3), 581–594. https://doi.org/10.1042/BJ20121221Tiewsiri, K., & Angsuthanasombat, C. (2007). Structurally conserved aromaticity of Tyr249 and Phe 264 in helix 7 is important for toxicity of the Bacillus thuringiensis Cry4Ba toxin. Journal of Biochemistry and Molecular Biology, 40(2), 163–171. https://doi.org/10.5483/bmbrep.2007.40.2.163TOPO TA Cloning et électroporation. (1999). Biofutur, 1999(192), 15. https://doi.org/10.1016/s0294-3506(99)80491-8Vekic, B., Dragojevic-simic, V., Jakovljevic, M., & Kalezic, M. (2020). A Correlation Study of the Colorectal Cancer Statistics and Economic Indicators in Selected Balkan Countries. 8(February), 1–8. https://doi.org/10.3389/fpubh.2020.00029Velásquez Cardona, L. F., Rojas Torres, D. S., & Cerón Salamanca, J. (2018). TOXINAS DE Bacillus thuringiensis CON ACTIVIDAD ANTICANCERÍGENA: PARASPORINAS. Revista Colombiana de Biotecnología, 20(2), 89–100. https://doi.org/10.15446/rev.colomb.biote.v20n2.73668Vílchez, S. (2020). Making 3D-cry toxin mutants: Much more than a tool of understanding toxins mechanism of action. Toxins, 12(9). https://doi.org/10.3390/toxins12090600Wiesner Ceballos, C., de Vries, E., Acosta Peñaloza, J. A., Pérez Acevedo, J. J., Gamboa Garay, O. A., Puerto Jiménez, D. N., & Salazar Fajardo, L. J. (2015). Manual para la detección temprana del cáncer de colon y recto. https://www.cancer.gov.co/files/libros/archivos/ColonXu, C., Wang, B. C., Yu, Z., & Sun, M. (2014). Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. In Toxins (Vol. 6, Issue 9). https://doi.org/10.3390/toxins6092732Yang, H., Li, J., Du, G., & Liu, L. (2017). Microbial Production and Molecular Engineering of Industrial Enzymes: Challenges and Strategies. In Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803725-6.00006-6Yilmaz, S., Cetin, A., & Temizgul, R. (2017). Bacillus thuringiensis Parasporins and Their Use in Controlling Cancer Cells. European Journal of Sustainable Development Research, 2(1), 57–62.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-859https://repositorio.udes.edu.co/bitstreams/daae943d-a035-4208-aa94-20274b59a1de/download38d94cf55aa1bf2dac1a736ac45c881cMD52ORIGINALDeterminacióndelpotencialdecitotoxicidaddeparasporinastipoPS2Aa1obtenidasporevolucióndirigida,encélulasdecáncerdecolonSW-480ySW-620.pdfDeterminacióndelpotencialdecitotoxicidaddeparasporinastipoPS2Aa1obtenidasporevolucióndirigida,encélulasdecáncerdecolonSW-480ySW-620.pdfDocumento Principalapplication/pdf1879333https://repositorio.udes.edu.co/bitstreams/a67f62b4-c88c-408b-91d1-cfc849d68a86/downloadc4fd0a6197271304c8c2ba5485b6bea9MD51TEXTDeterminacióndelpotencialdecitotoxicidaddeparasporinastipoPS2Aa1obtenidasporevolucióndirigida,encélulasdecáncerdecolonSW-480ySW-620.pdf.txtDeterminacióndelpotencialdecitotoxicidaddeparasporinastipoPS2Aa1obtenidasporevolucióndirigida,encélulasdecáncerdecolonSW-480ySW-620.pdf.txtExtracted texttext/plain101893https://repositorio.udes.edu.co/bitstreams/3fe5e452-5897-49c8-8c60-f6db70483103/download412e5bf1ac322a7c71876fd72ef130f9MD53THUMBNAILDeterminacióndelpotencialdecitotoxicidaddeparasporinastipoPS2Aa1obtenidasporevolucióndirigida,encélulasdecáncerdecolonSW-480ySW-620.pdf.jpgDeterminacióndelpotencialdecitotoxicidaddeparasporinastipoPS2Aa1obtenidasporevolucióndirigida,encélulasdecáncerdecolonSW-480ySW-620.pdf.jpgGenerated Thumbnailimage/jpeg6176https://repositorio.udes.edu.co/bitstreams/307a5048-eebc-4f45-a55f-89d282f2aeeb/download90e8554fe971821c1e48b76b4b9be62dMD54001/5528oai:repositorio.udes.edu.co:001/55282023-03-24 08:32:10.424https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad de Santander, 2021https://repositorio.udes.edu.coRepositorio Universidad de Santandersoporte@metabiblioteca.comTGljZW5jaWEgZGUgUHVibGljYWNpw7NuIFVERVMKRGlyZWN0cmljZXMgZGUgVVNPIHkgQUNDRVNPCgo= |