Actualización de los conceptos asociados con la regeneración celular en plantas

87 p. Cd

Autores:
Rueda Chacón, Natali
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad de Santander
Repositorio:
Repositorio Universidad de Santander
Idioma:
spa
OAI Identifier:
oai:repositorio.udes.edu.co:001/1063
Acceso en línea:
https://repositorio.udes.edu.co/handle/001/1063
Palabra clave:
Totipotencia
Diferenciación
Regeneración
In vitro
Rights
openAccess
License
Derechos Reservados - Universidad de Santander, 2019
id RUDES2_7ff8d0dde168df47e1b2eee5da1e91ac
oai_identifier_str oai:repositorio.udes.edu.co:001/1063
network_acronym_str RUDES2
network_name_str Repositorio Universidad de Santander
repository_id_str
dc.title.spa.fl_str_mv Actualización de los conceptos asociados con la regeneración celular en plantas
title Actualización de los conceptos asociados con la regeneración celular en plantas
spellingShingle Actualización de los conceptos asociados con la regeneración celular en plantas
Totipotencia
Diferenciación
Regeneración
In vitro
title_short Actualización de los conceptos asociados con la regeneración celular en plantas
title_full Actualización de los conceptos asociados con la regeneración celular en plantas
title_fullStr Actualización de los conceptos asociados con la regeneración celular en plantas
title_full_unstemmed Actualización de los conceptos asociados con la regeneración celular en plantas
title_sort Actualización de los conceptos asociados con la regeneración celular en plantas
dc.creator.fl_str_mv Rueda Chacón, Natali
dc.contributor.author.spa.fl_str_mv Rueda Chacón, Natali
dc.contributor.corporatename.spa.fl_str_mv Chacón Velasco, Martha-Rocío
dc.subject.proposal.spa.fl_str_mv Totipotencia
Diferenciación
Regeneración
In vitro
topic Totipotencia
Diferenciación
Regeneración
In vitro
description 87 p. Cd
publishDate 2019
dc.date.accessioned.spa.fl_str_mv 2019-02-07T20:20:19Z
dc.date.available.spa.fl_str_mv 2019-02-07T20:20:19Z
dc.date.issued.spa.fl_str_mv 2019-01-24
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str publishedVersion
dc.identifier.local.spa.fl_str_mv T 33.19 R822a
dc.identifier.uri.spa.fl_str_mv https://repositorio.udes.edu.co/handle/001/1063
identifier_str_mv T 33.19 R822a
url https://repositorio.udes.edu.co/handle/001/1063
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Akhtar, R., & Shahzad, A. (2018). Morphology and ontogeny of directly differentiating shoot buds and somatic embryos in Santalum album L . Journal of Forestry Research, 1–11. https://doi.org/10.1007/s11676-018-0679-5
Anis, M., & Ahmad, N. (2016). Plant Tissue Culture : Propagation , Conservation and Crop Improvement.India. Springer.
Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., Chriqui, D. (2009). Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. The Plant Journal, (57), 626–644. https://doi.org/10.1111/j.1365-313X.2008.03715.x
Arditti, J. (2008). Micropropagation of plants(Second Edition ed., Vol. Volume I y II.). Blackwell Publishing.1523 pp.
Azcón-Bieto, J., & Talón, M. (2000). Fundamentos de Fisiología Vegetal (1ed.). Barcelona.McGraw Hill Interamericana.
Azcón-Bieto, J., & Talón, M. (2013). Fundamentos de Fisiología Vegetal (3ra ed.). Barcelona.McGraw Hill Interamericana.
Bahadur, B., Rajam, M. V., Leela, S., & Krishnamurthy, K. V. (2015). Plant Biology and Biotechnology (Vol. II). New Delhi.India. Springer.
Bhojwani, S. S., & Dantu, P. K. (2013). Plant Tissue Culture : An Introductory Text. India.Springer
Birnbaum, K. D., & Alvarado, A. S. (2008). Slicing across Kingdoms: Regeneration in Plants and Animals. Cell, 132(4), 697–710. https://doi.org/10.1016/j.cell.2008.01.040
Birnbaum, K. D., & Sánchez Alvarado, A. (2008). Slicing across Kingdoms : Regeneration in Plants and Animals. Cell, 132(4), 697–710. https://doi.org/10.1016/j.cell.2008.01.040.Slicing
Borji, M., Bouamama, B., Farhat, G., & Caroline, C. (2017). Micromorphology , structural and ultrastructural changes during somatic embryogenesis of a Tunisian oat variety ( Avena sativa L . var ‘ Meliane ’). Plant Cell, Tissue and Organ Culture (PCTOC), 0(0), 0. https://doi.org/10.1007/s11240-017-1333-1
Xu, L. (2018). ScienceDirect De novo root regeneration from leaf explants : wounding , auxin , and cell fate transition. Current Opinion in Plant Biology, 41, 39–45. https://doi.org/10.1016/j.pbi.2017.08.004
Yant, L., & Bomblies, K. (2017). ScienceDirect Genomic studies of adaptive evolution in outcrossing Arabidopsis species. Current Opinion in Plant Biology, 36, 9–14. https://doi.org/10.1016/j.pbi.2016.11.018
Zhang, Z., Tucker, E., Hermann, M., & Laux, T. (2017). A Molecular Framework for the Embryonic Initiation of Shoot Meristem Stem Cells. Developmental Cell, 40(3), 264–277.e4. https://doi.org/10.1016/j.devcel.2017.01.002
Bustillo-Avedaño, E., Ibañez, S., Sanz, O., Sousa-Barros, J. A., Gude, I., Perianez-Rodriguez, Pérez-Pérez, J. M. (2017).Regulation of hormonal control, cell reprogramming and Plant Physiology. https://doi.org/10.1104/pp.17.00980
Buenavista,Teresa S. (2010). A guide book in orchid micropropagation, The plant biotechnology project. Mandaluyong, Filipinas: Rizal Technological University.
Byrne, M. E., Kidner, C. A., & Martienssen, R. A. (2003). Plant stem cells : divergent pathways and common themes in shoots and roots. Current Opinion in Genetics & Development, 13, 551–557. https://doi.org/10.1016/j.gde.2003.08.008
Cañas, B. M. C. . (1993). Metodologías in vitro de vegetales.Bucaramanga, Colombia. Universidad Industrial de Santander.
Cervantes-pérez, S. A., Espinal-, A., Oropeza-aburto, A., Caballero-, J., Falcon, F., Aragón-, A., Cruz-, A. (2018). Author ’ s Accepted Manuscript. Developmental Biology.https://doi.org/10.1016/j.ydbio.2018.04.018
Chahtane, H., & Tichtinsky, G. (2017). A flower is born : an update on Arabidopsis floral meristem formation Franc. Current Opinion in Plant Biology, 35, 15–22. https://doi.org/10.1016/j.pbi.2016.09.003
Che, P., Lall, S., & Howell, S. H. (2007). Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta, 226, 1183–1194. https://doi.org/10.1007/s00425-007-0565-4
Chutipaijit, S., & Sutjaritvorakul, T. (2018). Titanium dioxide ( TiO 2 ) Nanoparticles induced callus induction and plant regeneration of Indica rice. Digest Journal of Nanomaterials and Biostructures, 13(4), 1003–1010.
Domínguez-Rosales, M. S., González-Jiménez, M. de la luz, Rosales-Goméz, C., Quiñones-Valles, C., Delgadillo D.L., S., Mireles-Ordaz, S. J., & Pérez Molphe-Balch, E. (2008). El cultivo in vitro como herramienta para el aprovechamiento , mejoramiento y conservación de especies del género Agave. Investigación y Ciencia, Universidad(41), 53–62.
Dubrovsky, J. G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M. G., Friml, J., Shishkova, S., Benkova, E. (2008). Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proceedings of the National Academy of Sciences, 105(25), 8790–8794. https://doi.org/10.1073/pnas.0712307105
El-sherif, N. A. (2018). Impact of Plant Tissue Culture on Agricultural Sustainability. Sustainability of Agricultural Environment in Egypt: Part II – Soil-Water-Plant Nexus. https://doi.org/10.1007/698
Fehér, A. (2015a). Biochimica et Biophysica Acta Somatic embryogenesis — Stress-induced remodeling of plant cell fate ☆. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1849, 385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005
Fehér, A. (2015). Somatic embryogenesis - stress-induced remodeling of plant cell fate. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1849(4), 385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005
Gaillochet, C., & Lohmann, J. U. (2015). The never-ending story: from pluripotency to plant developmental plasticity. Development, 142(13), 2237–2249. https://doi.org/10.1242/dev.117614
García-Águila, L., Feria, M. De, & Autor, K. A. (2007). Aspectos básicos de la conservación in vitro de germoplasma vegetal. Biotecnología Vegetal, 7(2), 67–79.
Gordon, S. P., Heisler, M. G., Reddy, G. V., Ohno, C., Das, P., & Meyerowitz, E. M. (2007). Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development, 134(19), 3539–3548. https://doi.org/10.1242/dev.010298
Greb, T., & Lohmann, J. U. (2016). Plant Stem Cells. Current Biology, 26(17), R816–R821. https://doi.org/10.1016/j.cub.2016.07.070
Growth, P., Yang, S., Poretska, O., Sieberer, T., & Growth, P. (2018). Copyright 2018 by the American Society of Plant Biologists. https://doi.org/10.1104/pp.18.00252
Guo, X., Ji, L., Zhu, L., Song, L., Liu, S., Zang, Q., & Lin, X. (2017). Bamboo NiR gene is associated with regeneration capacity. The Journal of Horticultural Science and Biotechnology, 0316(July), 1–9. https://doi.org/10.1080/14620316.2017.1353894
Haque, S., Ahmad, J. S., Clark, N. M., Williams, C. M., & Sozzani, R. (2019). ScienceDirect Computational prediction of gene regulatory networks in plant growth and development. Current Opinion in Plant Biology, 47, 96–105. https://doi.org/10.1016/j.pbi.2018.10.005
Hays, J. B. (2002). Arabidopsis thaliana , a versatile model system for study of eukaryotic genome-maintenance functions. DNA Repair, 1, 579–600.
He, C., Chen, X., Huang, H., & Xu, L. (2012). Reprogramming of H3K27me3 Is Critical for Acquisition of Pluripotency from Cultured Arabidopsis Tissues. PLoS Genetics, 8(8), 1–14. https://doi.org/10.1371/journal.pgen.1002911
Heyman, J., Canher, B., Bisht, A., Christiaens, F., & Veylder, L. De. (2018). Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. Journal of Cell Biologists, 1–9.
Huylenbroeck, J. Van. (2018). Ornamental Crops. Bélgica . Springer
Ikeuchi, M., Iwase, A., Rymen, B., Lambolez, A., Kojima, M., Takebayashi, Y., … Sugimoto, K. (2017). Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiology Preview, 1–52. https://doi.org/10.1104/pp.17.01035
Ikeuchi, M., Ogawa, Y., Iwase, A., & Sugimoto, K. (2016). Plant regeneration : cellular origins and molecular mechanisms. The Company of Biologist, 143, 1442–1451. https://doi.org/10.1242/dev.134668
Ikeuchi, M., Shibata, M., Rymen, B., Iwase, A., Ba, A., Watt, L., … Science, R.(2018). A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration Special Focus Issue – Regular Paper, (February), 1–13. https://doi.org/10.1093/pcp/pcy013
Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant Callus : Mechanisms of Induction and Repression. The Plant Cell Online, 25(September), 3159–3173. https://doi.org/10.1105/tpc.113.116053
Iwase, A., Mita, K., Nonaka, S., & Ikeuchi, M. (2015). WIND1 ‑ based acquisition of regeneration competency in Arabidopsis and rapeseed. https://doi.org/10.1007/s10265-015-0714-y
Iwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Sakakibara, H. (2011). Report The AP2 / ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis. Current Biology, 21(6), 508–514. https://doi.org/10.1016/j.cub.2011.02.020
Kadokura, S., Sugimoto, K., Tarr, P., Suzuki, T., & Matsunaga, S. (2018). Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex. Developmental Biology. https://doi.org/10.1016/j.ydbio.2018.04.023
Kareem, A., Durgaprasad, K., Scheres, B., Prasad, K., Kareem, A., Durgaprasad, K., Trivedi, Z. B. (2015). Article PLETHORA Genes Control Regeneration by a Two- PLETHORA Genes Control Regeneration by a Two-Step Mechanism, 1–14. https://doi.org/10.1016/j.cub.2015.02.022
Kareem, A., Radhakrishnan, D., Wang, X., Bagavathiappan, S., Trivedi, Z. B., Sugimoto, K., … Prasad, K. (2016). Protocol: A method to study the direct reprogramming of lateral root primordia to fertile shoots. Plant Methods, 12(1), 1–14.https://doi.org/10.1186/s13007-016-0127-5
Kareem, A., Roy, M. V, Radhakrishnan, D., Sugimoto, K., Sondhi, Y., Aiyaz, M., & Prasad, K. (2016). De novo assembly of plant body plan : a step ahead of Deadpool, (June), 182–197. https://doi.org/10.1002/reg2.68
Kirakosyan, A., & Kaufman, P. B. (2009). Recent Advances in Plant Biotechnology. USA. Springer
Kumar, V., & Van Staden, J. (2017). New insights into plant somatic embryogenesis : an epigenetic view. Acta Physiologiae Plantarum, (194), 1–17. https://doi.org/10.1007/s11738-017-2487-5
Kozai, T. (1991). Acclimatization of micropropagated plants. Biotechnology in Agriculture and Forestry 17: High-Tech and Micropropagation, In: Bajaj Y. P. S. (Ed.)., 127-141.
Krikorian, A.D.(1991). Medios de cultivo:generalidades,composición y preparación. En Roca,W (1a ed),Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones Cali, (pp.64-66). Cali.Colombia. CIA
Landge, A. N., Radhakrishnan, D., Kareem, A., & Prasad, K. (2018). Intermediate Development Phases during Regeneration. Oxford University Press, (January). https://doi.org/10.1093/pcp/pcy011/4816718
Laplaze, L., Parizot, B., Baker, A., Ricaud, L., Martinière, A., Auguy, F., Haseloff, J. (2005). GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. Journal of Experimental Botany, 56(419), 2433–2442.https://doi.org/10.1093/jxb/eri236
Lavenus, J., Goh, T., Roberts, I., Guyomarc, S., Lucas, M., Smet, I. De,Laplaze, L. (2013). Lateral root development in Arabidopsis : fifty shades of auxin. Trends in Plant Science, 1–9. https://doi.org/10.1016/j.tplants.2013.04.006
Layola-Vargas, V. M., & Ochoa-Alejo, N. (2012). An introduction on Plant Cell Culture: The Future Ahead. (M. I. M. B. I. TM Series, Ed.) (3rd ed.).
Lee, K., & Seo, P. J. (2018). Dynamic Epigenetic Changes during Plant Regeneration. Trends in Plant Science, 23(3), 235–247. https://doi.org/10.1016/j.tplants.2017.11.009
Li, J., Wang, M., Li, Y., Zhang, Q., Lindsey, K., Daniell, H., … Kingdom, U. (2018). Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation (SRA) process, 0–3. https://doi.org/10.1111/pbi.12988
Liu, B., Zhang, J., Yang, Z., Matsui, A., Seki, M., Li, S., … Oka, Y. (2018). PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar. Plant Molecular Biology, 1–18. https://doi.org/10.1007/s11103-018-0786-x
Liu, H., Zhang, H., Dong, Y. X., Hao, Y. J., & Zhang, X. S. (2017). DNA methyltransferase -mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis, 1. https://doi.org/10.1111/nph.14814
Liu, J., Sheng, L., Xu, Y., Li, J., Yang, Z., Huang, H., & Xu, L. (2014). WOX11 and 12 Are Involved in the First-Step Cell Fate Transition during de Novo Root Organogenesis in Arabidopsis. Plant Cell Advanced Online, 7, 1–14. https://doi.org/10.1105/tpc.114.122887
Liu, Y., Chaturvedi, P., Fu, J., Cai, Q., Weckwerth, W., & Yang, P. (2015). Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus ( Nelumbo nucifera Gaertn . spp . baijianlian ). Journal of Proteomics. https://doi.org/10.1016/j.jprot.2015.10.010
Long, J.-M., Liu, C.-Y., Feng, M.-Q., Liu, Y., Wu, X.-M., & Guo, W.-W. (2018). miR156-SPLs module regulates somatic embryogenesis induction in citrus callus. Society for Experimental Biology, (April), 1–46. https://doi.org/10.1093/jxb/ery132/4961423
Ma, L., Liu, M., Yan, Y., Qing, C., Zhang, X., Zhang, Y., Shen, Y. (2018). Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies. Frontiers in Plant Science, 9(April), 1–15. https://doi.org/10.3389/fpls.2018.00561
Meinke, D. W., Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D., & Koornneef, M. (1998). Arabidopsis thaliana : A Model Plant for Genome Analysis. Science, 662(1998). https://doi.org/10.1126/science.282.5389.662
Nanda, A. K., & Melnyk, C. W. (2017). The role of plant hormones during grafting. Journal of Plant Research, 1–10. https://doi.org/10.1007/s10265-017-0994-5
Nor, S., Muhamad, S., Ling, A. P., & Wong, C. (2018). Effect of plant growth regulators on direct regeneration and callus induction from Sargassum polycystum C . Agardh.
Osorio-montalvo, P., Sáenz-Carbonell, L., & De-la-peña, C. (2018). 5-Azacytidine : A Promoter of Epigenetic Changes in the Quest to Improve Plant Somatic Embryogenesis. International Journal of Molecular Sciences, 19(October), 1–20. https://doi.org/10.3390/ijms19103182
Perez-garcia, P., & Moreno-risueno, M. A. (2018). Stem Cells and Plant Regeneration. Developmental Biology, Accepted M, 2–23. https://doi.org/10.1016/j.ydbio.2018.06.021
Perea, M. (2001). Biotecnología agrícola: Un enfoque hacia el mejoramiento de plantas. Bogotá, Colombia: Guadalupe Ltda.
Pierik, R. L. (1990). Cultivo in vitro de las plantas superiores. Dordrecht, Holanda: Ediciones Mundi-Prensa.
Pulianmackal, A. j., Kareem, A. V. K., Durgaprasad, K., Trivedi, Z. B., & Prasad, K. (2014). Competence and regulatory interactions during regeneration in plants. Frontiers in Plant Science, 5(April), 1–17. https://doi.org/10.3389/fpls.2014.00142
Radhakrishnan, D., Kareem, A., Durgaprasad, K., Sreeraj, E., Sugimoto, K., & Prasad, K. (2018). Shoot regeneration: a journey from acquisition of competence to completion. Current Opinion in Plant Biology, 41(Cim), 23–31. https://doi.org/10.1016/j.pbi.2017.08.001
Ricroch, A., Chopra, S., & Fleischer, S. (2014). Plant Biotechnology.USA. Springer
Roca, W. Mroginski, L. (1991). Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones Cali, Colombia.:CIAT.
Rybel, B. De, Mähönen, A. P., Helariutta, Y., & Weijers, D. (2015). Plant vascular development : from early specification to differentiation. Nature Publishing Group. https://doi.org/10.1038/nrm.2015.6
Sablowski, R. (2004). Plant and animal stem cells : conceptually similar , molecularly distinct ? Trends in Cell Biology, 14(11), 605–611. https://doi.org/10.1016/j.tcb.2004.09.011
Sang, Y. L., Cheng, Z. J., & Zhang, X. S. (2018). iPSCs : A Comparison between Animals and Plants. Trends in Plant Science, 23(8), 660–666. https://doi.org/10.1016/j.tplants.2018.05.008
Scheres, B. (2005). Stem Cells : A Plant Biology Perspective. Cell, 122, 499–504. https://doi.org/10.1016/j.cell.2005.08.006
Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., … Lohmann, J. U. (2005). A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37(5), 501–506. https://doi.org/10.1038/ng1543
Schmitz, R. J., & Ecker, J. R. (2012). Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends in Plant Science, 17(3), 149–154. https://doi.org/10.1016/j.tplants.2012.01.001
Schwab, W., Markus, B., & Matthias, L. (2018). Biotechnology of Natural Products.USA. Springer
Senior-Martinez, J.-E. (2016). La apasionante historia de la biología molecular. Academia Libre, 7(December 2009), 57–71.
Shahzad, A., Parveen, S., Sharma, S., Shaheen, A., Akhtar, R., Ahmad, Z., & Upadhyay, A. (2017). Plant Tissue Culture : Applications in Plant Improvement and Conservation. In Plant Biotechnology: Principles and Applications. (pp. 37–72). https://doi.org/10.1007/978-981-10-2961-5
Shin, J., & Seo, P. J. (2018). Varying Auxin Levels Induce Distinct Pluripotent States in Callus Cells. Frontiers in Plant Science, 9(November), 1–4. https://doi.org/10.3389/fpls.2018.01653
Stahl, Y., & Simon, R. (2005). Plant stem cell niches. International Journal of Developmental Biology, 49, 479–489. https://doi.org/10.1387/ijdb.041929ys
Su, Y. H., Liu, Y. B., & Zhang, X. S. (2011). Auxin-cytokinin interaction regulates meristem development. Molecular Plant, 4(4), 616–625. https://doi.org/10.1093/mp/ssr007
Sugimoto, K., Gordon, S. P., & Meyerowitz, E. M. (2011). Regeneration in plants and animals: Dedifferentiation, transdifferentiation, or just differentiation? Trends in Cell Biology, 21(4), 212–218. https://doi.org/10.1016/j.tcb.2010.12.004
Sugimoto, K., Jiao, Y., & Meyerowitz, E. M. (2010). Arabidopsis Regeneration from Multiple Tissues Occurs via a Root Development Pathway. Developmental Cell, 18(3), 463–471. https://doi.org/10.1016/j.devcel.2010.02.004
Sultana, M., & Gangopadhyay, G. (2018). Early expression of WUSCHEL is a marker for in vitro shoot morphogenesis in tobacco and Beta palonga. Plant Cell, Tissue and Organ Culture (PCTOC), 1–12. https://doi.org/10.1007/s11240-018-1421-x
Taiz, L., & Zeiger, E. (2002). Plant Physiology (3rd ed.). Sunderland . Sianuer ediciones
Teyssier, C., & Guérin, V. (2016). Vegetative propagation of larch species : somatic embryogenesis improvement towards its integration in breeding programs. Vegetative Propagation of Forest Tress, (2016), 551–571.
Trevaskis, B. (2018). Developmental Pathways Are Blueprints for Designing Successful Crops. Frontiers in Plant Science, 9(June), 1–19. https://doi.org/10.3389/fpls.2018.00745
Trinh, C. D., Laplaze, L., & Guyomarch, S. (2018). Lateral root formation: Building a mersitem de novo.(Vol. 1). https://doi.org/10.1002/9781119312994.apr0650
Tucker, M. R., & Laux, T. (2007). Connecting the paths in plant stem cell regulation. Trends in Cell Biology, 17(8), 403–410. https://doi.org/10.1016/j.tcb.2007.06.002
Tuskan, G. A., Mewalal, R., Gunter, L. E., Palla, K. J., Carter, K., Jacobson, D. A., … Muchero, W. (2018). Defining the genetic components of callus formation : A GWAS approach. PLOS One, 1–18.
Villalobos, V.M y Thorpe T.A.1991.Micropropagación.conceptos ,metodología y resultados.(1 ed).En Roca, W. Mroginski, L. Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones. (pp. 128-133).Cali, Colombia.:CIAT.
Verdeil, J. L., Alemanno, L., Niemenak, N., & Tranbarger, T. J. (2007). Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends in Plant Science, 12(6), 245–252. https://doi.org/10.1016/j.tplants.2007.04.002
Vogel, G. (2005). How Does a Single Somatic Cell Become A Whole Plant. Science, 309(July), 86.
Wang, S., & Schiefelbein, J. (2014). Regulation of cell fate determination in plants. Frontiers in Plant Science, 5(July), 1–2. https://doi.org/10.3389/fpls.2014.00368
Warghat, A. R., Thakur, K., & Sood, A. (2018). Plant stem cells : what we know and what is anticipated. Molecular Biology Reports, 0(0), 0. https://doi.org/10.1007/s11033-018-4344-z
White, P. R. (1939). Controlled Differentiation in a Plant Tissue Culture. Bulletin of the Torrey Botanical Club, 66(8), 507–513.
Williams, L., & Fletcher, J. C. (2005). Stem cell regulation in the Arabidopsis shoot apical meristem. Current Opinion in Plant Biology, 8(6), 582–586. https://doi.org/10.1016/j.pbi.2005.09.010
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad de Santander, 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv Derechos Reservados - Universidad de Santander, 2019
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Bucaramanga : Universidad de Santander, 2019
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Exactas, Naturales y Agropecuarias
dc.publisher.program.spa.fl_str_mv Microbiología Industrial
institution Universidad de Santander
bitstream.url.fl_str_mv https://repositorio.udes.edu.co/bitstreams/96b5d830-e985-4d58-b553-af27c37aa902/download
https://repositorio.udes.edu.co/bitstreams/f377501f-858d-401a-875e-a1969432a369/download
https://repositorio.udes.edu.co/bitstreams/786592b3-40b4-4f0d-ac14-b7ec112cb2a0/download
https://repositorio.udes.edu.co/bitstreams/72329b79-2096-421d-87ba-9757e9266965/download
bitstream.checksum.fl_str_mv 975f4d2a60c7d1f24b59d8ae47876527
193092b2f50b73e8f4df940543079ad0
38d94cf55aa1bf2dac1a736ac45c881c
d0ef471b8c4b0bae8ea96fb8a60f1af8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Santander
repository.mail.fl_str_mv soporte@metabiblioteca.com
_version_ 1808490874977386496
spelling Rueda Chacón, Natalif29ca963-5d7d-49eb-ae0e-fff648e7ab9f-1Chacón Velasco, Martha-Rocío2019-02-07T20:20:19Z2019-02-07T20:20:19Z2019-01-2487 p. CdIn a special edition of Science “what we don’t know?” dedicated to the 25 most important questions that scientists of all disciplines faced at the time, one of them was: “How does a single somatic cell from an adult plant?” the answer can be found in the theory of plant totipotency. This theory established that any somatic cell has the ability to regenerate into an adult plant. in contrast to this wildly accepted concept, recent research on plant regeneration has reported that: (i) cells that regenerate from an injured tissue don’t seem to have gone through dedifferentiation (ii) Callus are an organized and differentiated tissue, (iii) Callus don’t form from any type of somatic cell but predominantly, from a specific group of specialized adult stem cells. These results indicate that our view of plant regeneration needs a critical reanalysis. That is why there’s a need for a thorough review that allows the synthesis of the latest concepts related to plant regeneration, which could help give answers to fundamental questions of developmental plant biology. After an exhaustive review of the publications made in the last 18 years, it is possible to conclude that not all somatic cells are totipotent and that most of the process of regeneration on plants are carried away by meristematic stem cells and by a group of non-meristematic cells that have similar qualities to stem cells. The understanding of the molecular mechanisms through which plants regenerate is crucial for the advances of plant biotechnology. It is why the research that is done at a national and regional level, should not only take into account these new concepts but also contribute to the advances in this area of biotechnology.En una edición especial de la revista Science "¿Que no sabemos?", dedicada a las 25 preguntas más importantes que enfrentan los científicos de todas las disciplinas, una de las cuales fue: ¿cómo se forma una planta completa a partir de una célula somática? La respuesta se puede encontrar en la teoría de la capacidad totipotente de las células vegetales. La cual establece que todas las células somáticas de la planta poseen la capacidad de regenerar una planta completa. En contraste con esta teoría aceptada, recientes artículos científicos sobre la regeneración vegetal indican que: (i) las células vegetales regeneradas a partir de tejido dañado parecen no desdiferenciarse, (ii) los callos son un tejido organizado y diferenciado, (iii) los callos no se forman a partir de cualquier tipo de célula somática sino predominantemente a partir de una población especializada de células madre adultas. Estos resultados indican que nuestra visión actual de la regeneración vegetal necesita un reanálisis crítico. Por esta razón, se hace necesario contar con una revisión actualizada que permita sintetizar los últimos conceptos relacionados con la regeneración celular que ayude a responder a las preguntas fundamentales que se hace la biología del desarrollo vegetal. Tras una revisión exhaustiva de las últimas publicaciones realizadas en esta área, en los últimos 18 años, se puede concluir que no todas las células somáticas de la planta son totipotentes. y que la mayoría de los procesos de regeneración celular observados se dan a partir de células madre meristemáticas y células no meristemáticas con cualidades similares a las de las células madre. Es por esto que las investigaciones realizadas en el campo del cultivo in vitro de tejidos vegetales a nivel nacional y regional, deben, no solo tener en cuenta estos nuevos concepto, sino también aportar a los avances en el área de la biotecnología.PregradoMicrobiólogo IndustrialContenido Introducción ......................................... 2 Capítulo 1 ..................................................... 5 1. Técnicas biotecnológicas utilizadas en el estudio de la regeneración vegetal.............................5 Capítulo 2 ..........................................................................................................................15 2. Multiplicación vegetal .............................................................................15 2.1 Multiplicación sexual de plantas superiores .........................................................16 2.1.1 Embriogénesis cigótica ...................................................................................16 2.1.1.1 Meristemos primarios y secundarios .........................................................18 2.1.2 Reguladores de crecimiento vegetal ..............................................................20 2.1.2.1 Auxinas ....................................................................................................21 2.1.2.2 Citoquininas .............................................................................................22 2.1.2.3 Mecanismos de acción de las hormonas vegetales ..................................22 2.1.3 Diferenciación celular ...................................................................................25 2.2 Multiplicación asexual en plantas superiores ......................................................25 2.2.1 Cultivo in vitro de tejidos vegetales ..............................................................26 2.2.1.1 Micropropagación ....................................................................................27 2.2.1.2 Técnicas básicas de micropropagación ....................................................28 2.2.1.3 Fases de la micropropagación ..................................................................28 2.2.1.4 Factores que garantizan el éxito del cultivo .............................................29 2.2.1.5 Problemas asociados con el cultivo in vitro de tejidos vegetales .............30 Capítulo 3 .............................................................................................................. 32 3. Conceptos asociados a la regeneración vegetal ....................................32 3.1 Totipotencia celular: el dogma de la biología vegetal ..........................................32 3.2 Células madre vegetales .......................................................................................34 3.3 Células pericíclicas y similares a las pericíclicas ................................................37 3.4 Las diversas estrategias de regeneración vegetal..................................................38 3.4.1 Organogénesis directa .....................................................................................41 3.4.1.1 De raíz a brote ...........................................................................................43 3.4.1.2 De brote a raíz ..........................................................................................44 3.4.2 Organogénesis indirecta ..................................................................................45 3.4.2.1 El origen del callo .....................................................................................46 3.4.2.2 Características y organización celular del callo ........................................47 3.5 Diferenciación celular ............................................................................................48 3.5.1 Desdiferenciación ............................................................................................50 3.5.2 Transdiferenciación .........................................................................................50 3.6 Fases intermedias de la regeneración vegetal ........................................................51 3.6.1 Adquisición de competencias para la regeneración ........................................53 3.6.2 Formación de células progenitoras .................................................................55 3.6.3 Destino celular y patrones de desarrollo ................................................................... 56 4. Resumen y Análisis .................................................................................59 5. Conclusiones ...........................................................................................62 6. Bibliografía ..............................................................................................63Ej. 1application/pdfT 33.19 R822ahttps://repositorio.udes.edu.co/handle/001/1063spaBucaramanga : Universidad de Santander, 2019Facultad de Ciencias Exactas, Naturales y AgropecuariasMicrobiología IndustrialAkhtar, R., & Shahzad, A. (2018). Morphology and ontogeny of directly differentiating shoot buds and somatic embryos in Santalum album L . Journal of Forestry Research, 1–11. https://doi.org/10.1007/s11676-018-0679-5Anis, M., & Ahmad, N. (2016). Plant Tissue Culture : Propagation , Conservation and Crop Improvement.India. Springer.Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., Chriqui, D. (2009). Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. The Plant Journal, (57), 626–644. https://doi.org/10.1111/j.1365-313X.2008.03715.xArditti, J. (2008). Micropropagation of plants(Second Edition ed., Vol. Volume I y II.). Blackwell Publishing.1523 pp.Azcón-Bieto, J., & Talón, M. (2000). Fundamentos de Fisiología Vegetal (1ed.). Barcelona.McGraw Hill Interamericana.Azcón-Bieto, J., & Talón, M. (2013). Fundamentos de Fisiología Vegetal (3ra ed.). Barcelona.McGraw Hill Interamericana.Bahadur, B., Rajam, M. V., Leela, S., & Krishnamurthy, K. V. (2015). Plant Biology and Biotechnology (Vol. II). New Delhi.India. Springer.Bhojwani, S. S., & Dantu, P. K. (2013). Plant Tissue Culture : An Introductory Text. India.SpringerBirnbaum, K. D., & Alvarado, A. S. (2008). Slicing across Kingdoms: Regeneration in Plants and Animals. Cell, 132(4), 697–710. https://doi.org/10.1016/j.cell.2008.01.040Birnbaum, K. D., & Sánchez Alvarado, A. (2008). Slicing across Kingdoms : Regeneration in Plants and Animals. Cell, 132(4), 697–710. https://doi.org/10.1016/j.cell.2008.01.040.SlicingBorji, M., Bouamama, B., Farhat, G., & Caroline, C. (2017). Micromorphology , structural and ultrastructural changes during somatic embryogenesis of a Tunisian oat variety ( Avena sativa L . var ‘ Meliane ’). Plant Cell, Tissue and Organ Culture (PCTOC), 0(0), 0. https://doi.org/10.1007/s11240-017-1333-1Xu, L. (2018). ScienceDirect De novo root regeneration from leaf explants : wounding , auxin , and cell fate transition. Current Opinion in Plant Biology, 41, 39–45. https://doi.org/10.1016/j.pbi.2017.08.004Yant, L., & Bomblies, K. (2017). ScienceDirect Genomic studies of adaptive evolution in outcrossing Arabidopsis species. Current Opinion in Plant Biology, 36, 9–14. https://doi.org/10.1016/j.pbi.2016.11.018Zhang, Z., Tucker, E., Hermann, M., & Laux, T. (2017). A Molecular Framework for the Embryonic Initiation of Shoot Meristem Stem Cells. Developmental Cell, 40(3), 264–277.e4. https://doi.org/10.1016/j.devcel.2017.01.002Bustillo-Avedaño, E., Ibañez, S., Sanz, O., Sousa-Barros, J. A., Gude, I., Perianez-Rodriguez, Pérez-Pérez, J. M. (2017).Regulation of hormonal control, cell reprogramming and Plant Physiology. https://doi.org/10.1104/pp.17.00980Buenavista,Teresa S. (2010). A guide book in orchid micropropagation, The plant biotechnology project. Mandaluyong, Filipinas: Rizal Technological University.Byrne, M. E., Kidner, C. A., & Martienssen, R. A. (2003). Plant stem cells : divergent pathways and common themes in shoots and roots. Current Opinion in Genetics & Development, 13, 551–557. https://doi.org/10.1016/j.gde.2003.08.008Cañas, B. M. C. . (1993). Metodologías in vitro de vegetales.Bucaramanga, Colombia. Universidad Industrial de Santander.Cervantes-pérez, S. A., Espinal-, A., Oropeza-aburto, A., Caballero-, J., Falcon, F., Aragón-, A., Cruz-, A. (2018). Author ’ s Accepted Manuscript. Developmental Biology.https://doi.org/10.1016/j.ydbio.2018.04.018Chahtane, H., & Tichtinsky, G. (2017). A flower is born : an update on Arabidopsis floral meristem formation Franc. Current Opinion in Plant Biology, 35, 15–22. https://doi.org/10.1016/j.pbi.2016.09.003Che, P., Lall, S., & Howell, S. H. (2007). Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta, 226, 1183–1194. https://doi.org/10.1007/s00425-007-0565-4Chutipaijit, S., & Sutjaritvorakul, T. (2018). Titanium dioxide ( TiO 2 ) Nanoparticles induced callus induction and plant regeneration of Indica rice. Digest Journal of Nanomaterials and Biostructures, 13(4), 1003–1010.Domínguez-Rosales, M. S., González-Jiménez, M. de la luz, Rosales-Goméz, C., Quiñones-Valles, C., Delgadillo D.L., S., Mireles-Ordaz, S. J., & Pérez Molphe-Balch, E. (2008). El cultivo in vitro como herramienta para el aprovechamiento , mejoramiento y conservación de especies del género Agave. Investigación y Ciencia, Universidad(41), 53–62.Dubrovsky, J. G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M. G., Friml, J., Shishkova, S., Benkova, E. (2008). Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proceedings of the National Academy of Sciences, 105(25), 8790–8794. https://doi.org/10.1073/pnas.0712307105El-sherif, N. A. (2018). Impact of Plant Tissue Culture on Agricultural Sustainability. Sustainability of Agricultural Environment in Egypt: Part II – Soil-Water-Plant Nexus. https://doi.org/10.1007/698Fehér, A. (2015a). Biochimica et Biophysica Acta Somatic embryogenesis — Stress-induced remodeling of plant cell fate ☆. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1849, 385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005Fehér, A. (2015). Somatic embryogenesis - stress-induced remodeling of plant cell fate. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1849(4), 385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005Gaillochet, C., & Lohmann, J. U. (2015). The never-ending story: from pluripotency to plant developmental plasticity. Development, 142(13), 2237–2249. https://doi.org/10.1242/dev.117614García-Águila, L., Feria, M. De, & Autor, K. A. (2007). Aspectos básicos de la conservación in vitro de germoplasma vegetal. Biotecnología Vegetal, 7(2), 67–79.Gordon, S. P., Heisler, M. G., Reddy, G. V., Ohno, C., Das, P., & Meyerowitz, E. M. (2007). Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development, 134(19), 3539–3548. https://doi.org/10.1242/dev.010298Greb, T., & Lohmann, J. U. (2016). Plant Stem Cells. Current Biology, 26(17), R816–R821. https://doi.org/10.1016/j.cub.2016.07.070Growth, P., Yang, S., Poretska, O., Sieberer, T., & Growth, P. (2018). Copyright 2018 by the American Society of Plant Biologists. https://doi.org/10.1104/pp.18.00252Guo, X., Ji, L., Zhu, L., Song, L., Liu, S., Zang, Q., & Lin, X. (2017). Bamboo NiR gene is associated with regeneration capacity. The Journal of Horticultural Science and Biotechnology, 0316(July), 1–9. https://doi.org/10.1080/14620316.2017.1353894Haque, S., Ahmad, J. S., Clark, N. M., Williams, C. M., & Sozzani, R. (2019). ScienceDirect Computational prediction of gene regulatory networks in plant growth and development. Current Opinion in Plant Biology, 47, 96–105. https://doi.org/10.1016/j.pbi.2018.10.005Hays, J. B. (2002). Arabidopsis thaliana , a versatile model system for study of eukaryotic genome-maintenance functions. DNA Repair, 1, 579–600.He, C., Chen, X., Huang, H., & Xu, L. (2012). Reprogramming of H3K27me3 Is Critical for Acquisition of Pluripotency from Cultured Arabidopsis Tissues. PLoS Genetics, 8(8), 1–14. https://doi.org/10.1371/journal.pgen.1002911Heyman, J., Canher, B., Bisht, A., Christiaens, F., & Veylder, L. De. (2018). Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. Journal of Cell Biologists, 1–9.Huylenbroeck, J. Van. (2018). Ornamental Crops. Bélgica . SpringerIkeuchi, M., Iwase, A., Rymen, B., Lambolez, A., Kojima, M., Takebayashi, Y., … Sugimoto, K. (2017). Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiology Preview, 1–52. https://doi.org/10.1104/pp.17.01035Ikeuchi, M., Ogawa, Y., Iwase, A., & Sugimoto, K. (2016). Plant regeneration : cellular origins and molecular mechanisms. The Company of Biologist, 143, 1442–1451. https://doi.org/10.1242/dev.134668Ikeuchi, M., Shibata, M., Rymen, B., Iwase, A., Ba, A., Watt, L., … Science, R.(2018). A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration Special Focus Issue – Regular Paper, (February), 1–13. https://doi.org/10.1093/pcp/pcy013Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant Callus : Mechanisms of Induction and Repression. The Plant Cell Online, 25(September), 3159–3173. https://doi.org/10.1105/tpc.113.116053Iwase, A., Mita, K., Nonaka, S., & Ikeuchi, M. (2015). WIND1 ‑ based acquisition of regeneration competency in Arabidopsis and rapeseed. https://doi.org/10.1007/s10265-015-0714-yIwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Sakakibara, H. (2011). Report The AP2 / ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis. Current Biology, 21(6), 508–514. https://doi.org/10.1016/j.cub.2011.02.020Kadokura, S., Sugimoto, K., Tarr, P., Suzuki, T., & Matsunaga, S. (2018). Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex. Developmental Biology. https://doi.org/10.1016/j.ydbio.2018.04.023Kareem, A., Durgaprasad, K., Scheres, B., Prasad, K., Kareem, A., Durgaprasad, K., Trivedi, Z. B. (2015). Article PLETHORA Genes Control Regeneration by a Two- PLETHORA Genes Control Regeneration by a Two-Step Mechanism, 1–14. https://doi.org/10.1016/j.cub.2015.02.022Kareem, A., Radhakrishnan, D., Wang, X., Bagavathiappan, S., Trivedi, Z. B., Sugimoto, K., … Prasad, K. (2016). Protocol: A method to study the direct reprogramming of lateral root primordia to fertile shoots. Plant Methods, 12(1), 1–14.https://doi.org/10.1186/s13007-016-0127-5Kareem, A., Roy, M. V, Radhakrishnan, D., Sugimoto, K., Sondhi, Y., Aiyaz, M., & Prasad, K. (2016). De novo assembly of plant body plan : a step ahead of Deadpool, (June), 182–197. https://doi.org/10.1002/reg2.68Kirakosyan, A., & Kaufman, P. B. (2009). Recent Advances in Plant Biotechnology. USA. SpringerKumar, V., & Van Staden, J. (2017). New insights into plant somatic embryogenesis : an epigenetic view. Acta Physiologiae Plantarum, (194), 1–17. https://doi.org/10.1007/s11738-017-2487-5Kozai, T. (1991). Acclimatization of micropropagated plants. Biotechnology in Agriculture and Forestry 17: High-Tech and Micropropagation, In: Bajaj Y. P. S. (Ed.)., 127-141.Krikorian, A.D.(1991). Medios de cultivo:generalidades,composición y preparación. En Roca,W (1a ed),Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones Cali, (pp.64-66). Cali.Colombia. CIALandge, A. N., Radhakrishnan, D., Kareem, A., & Prasad, K. (2018). Intermediate Development Phases during Regeneration. Oxford University Press, (January). https://doi.org/10.1093/pcp/pcy011/4816718Laplaze, L., Parizot, B., Baker, A., Ricaud, L., Martinière, A., Auguy, F., Haseloff, J. (2005). GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. Journal of Experimental Botany, 56(419), 2433–2442.https://doi.org/10.1093/jxb/eri236Lavenus, J., Goh, T., Roberts, I., Guyomarc, S., Lucas, M., Smet, I. De,Laplaze, L. (2013). Lateral root development in Arabidopsis : fifty shades of auxin. Trends in Plant Science, 1–9. https://doi.org/10.1016/j.tplants.2013.04.006Layola-Vargas, V. M., & Ochoa-Alejo, N. (2012). An introduction on Plant Cell Culture: The Future Ahead. (M. I. M. B. I. TM Series, Ed.) (3rd ed.).Lee, K., & Seo, P. J. (2018). Dynamic Epigenetic Changes during Plant Regeneration. Trends in Plant Science, 23(3), 235–247. https://doi.org/10.1016/j.tplants.2017.11.009Li, J., Wang, M., Li, Y., Zhang, Q., Lindsey, K., Daniell, H., … Kingdom, U. (2018). Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation (SRA) process, 0–3. https://doi.org/10.1111/pbi.12988Liu, B., Zhang, J., Yang, Z., Matsui, A., Seki, M., Li, S., … Oka, Y. (2018). PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar. Plant Molecular Biology, 1–18. https://doi.org/10.1007/s11103-018-0786-xLiu, H., Zhang, H., Dong, Y. X., Hao, Y. J., & Zhang, X. S. (2017). DNA methyltransferase -mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis, 1. https://doi.org/10.1111/nph.14814Liu, J., Sheng, L., Xu, Y., Li, J., Yang, Z., Huang, H., & Xu, L. (2014). WOX11 and 12 Are Involved in the First-Step Cell Fate Transition during de Novo Root Organogenesis in Arabidopsis. Plant Cell Advanced Online, 7, 1–14. https://doi.org/10.1105/tpc.114.122887Liu, Y., Chaturvedi, P., Fu, J., Cai, Q., Weckwerth, W., & Yang, P. (2015). Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus ( Nelumbo nucifera Gaertn . spp . baijianlian ). Journal of Proteomics. https://doi.org/10.1016/j.jprot.2015.10.010Long, J.-M., Liu, C.-Y., Feng, M.-Q., Liu, Y., Wu, X.-M., & Guo, W.-W. (2018). miR156-SPLs module regulates somatic embryogenesis induction in citrus callus. Society for Experimental Biology, (April), 1–46. https://doi.org/10.1093/jxb/ery132/4961423Ma, L., Liu, M., Yan, Y., Qing, C., Zhang, X., Zhang, Y., Shen, Y. (2018). Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies. Frontiers in Plant Science, 9(April), 1–15. https://doi.org/10.3389/fpls.2018.00561Meinke, D. W., Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D., & Koornneef, M. (1998). Arabidopsis thaliana : A Model Plant for Genome Analysis. Science, 662(1998). https://doi.org/10.1126/science.282.5389.662Nanda, A. K., & Melnyk, C. W. (2017). The role of plant hormones during grafting. Journal of Plant Research, 1–10. https://doi.org/10.1007/s10265-017-0994-5Nor, S., Muhamad, S., Ling, A. P., & Wong, C. (2018). Effect of plant growth regulators on direct regeneration and callus induction from Sargassum polycystum C . Agardh.Osorio-montalvo, P., Sáenz-Carbonell, L., & De-la-peña, C. (2018). 5-Azacytidine : A Promoter of Epigenetic Changes in the Quest to Improve Plant Somatic Embryogenesis. International Journal of Molecular Sciences, 19(October), 1–20. https://doi.org/10.3390/ijms19103182Perez-garcia, P., & Moreno-risueno, M. A. (2018). Stem Cells and Plant Regeneration. Developmental Biology, Accepted M, 2–23. https://doi.org/10.1016/j.ydbio.2018.06.021Perea, M. (2001). Biotecnología agrícola: Un enfoque hacia el mejoramiento de plantas. Bogotá, Colombia: Guadalupe Ltda.Pierik, R. L. (1990). Cultivo in vitro de las plantas superiores. Dordrecht, Holanda: Ediciones Mundi-Prensa.Pulianmackal, A. j., Kareem, A. V. K., Durgaprasad, K., Trivedi, Z. B., & Prasad, K. (2014). Competence and regulatory interactions during regeneration in plants. Frontiers in Plant Science, 5(April), 1–17. https://doi.org/10.3389/fpls.2014.00142Radhakrishnan, D., Kareem, A., Durgaprasad, K., Sreeraj, E., Sugimoto, K., & Prasad, K. (2018). Shoot regeneration: a journey from acquisition of competence to completion. Current Opinion in Plant Biology, 41(Cim), 23–31. https://doi.org/10.1016/j.pbi.2017.08.001Ricroch, A., Chopra, S., & Fleischer, S. (2014). Plant Biotechnology.USA. SpringerRoca, W. Mroginski, L. (1991). Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones Cali, Colombia.:CIAT.Rybel, B. De, Mähönen, A. P., Helariutta, Y., & Weijers, D. (2015). Plant vascular development : from early specification to differentiation. Nature Publishing Group. https://doi.org/10.1038/nrm.2015.6Sablowski, R. (2004). Plant and animal stem cells : conceptually similar , molecularly distinct ? Trends in Cell Biology, 14(11), 605–611. https://doi.org/10.1016/j.tcb.2004.09.011Sang, Y. L., Cheng, Z. J., & Zhang, X. S. (2018). iPSCs : A Comparison between Animals and Plants. Trends in Plant Science, 23(8), 660–666. https://doi.org/10.1016/j.tplants.2018.05.008Scheres, B. (2005). Stem Cells : A Plant Biology Perspective. Cell, 122, 499–504. https://doi.org/10.1016/j.cell.2005.08.006Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., … Lohmann, J. U. (2005). A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37(5), 501–506. https://doi.org/10.1038/ng1543Schmitz, R. J., & Ecker, J. R. (2012). Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends in Plant Science, 17(3), 149–154. https://doi.org/10.1016/j.tplants.2012.01.001Schwab, W., Markus, B., & Matthias, L. (2018). Biotechnology of Natural Products.USA. SpringerSenior-Martinez, J.-E. (2016). La apasionante historia de la biología molecular. Academia Libre, 7(December 2009), 57–71.Shahzad, A., Parveen, S., Sharma, S., Shaheen, A., Akhtar, R., Ahmad, Z., & Upadhyay, A. (2017). Plant Tissue Culture : Applications in Plant Improvement and Conservation. In Plant Biotechnology: Principles and Applications. (pp. 37–72). https://doi.org/10.1007/978-981-10-2961-5Shin, J., & Seo, P. J. (2018). Varying Auxin Levels Induce Distinct Pluripotent States in Callus Cells. Frontiers in Plant Science, 9(November), 1–4. https://doi.org/10.3389/fpls.2018.01653Stahl, Y., & Simon, R. (2005). Plant stem cell niches. International Journal of Developmental Biology, 49, 479–489. https://doi.org/10.1387/ijdb.041929ysSu, Y. H., Liu, Y. B., & Zhang, X. S. (2011). Auxin-cytokinin interaction regulates meristem development. Molecular Plant, 4(4), 616–625. https://doi.org/10.1093/mp/ssr007Sugimoto, K., Gordon, S. P., & Meyerowitz, E. M. (2011). Regeneration in plants and animals: Dedifferentiation, transdifferentiation, or just differentiation? Trends in Cell Biology, 21(4), 212–218. https://doi.org/10.1016/j.tcb.2010.12.004Sugimoto, K., Jiao, Y., & Meyerowitz, E. M. (2010). Arabidopsis Regeneration from Multiple Tissues Occurs via a Root Development Pathway. Developmental Cell, 18(3), 463–471. https://doi.org/10.1016/j.devcel.2010.02.004Sultana, M., & Gangopadhyay, G. (2018). Early expression of WUSCHEL is a marker for in vitro shoot morphogenesis in tobacco and Beta palonga. Plant Cell, Tissue and Organ Culture (PCTOC), 1–12. https://doi.org/10.1007/s11240-018-1421-xTaiz, L., & Zeiger, E. (2002). Plant Physiology (3rd ed.). Sunderland . Sianuer edicionesTeyssier, C., & Guérin, V. (2016). Vegetative propagation of larch species : somatic embryogenesis improvement towards its integration in breeding programs. Vegetative Propagation of Forest Tress, (2016), 551–571.Trevaskis, B. (2018). Developmental Pathways Are Blueprints for Designing Successful Crops. Frontiers in Plant Science, 9(June), 1–19. https://doi.org/10.3389/fpls.2018.00745Trinh, C. D., Laplaze, L., & Guyomarch, S. (2018). Lateral root formation: Building a mersitem de novo.(Vol. 1). https://doi.org/10.1002/9781119312994.apr0650Tucker, M. R., & Laux, T. (2007). Connecting the paths in plant stem cell regulation. Trends in Cell Biology, 17(8), 403–410. https://doi.org/10.1016/j.tcb.2007.06.002Tuskan, G. A., Mewalal, R., Gunter, L. E., Palla, K. J., Carter, K., Jacobson, D. A., … Muchero, W. (2018). Defining the genetic components of callus formation : A GWAS approach. PLOS One, 1–18.Villalobos, V.M y Thorpe T.A.1991.Micropropagación.conceptos ,metodología y resultados.(1 ed).En Roca, W. Mroginski, L. Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones. (pp. 128-133).Cali, Colombia.:CIAT.Verdeil, J. L., Alemanno, L., Niemenak, N., & Tranbarger, T. J. (2007). Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends in Plant Science, 12(6), 245–252. https://doi.org/10.1016/j.tplants.2007.04.002Vogel, G. (2005). How Does a Single Somatic Cell Become A Whole Plant. Science, 309(July), 86.Wang, S., & Schiefelbein, J. (2014). Regulation of cell fate determination in plants. Frontiers in Plant Science, 5(July), 1–2. https://doi.org/10.3389/fpls.2014.00368Warghat, A. R., Thakur, K., & Sood, A. (2018). Plant stem cells : what we know and what is anticipated. Molecular Biology Reports, 0(0), 0. https://doi.org/10.1007/s11033-018-4344-zWhite, P. R. (1939). Controlled Differentiation in a Plant Tissue Culture. Bulletin of the Torrey Botanical Club, 66(8), 507–513.Williams, L., & Fletcher, J. C. (2005). Stem cell regulation in the Arabidopsis shoot apical meristem. Current Opinion in Plant Biology, 8(6), 582–586. https://doi.org/10.1016/j.pbi.2005.09.010Derechos Reservados - Universidad de Santander, 2019info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/http://purl.org/coar/access_right/c_abf2TotipotenciaDiferenciaciónRegeneraciónIn vitroActualización de los conceptos asociados con la regeneración celular en plantasTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PublicationTHUMBNAILActualización de los conceptos asociados con la regeneración celular en plantas.pdf.jpgActualización de los conceptos asociados con la regeneración celular en plantas.pdf.jpgGenerated Thumbnailimage/jpeg1167https://repositorio.udes.edu.co/bitstreams/96b5d830-e985-4d58-b553-af27c37aa902/download975f4d2a60c7d1f24b59d8ae47876527MD54TEXTActualización de los conceptos asociados con la regeneración celular en plantas.pdf.txtActualización de los conceptos asociados con la regeneración celular en plantas.pdf.txtExtracted texttext/plain142806https://repositorio.udes.edu.co/bitstreams/f377501f-858d-401a-875e-a1969432a369/download193092b2f50b73e8f4df940543079ad0MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-859https://repositorio.udes.edu.co/bitstreams/786592b3-40b4-4f0d-ac14-b7ec112cb2a0/download38d94cf55aa1bf2dac1a736ac45c881cMD52ORIGINALActualización de los conceptos asociados con la regeneración celular en plantas.pdfActualización de los conceptos asociados con la regeneración celular en plantas.pdfDocumento Principalapplication/pdf1058247https://repositorio.udes.edu.co/bitstreams/72329b79-2096-421d-87ba-9757e9266965/downloadd0ef471b8c4b0bae8ea96fb8a60f1af8MD51001/1063oai:repositorio.udes.edu.co:001/10632022-10-25 10:15:10.922https://creativecommons.org/licenses/by-nc/4.0/Derechos Reservados - Universidad de Santander, 2019https://repositorio.udes.edu.coRepositorio Universidad de Santandersoporte@metabiblioteca.comTGljZW5jaWEgZGUgUHVibGljYWNpw7NuIFVERVMKRGlyZWN0cmljZXMgZGUgVVNPIHkgQUNDRVNPCgo=