Actualización de los conceptos asociados con la regeneración celular en plantas
87 p. Cd
- Autores:
-
Rueda Chacón, Natali
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad de Santander
- Repositorio:
- Repositorio Universidad de Santander
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.udes.edu.co:001/1063
- Acceso en línea:
- https://repositorio.udes.edu.co/handle/001/1063
- Palabra clave:
- Totipotencia
Diferenciación
Regeneración
In vitro
- Rights
- openAccess
- License
- Derechos Reservados - Universidad de Santander, 2019
id |
RUDES2_7ff8d0dde168df47e1b2eee5da1e91ac |
---|---|
oai_identifier_str |
oai:repositorio.udes.edu.co:001/1063 |
network_acronym_str |
RUDES2 |
network_name_str |
Repositorio Universidad de Santander |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Actualización de los conceptos asociados con la regeneración celular en plantas |
title |
Actualización de los conceptos asociados con la regeneración celular en plantas |
spellingShingle |
Actualización de los conceptos asociados con la regeneración celular en plantas Totipotencia Diferenciación Regeneración In vitro |
title_short |
Actualización de los conceptos asociados con la regeneración celular en plantas |
title_full |
Actualización de los conceptos asociados con la regeneración celular en plantas |
title_fullStr |
Actualización de los conceptos asociados con la regeneración celular en plantas |
title_full_unstemmed |
Actualización de los conceptos asociados con la regeneración celular en plantas |
title_sort |
Actualización de los conceptos asociados con la regeneración celular en plantas |
dc.creator.fl_str_mv |
Rueda Chacón, Natali |
dc.contributor.author.spa.fl_str_mv |
Rueda Chacón, Natali |
dc.contributor.corporatename.spa.fl_str_mv |
Chacón Velasco, Martha-Rocío |
dc.subject.proposal.spa.fl_str_mv |
Totipotencia Diferenciación Regeneración In vitro |
topic |
Totipotencia Diferenciación Regeneración In vitro |
description |
87 p. Cd |
publishDate |
2019 |
dc.date.accessioned.spa.fl_str_mv |
2019-02-07T20:20:19Z |
dc.date.available.spa.fl_str_mv |
2019-02-07T20:20:19Z |
dc.date.issued.spa.fl_str_mv |
2019-01-24 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.local.spa.fl_str_mv |
T 33.19 R822a |
dc.identifier.uri.spa.fl_str_mv |
https://repositorio.udes.edu.co/handle/001/1063 |
identifier_str_mv |
T 33.19 R822a |
url |
https://repositorio.udes.edu.co/handle/001/1063 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Akhtar, R., & Shahzad, A. (2018). Morphology and ontogeny of directly differentiating shoot buds and somatic embryos in Santalum album L . Journal of Forestry Research, 1–11. https://doi.org/10.1007/s11676-018-0679-5 Anis, M., & Ahmad, N. (2016). Plant Tissue Culture : Propagation , Conservation and Crop Improvement.India. Springer. Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., Chriqui, D. (2009). Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. The Plant Journal, (57), 626–644. https://doi.org/10.1111/j.1365-313X.2008.03715.x Arditti, J. (2008). Micropropagation of plants(Second Edition ed., Vol. Volume I y II.). Blackwell Publishing.1523 pp. Azcón-Bieto, J., & Talón, M. (2000). Fundamentos de Fisiología Vegetal (1ed.). Barcelona.McGraw Hill Interamericana. Azcón-Bieto, J., & Talón, M. (2013). Fundamentos de Fisiología Vegetal (3ra ed.). Barcelona.McGraw Hill Interamericana. Bahadur, B., Rajam, M. V., Leela, S., & Krishnamurthy, K. V. (2015). Plant Biology and Biotechnology (Vol. II). New Delhi.India. Springer. Bhojwani, S. S., & Dantu, P. K. (2013). Plant Tissue Culture : An Introductory Text. India.Springer Birnbaum, K. D., & Alvarado, A. S. (2008). Slicing across Kingdoms: Regeneration in Plants and Animals. Cell, 132(4), 697–710. https://doi.org/10.1016/j.cell.2008.01.040 Birnbaum, K. D., & Sánchez Alvarado, A. (2008). Slicing across Kingdoms : Regeneration in Plants and Animals. Cell, 132(4), 697–710. https://doi.org/10.1016/j.cell.2008.01.040.Slicing Borji, M., Bouamama, B., Farhat, G., & Caroline, C. (2017). Micromorphology , structural and ultrastructural changes during somatic embryogenesis of a Tunisian oat variety ( Avena sativa L . var ‘ Meliane ’). Plant Cell, Tissue and Organ Culture (PCTOC), 0(0), 0. https://doi.org/10.1007/s11240-017-1333-1 Xu, L. (2018). ScienceDirect De novo root regeneration from leaf explants : wounding , auxin , and cell fate transition. Current Opinion in Plant Biology, 41, 39–45. https://doi.org/10.1016/j.pbi.2017.08.004 Yant, L., & Bomblies, K. (2017). ScienceDirect Genomic studies of adaptive evolution in outcrossing Arabidopsis species. Current Opinion in Plant Biology, 36, 9–14. https://doi.org/10.1016/j.pbi.2016.11.018 Zhang, Z., Tucker, E., Hermann, M., & Laux, T. (2017). A Molecular Framework for the Embryonic Initiation of Shoot Meristem Stem Cells. Developmental Cell, 40(3), 264–277.e4. https://doi.org/10.1016/j.devcel.2017.01.002 Bustillo-Avedaño, E., Ibañez, S., Sanz, O., Sousa-Barros, J. A., Gude, I., Perianez-Rodriguez, Pérez-Pérez, J. M. (2017).Regulation of hormonal control, cell reprogramming and Plant Physiology. https://doi.org/10.1104/pp.17.00980 Buenavista,Teresa S. (2010). A guide book in orchid micropropagation, The plant biotechnology project. Mandaluyong, Filipinas: Rizal Technological University. Byrne, M. E., Kidner, C. A., & Martienssen, R. A. (2003). Plant stem cells : divergent pathways and common themes in shoots and roots. Current Opinion in Genetics & Development, 13, 551–557. https://doi.org/10.1016/j.gde.2003.08.008 Cañas, B. M. C. . (1993). Metodologías in vitro de vegetales.Bucaramanga, Colombia. Universidad Industrial de Santander. Cervantes-pérez, S. A., Espinal-, A., Oropeza-aburto, A., Caballero-, J., Falcon, F., Aragón-, A., Cruz-, A. (2018). Author ’ s Accepted Manuscript. Developmental Biology.https://doi.org/10.1016/j.ydbio.2018.04.018 Chahtane, H., & Tichtinsky, G. (2017). A flower is born : an update on Arabidopsis floral meristem formation Franc. Current Opinion in Plant Biology, 35, 15–22. https://doi.org/10.1016/j.pbi.2016.09.003 Che, P., Lall, S., & Howell, S. H. (2007). Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta, 226, 1183–1194. https://doi.org/10.1007/s00425-007-0565-4 Chutipaijit, S., & Sutjaritvorakul, T. (2018). Titanium dioxide ( TiO 2 ) Nanoparticles induced callus induction and plant regeneration of Indica rice. Digest Journal of Nanomaterials and Biostructures, 13(4), 1003–1010. Domínguez-Rosales, M. S., González-Jiménez, M. de la luz, Rosales-Goméz, C., Quiñones-Valles, C., Delgadillo D.L., S., Mireles-Ordaz, S. J., & Pérez Molphe-Balch, E. (2008). El cultivo in vitro como herramienta para el aprovechamiento , mejoramiento y conservación de especies del género Agave. Investigación y Ciencia, Universidad(41), 53–62. Dubrovsky, J. G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M. G., Friml, J., Shishkova, S., Benkova, E. (2008). Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proceedings of the National Academy of Sciences, 105(25), 8790–8794. https://doi.org/10.1073/pnas.0712307105 El-sherif, N. A. (2018). Impact of Plant Tissue Culture on Agricultural Sustainability. Sustainability of Agricultural Environment in Egypt: Part II – Soil-Water-Plant Nexus. https://doi.org/10.1007/698 Fehér, A. (2015a). Biochimica et Biophysica Acta Somatic embryogenesis — Stress-induced remodeling of plant cell fate ☆. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1849, 385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005 Fehér, A. (2015). Somatic embryogenesis - stress-induced remodeling of plant cell fate. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1849(4), 385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005 Gaillochet, C., & Lohmann, J. U. (2015). The never-ending story: from pluripotency to plant developmental plasticity. Development, 142(13), 2237–2249. https://doi.org/10.1242/dev.117614 García-Águila, L., Feria, M. De, & Autor, K. A. (2007). Aspectos básicos de la conservación in vitro de germoplasma vegetal. Biotecnología Vegetal, 7(2), 67–79. Gordon, S. P., Heisler, M. G., Reddy, G. V., Ohno, C., Das, P., & Meyerowitz, E. M. (2007). Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development, 134(19), 3539–3548. https://doi.org/10.1242/dev.010298 Greb, T., & Lohmann, J. U. (2016). Plant Stem Cells. Current Biology, 26(17), R816–R821. https://doi.org/10.1016/j.cub.2016.07.070 Growth, P., Yang, S., Poretska, O., Sieberer, T., & Growth, P. (2018). Copyright 2018 by the American Society of Plant Biologists. https://doi.org/10.1104/pp.18.00252 Guo, X., Ji, L., Zhu, L., Song, L., Liu, S., Zang, Q., & Lin, X. (2017). Bamboo NiR gene is associated with regeneration capacity. The Journal of Horticultural Science and Biotechnology, 0316(July), 1–9. https://doi.org/10.1080/14620316.2017.1353894 Haque, S., Ahmad, J. S., Clark, N. M., Williams, C. M., & Sozzani, R. (2019). ScienceDirect Computational prediction of gene regulatory networks in plant growth and development. Current Opinion in Plant Biology, 47, 96–105. https://doi.org/10.1016/j.pbi.2018.10.005 Hays, J. B. (2002). Arabidopsis thaliana , a versatile model system for study of eukaryotic genome-maintenance functions. DNA Repair, 1, 579–600. He, C., Chen, X., Huang, H., & Xu, L. (2012). Reprogramming of H3K27me3 Is Critical for Acquisition of Pluripotency from Cultured Arabidopsis Tissues. PLoS Genetics, 8(8), 1–14. https://doi.org/10.1371/journal.pgen.1002911 Heyman, J., Canher, B., Bisht, A., Christiaens, F., & Veylder, L. De. (2018). Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. Journal of Cell Biologists, 1–9. Huylenbroeck, J. Van. (2018). Ornamental Crops. Bélgica . Springer Ikeuchi, M., Iwase, A., Rymen, B., Lambolez, A., Kojima, M., Takebayashi, Y., … Sugimoto, K. (2017). Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiology Preview, 1–52. https://doi.org/10.1104/pp.17.01035 Ikeuchi, M., Ogawa, Y., Iwase, A., & Sugimoto, K. (2016). Plant regeneration : cellular origins and molecular mechanisms. The Company of Biologist, 143, 1442–1451. https://doi.org/10.1242/dev.134668 Ikeuchi, M., Shibata, M., Rymen, B., Iwase, A., Ba, A., Watt, L., … Science, R.(2018). A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration Special Focus Issue – Regular Paper, (February), 1–13. https://doi.org/10.1093/pcp/pcy013 Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant Callus : Mechanisms of Induction and Repression. The Plant Cell Online, 25(September), 3159–3173. https://doi.org/10.1105/tpc.113.116053 Iwase, A., Mita, K., Nonaka, S., & Ikeuchi, M. (2015). WIND1 ‑ based acquisition of regeneration competency in Arabidopsis and rapeseed. https://doi.org/10.1007/s10265-015-0714-y Iwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Sakakibara, H. (2011). Report The AP2 / ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis. Current Biology, 21(6), 508–514. https://doi.org/10.1016/j.cub.2011.02.020 Kadokura, S., Sugimoto, K., Tarr, P., Suzuki, T., & Matsunaga, S. (2018). Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex. Developmental Biology. https://doi.org/10.1016/j.ydbio.2018.04.023 Kareem, A., Durgaprasad, K., Scheres, B., Prasad, K., Kareem, A., Durgaprasad, K., Trivedi, Z. B. (2015). Article PLETHORA Genes Control Regeneration by a Two- PLETHORA Genes Control Regeneration by a Two-Step Mechanism, 1–14. https://doi.org/10.1016/j.cub.2015.02.022 Kareem, A., Radhakrishnan, D., Wang, X., Bagavathiappan, S., Trivedi, Z. B., Sugimoto, K., … Prasad, K. (2016). Protocol: A method to study the direct reprogramming of lateral root primordia to fertile shoots. Plant Methods, 12(1), 1–14.https://doi.org/10.1186/s13007-016-0127-5 Kareem, A., Roy, M. V, Radhakrishnan, D., Sugimoto, K., Sondhi, Y., Aiyaz, M., & Prasad, K. (2016). De novo assembly of plant body plan : a step ahead of Deadpool, (June), 182–197. https://doi.org/10.1002/reg2.68 Kirakosyan, A., & Kaufman, P. B. (2009). Recent Advances in Plant Biotechnology. USA. Springer Kumar, V., & Van Staden, J. (2017). New insights into plant somatic embryogenesis : an epigenetic view. Acta Physiologiae Plantarum, (194), 1–17. https://doi.org/10.1007/s11738-017-2487-5 Kozai, T. (1991). Acclimatization of micropropagated plants. Biotechnology in Agriculture and Forestry 17: High-Tech and Micropropagation, In: Bajaj Y. P. S. (Ed.)., 127-141. Krikorian, A.D.(1991). Medios de cultivo:generalidades,composición y preparación. En Roca,W (1a ed),Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones Cali, (pp.64-66). Cali.Colombia. CIA Landge, A. N., Radhakrishnan, D., Kareem, A., & Prasad, K. (2018). Intermediate Development Phases during Regeneration. Oxford University Press, (January). https://doi.org/10.1093/pcp/pcy011/4816718 Laplaze, L., Parizot, B., Baker, A., Ricaud, L., Martinière, A., Auguy, F., Haseloff, J. (2005). GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. Journal of Experimental Botany, 56(419), 2433–2442.https://doi.org/10.1093/jxb/eri236 Lavenus, J., Goh, T., Roberts, I., Guyomarc, S., Lucas, M., Smet, I. De,Laplaze, L. (2013). Lateral root development in Arabidopsis : fifty shades of auxin. Trends in Plant Science, 1–9. https://doi.org/10.1016/j.tplants.2013.04.006 Layola-Vargas, V. M., & Ochoa-Alejo, N. (2012). An introduction on Plant Cell Culture: The Future Ahead. (M. I. M. B. I. TM Series, Ed.) (3rd ed.). Lee, K., & Seo, P. J. (2018). Dynamic Epigenetic Changes during Plant Regeneration. Trends in Plant Science, 23(3), 235–247. https://doi.org/10.1016/j.tplants.2017.11.009 Li, J., Wang, M., Li, Y., Zhang, Q., Lindsey, K., Daniell, H., … Kingdom, U. (2018). Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation (SRA) process, 0–3. https://doi.org/10.1111/pbi.12988 Liu, B., Zhang, J., Yang, Z., Matsui, A., Seki, M., Li, S., … Oka, Y. (2018). PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar. Plant Molecular Biology, 1–18. https://doi.org/10.1007/s11103-018-0786-x Liu, H., Zhang, H., Dong, Y. X., Hao, Y. J., & Zhang, X. S. (2017). DNA methyltransferase -mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis, 1. https://doi.org/10.1111/nph.14814 Liu, J., Sheng, L., Xu, Y., Li, J., Yang, Z., Huang, H., & Xu, L. (2014). WOX11 and 12 Are Involved in the First-Step Cell Fate Transition during de Novo Root Organogenesis in Arabidopsis. Plant Cell Advanced Online, 7, 1–14. https://doi.org/10.1105/tpc.114.122887 Liu, Y., Chaturvedi, P., Fu, J., Cai, Q., Weckwerth, W., & Yang, P. (2015). Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus ( Nelumbo nucifera Gaertn . spp . baijianlian ). Journal of Proteomics. https://doi.org/10.1016/j.jprot.2015.10.010 Long, J.-M., Liu, C.-Y., Feng, M.-Q., Liu, Y., Wu, X.-M., & Guo, W.-W. (2018). miR156-SPLs module regulates somatic embryogenesis induction in citrus callus. Society for Experimental Biology, (April), 1–46. https://doi.org/10.1093/jxb/ery132/4961423 Ma, L., Liu, M., Yan, Y., Qing, C., Zhang, X., Zhang, Y., Shen, Y. (2018). Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies. Frontiers in Plant Science, 9(April), 1–15. https://doi.org/10.3389/fpls.2018.00561 Meinke, D. W., Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D., & Koornneef, M. (1998). Arabidopsis thaliana : A Model Plant for Genome Analysis. Science, 662(1998). https://doi.org/10.1126/science.282.5389.662 Nanda, A. K., & Melnyk, C. W. (2017). The role of plant hormones during grafting. Journal of Plant Research, 1–10. https://doi.org/10.1007/s10265-017-0994-5 Nor, S., Muhamad, S., Ling, A. P., & Wong, C. (2018). Effect of plant growth regulators on direct regeneration and callus induction from Sargassum polycystum C . Agardh. Osorio-montalvo, P., Sáenz-Carbonell, L., & De-la-peña, C. (2018). 5-Azacytidine : A Promoter of Epigenetic Changes in the Quest to Improve Plant Somatic Embryogenesis. International Journal of Molecular Sciences, 19(October), 1–20. https://doi.org/10.3390/ijms19103182 Perez-garcia, P., & Moreno-risueno, M. A. (2018). Stem Cells and Plant Regeneration. Developmental Biology, Accepted M, 2–23. https://doi.org/10.1016/j.ydbio.2018.06.021 Perea, M. (2001). Biotecnología agrícola: Un enfoque hacia el mejoramiento de plantas. Bogotá, Colombia: Guadalupe Ltda. Pierik, R. L. (1990). Cultivo in vitro de las plantas superiores. Dordrecht, Holanda: Ediciones Mundi-Prensa. Pulianmackal, A. j., Kareem, A. V. K., Durgaprasad, K., Trivedi, Z. B., & Prasad, K. (2014). Competence and regulatory interactions during regeneration in plants. Frontiers in Plant Science, 5(April), 1–17. https://doi.org/10.3389/fpls.2014.00142 Radhakrishnan, D., Kareem, A., Durgaprasad, K., Sreeraj, E., Sugimoto, K., & Prasad, K. (2018). Shoot regeneration: a journey from acquisition of competence to completion. Current Opinion in Plant Biology, 41(Cim), 23–31. https://doi.org/10.1016/j.pbi.2017.08.001 Ricroch, A., Chopra, S., & Fleischer, S. (2014). Plant Biotechnology.USA. Springer Roca, W. Mroginski, L. (1991). Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones Cali, Colombia.:CIAT. Rybel, B. De, Mähönen, A. P., Helariutta, Y., & Weijers, D. (2015). Plant vascular development : from early specification to differentiation. Nature Publishing Group. https://doi.org/10.1038/nrm.2015.6 Sablowski, R. (2004). Plant and animal stem cells : conceptually similar , molecularly distinct ? Trends in Cell Biology, 14(11), 605–611. https://doi.org/10.1016/j.tcb.2004.09.011 Sang, Y. L., Cheng, Z. J., & Zhang, X. S. (2018). iPSCs : A Comparison between Animals and Plants. Trends in Plant Science, 23(8), 660–666. https://doi.org/10.1016/j.tplants.2018.05.008 Scheres, B. (2005). Stem Cells : A Plant Biology Perspective. Cell, 122, 499–504. https://doi.org/10.1016/j.cell.2005.08.006 Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., … Lohmann, J. U. (2005). A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37(5), 501–506. https://doi.org/10.1038/ng1543 Schmitz, R. J., & Ecker, J. R. (2012). Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends in Plant Science, 17(3), 149–154. https://doi.org/10.1016/j.tplants.2012.01.001 Schwab, W., Markus, B., & Matthias, L. (2018). Biotechnology of Natural Products.USA. Springer Senior-Martinez, J.-E. (2016). La apasionante historia de la biología molecular. Academia Libre, 7(December 2009), 57–71. Shahzad, A., Parveen, S., Sharma, S., Shaheen, A., Akhtar, R., Ahmad, Z., & Upadhyay, A. (2017). Plant Tissue Culture : Applications in Plant Improvement and Conservation. In Plant Biotechnology: Principles and Applications. (pp. 37–72). https://doi.org/10.1007/978-981-10-2961-5 Shin, J., & Seo, P. J. (2018). Varying Auxin Levels Induce Distinct Pluripotent States in Callus Cells. Frontiers in Plant Science, 9(November), 1–4. https://doi.org/10.3389/fpls.2018.01653 Stahl, Y., & Simon, R. (2005). Plant stem cell niches. International Journal of Developmental Biology, 49, 479–489. https://doi.org/10.1387/ijdb.041929ys Su, Y. H., Liu, Y. B., & Zhang, X. S. (2011). Auxin-cytokinin interaction regulates meristem development. Molecular Plant, 4(4), 616–625. https://doi.org/10.1093/mp/ssr007 Sugimoto, K., Gordon, S. P., & Meyerowitz, E. M. (2011). Regeneration in plants and animals: Dedifferentiation, transdifferentiation, or just differentiation? Trends in Cell Biology, 21(4), 212–218. https://doi.org/10.1016/j.tcb.2010.12.004 Sugimoto, K., Jiao, Y., & Meyerowitz, E. M. (2010). Arabidopsis Regeneration from Multiple Tissues Occurs via a Root Development Pathway. Developmental Cell, 18(3), 463–471. https://doi.org/10.1016/j.devcel.2010.02.004 Sultana, M., & Gangopadhyay, G. (2018). Early expression of WUSCHEL is a marker for in vitro shoot morphogenesis in tobacco and Beta palonga. Plant Cell, Tissue and Organ Culture (PCTOC), 1–12. https://doi.org/10.1007/s11240-018-1421-x Taiz, L., & Zeiger, E. (2002). Plant Physiology (3rd ed.). Sunderland . Sianuer ediciones Teyssier, C., & Guérin, V. (2016). Vegetative propagation of larch species : somatic embryogenesis improvement towards its integration in breeding programs. Vegetative Propagation of Forest Tress, (2016), 551–571. Trevaskis, B. (2018). Developmental Pathways Are Blueprints for Designing Successful Crops. Frontiers in Plant Science, 9(June), 1–19. https://doi.org/10.3389/fpls.2018.00745 Trinh, C. D., Laplaze, L., & Guyomarch, S. (2018). Lateral root formation: Building a mersitem de novo.(Vol. 1). https://doi.org/10.1002/9781119312994.apr0650 Tucker, M. R., & Laux, T. (2007). Connecting the paths in plant stem cell regulation. Trends in Cell Biology, 17(8), 403–410. https://doi.org/10.1016/j.tcb.2007.06.002 Tuskan, G. A., Mewalal, R., Gunter, L. E., Palla, K. J., Carter, K., Jacobson, D. A., … Muchero, W. (2018). Defining the genetic components of callus formation : A GWAS approach. PLOS One, 1–18. Villalobos, V.M y Thorpe T.A.1991.Micropropagación.conceptos ,metodología y resultados.(1 ed).En Roca, W. Mroginski, L. Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones. (pp. 128-133).Cali, Colombia.:CIAT. Verdeil, J. L., Alemanno, L., Niemenak, N., & Tranbarger, T. J. (2007). Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends in Plant Science, 12(6), 245–252. https://doi.org/10.1016/j.tplants.2007.04.002 Vogel, G. (2005). How Does a Single Somatic Cell Become A Whole Plant. Science, 309(July), 86. Wang, S., & Schiefelbein, J. (2014). Regulation of cell fate determination in plants. Frontiers in Plant Science, 5(July), 1–2. https://doi.org/10.3389/fpls.2014.00368 Warghat, A. R., Thakur, K., & Sood, A. (2018). Plant stem cells : what we know and what is anticipated. Molecular Biology Reports, 0(0), 0. https://doi.org/10.1007/s11033-018-4344-z White, P. R. (1939). Controlled Differentiation in a Plant Tissue Culture. Bulletin of the Torrey Botanical Club, 66(8), 507–513. Williams, L., & Fletcher, J. C. (2005). Stem cell regulation in the Arabidopsis shoot apical meristem. Current Opinion in Plant Biology, 8(6), 582–586. https://doi.org/10.1016/j.pbi.2005.09.010 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad de Santander, 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
rights_invalid_str_mv |
Derechos Reservados - Universidad de Santander, 2019 Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Bucaramanga : Universidad de Santander, 2019 |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Exactas, Naturales y Agropecuarias |
dc.publisher.program.spa.fl_str_mv |
Microbiología Industrial |
institution |
Universidad de Santander |
bitstream.url.fl_str_mv |
https://repositorio.udes.edu.co/bitstreams/96b5d830-e985-4d58-b553-af27c37aa902/download https://repositorio.udes.edu.co/bitstreams/f377501f-858d-401a-875e-a1969432a369/download https://repositorio.udes.edu.co/bitstreams/786592b3-40b4-4f0d-ac14-b7ec112cb2a0/download https://repositorio.udes.edu.co/bitstreams/72329b79-2096-421d-87ba-9757e9266965/download |
bitstream.checksum.fl_str_mv |
975f4d2a60c7d1f24b59d8ae47876527 193092b2f50b73e8f4df940543079ad0 38d94cf55aa1bf2dac1a736ac45c881c d0ef471b8c4b0bae8ea96fb8a60f1af8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Santander |
repository.mail.fl_str_mv |
soporte@metabiblioteca.com |
_version_ |
1818101626923122688 |
spelling |
Rueda Chacón, Natalif29ca963-5d7d-49eb-ae0e-fff648e7ab9f-1Chacón Velasco, Martha-Rocío2019-02-07T20:20:19Z2019-02-07T20:20:19Z2019-01-2487 p. CdIn a special edition of Science “what we don’t know?” dedicated to the 25 most important questions that scientists of all disciplines faced at the time, one of them was: “How does a single somatic cell from an adult plant?” the answer can be found in the theory of plant totipotency. This theory established that any somatic cell has the ability to regenerate into an adult plant. in contrast to this wildly accepted concept, recent research on plant regeneration has reported that: (i) cells that regenerate from an injured tissue don’t seem to have gone through dedifferentiation (ii) Callus are an organized and differentiated tissue, (iii) Callus don’t form from any type of somatic cell but predominantly, from a specific group of specialized adult stem cells. These results indicate that our view of plant regeneration needs a critical reanalysis. That is why there’s a need for a thorough review that allows the synthesis of the latest concepts related to plant regeneration, which could help give answers to fundamental questions of developmental plant biology. After an exhaustive review of the publications made in the last 18 years, it is possible to conclude that not all somatic cells are totipotent and that most of the process of regeneration on plants are carried away by meristematic stem cells and by a group of non-meristematic cells that have similar qualities to stem cells. The understanding of the molecular mechanisms through which plants regenerate is crucial for the advances of plant biotechnology. It is why the research that is done at a national and regional level, should not only take into account these new concepts but also contribute to the advances in this area of biotechnology.En una edición especial de la revista Science "¿Que no sabemos?", dedicada a las 25 preguntas más importantes que enfrentan los científicos de todas las disciplinas, una de las cuales fue: ¿cómo se forma una planta completa a partir de una célula somática? La respuesta se puede encontrar en la teoría de la capacidad totipotente de las células vegetales. La cual establece que todas las células somáticas de la planta poseen la capacidad de regenerar una planta completa. En contraste con esta teoría aceptada, recientes artículos científicos sobre la regeneración vegetal indican que: (i) las células vegetales regeneradas a partir de tejido dañado parecen no desdiferenciarse, (ii) los callos son un tejido organizado y diferenciado, (iii) los callos no se forman a partir de cualquier tipo de célula somática sino predominantemente a partir de una población especializada de células madre adultas. Estos resultados indican que nuestra visión actual de la regeneración vegetal necesita un reanálisis crítico. Por esta razón, se hace necesario contar con una revisión actualizada que permita sintetizar los últimos conceptos relacionados con la regeneración celular que ayude a responder a las preguntas fundamentales que se hace la biología del desarrollo vegetal. Tras una revisión exhaustiva de las últimas publicaciones realizadas en esta área, en los últimos 18 años, se puede concluir que no todas las células somáticas de la planta son totipotentes. y que la mayoría de los procesos de regeneración celular observados se dan a partir de células madre meristemáticas y células no meristemáticas con cualidades similares a las de las células madre. Es por esto que las investigaciones realizadas en el campo del cultivo in vitro de tejidos vegetales a nivel nacional y regional, deben, no solo tener en cuenta estos nuevos concepto, sino también aportar a los avances en el área de la biotecnología.PregradoMicrobiólogo IndustrialContenido Introducción ......................................... 2 Capítulo 1 ..................................................... 5 1. Técnicas biotecnológicas utilizadas en el estudio de la regeneración vegetal.............................5 Capítulo 2 ..........................................................................................................................15 2. Multiplicación vegetal .............................................................................15 2.1 Multiplicación sexual de plantas superiores .........................................................16 2.1.1 Embriogénesis cigótica ...................................................................................16 2.1.1.1 Meristemos primarios y secundarios .........................................................18 2.1.2 Reguladores de crecimiento vegetal ..............................................................20 2.1.2.1 Auxinas ....................................................................................................21 2.1.2.2 Citoquininas .............................................................................................22 2.1.2.3 Mecanismos de acción de las hormonas vegetales ..................................22 2.1.3 Diferenciación celular ...................................................................................25 2.2 Multiplicación asexual en plantas superiores ......................................................25 2.2.1 Cultivo in vitro de tejidos vegetales ..............................................................26 2.2.1.1 Micropropagación ....................................................................................27 2.2.1.2 Técnicas básicas de micropropagación ....................................................28 2.2.1.3 Fases de la micropropagación ..................................................................28 2.2.1.4 Factores que garantizan el éxito del cultivo .............................................29 2.2.1.5 Problemas asociados con el cultivo in vitro de tejidos vegetales .............30 Capítulo 3 .............................................................................................................. 32 3. Conceptos asociados a la regeneración vegetal ....................................32 3.1 Totipotencia celular: el dogma de la biología vegetal ..........................................32 3.2 Células madre vegetales .......................................................................................34 3.3 Células pericíclicas y similares a las pericíclicas ................................................37 3.4 Las diversas estrategias de regeneración vegetal..................................................38 3.4.1 Organogénesis directa .....................................................................................41 3.4.1.1 De raíz a brote ...........................................................................................43 3.4.1.2 De brote a raíz ..........................................................................................44 3.4.2 Organogénesis indirecta ..................................................................................45 3.4.2.1 El origen del callo .....................................................................................46 3.4.2.2 Características y organización celular del callo ........................................47 3.5 Diferenciación celular ............................................................................................48 3.5.1 Desdiferenciación ............................................................................................50 3.5.2 Transdiferenciación .........................................................................................50 3.6 Fases intermedias de la regeneración vegetal ........................................................51 3.6.1 Adquisición de competencias para la regeneración ........................................53 3.6.2 Formación de células progenitoras .................................................................55 3.6.3 Destino celular y patrones de desarrollo ................................................................... 56 4. Resumen y Análisis .................................................................................59 5. Conclusiones ...........................................................................................62 6. Bibliografía ..............................................................................................63Ej. 1application/pdfT 33.19 R822ahttps://repositorio.udes.edu.co/handle/001/1063spaBucaramanga : Universidad de Santander, 2019Facultad de Ciencias Exactas, Naturales y AgropecuariasMicrobiología IndustrialAkhtar, R., & Shahzad, A. (2018). Morphology and ontogeny of directly differentiating shoot buds and somatic embryos in Santalum album L . Journal of Forestry Research, 1–11. https://doi.org/10.1007/s11676-018-0679-5Anis, M., & Ahmad, N. (2016). Plant Tissue Culture : Propagation , Conservation and Crop Improvement.India. Springer.Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., Chriqui, D. (2009). Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. The Plant Journal, (57), 626–644. https://doi.org/10.1111/j.1365-313X.2008.03715.xArditti, J. (2008). Micropropagation of plants(Second Edition ed., Vol. Volume I y II.). Blackwell Publishing.1523 pp.Azcón-Bieto, J., & Talón, M. (2000). Fundamentos de Fisiología Vegetal (1ed.). Barcelona.McGraw Hill Interamericana.Azcón-Bieto, J., & Talón, M. (2013). Fundamentos de Fisiología Vegetal (3ra ed.). Barcelona.McGraw Hill Interamericana.Bahadur, B., Rajam, M. V., Leela, S., & Krishnamurthy, K. V. (2015). Plant Biology and Biotechnology (Vol. II). New Delhi.India. Springer.Bhojwani, S. S., & Dantu, P. K. (2013). Plant Tissue Culture : An Introductory Text. India.SpringerBirnbaum, K. D., & Alvarado, A. S. (2008). Slicing across Kingdoms: Regeneration in Plants and Animals. Cell, 132(4), 697–710. https://doi.org/10.1016/j.cell.2008.01.040Birnbaum, K. D., & Sánchez Alvarado, A. (2008). Slicing across Kingdoms : Regeneration in Plants and Animals. Cell, 132(4), 697–710. https://doi.org/10.1016/j.cell.2008.01.040.SlicingBorji, M., Bouamama, B., Farhat, G., & Caroline, C. (2017). Micromorphology , structural and ultrastructural changes during somatic embryogenesis of a Tunisian oat variety ( Avena sativa L . var ‘ Meliane ’). Plant Cell, Tissue and Organ Culture (PCTOC), 0(0), 0. https://doi.org/10.1007/s11240-017-1333-1Xu, L. (2018). ScienceDirect De novo root regeneration from leaf explants : wounding , auxin , and cell fate transition. Current Opinion in Plant Biology, 41, 39–45. https://doi.org/10.1016/j.pbi.2017.08.004Yant, L., & Bomblies, K. (2017). ScienceDirect Genomic studies of adaptive evolution in outcrossing Arabidopsis species. Current Opinion in Plant Biology, 36, 9–14. https://doi.org/10.1016/j.pbi.2016.11.018Zhang, Z., Tucker, E., Hermann, M., & Laux, T. (2017). A Molecular Framework for the Embryonic Initiation of Shoot Meristem Stem Cells. Developmental Cell, 40(3), 264–277.e4. https://doi.org/10.1016/j.devcel.2017.01.002Bustillo-Avedaño, E., Ibañez, S., Sanz, O., Sousa-Barros, J. A., Gude, I., Perianez-Rodriguez, Pérez-Pérez, J. M. (2017).Regulation of hormonal control, cell reprogramming and Plant Physiology. https://doi.org/10.1104/pp.17.00980Buenavista,Teresa S. (2010). A guide book in orchid micropropagation, The plant biotechnology project. Mandaluyong, Filipinas: Rizal Technological University.Byrne, M. E., Kidner, C. A., & Martienssen, R. A. (2003). Plant stem cells : divergent pathways and common themes in shoots and roots. Current Opinion in Genetics & Development, 13, 551–557. https://doi.org/10.1016/j.gde.2003.08.008Cañas, B. M. C. . (1993). Metodologías in vitro de vegetales.Bucaramanga, Colombia. Universidad Industrial de Santander.Cervantes-pérez, S. A., Espinal-, A., Oropeza-aburto, A., Caballero-, J., Falcon, F., Aragón-, A., Cruz-, A. (2018). Author ’ s Accepted Manuscript. Developmental Biology.https://doi.org/10.1016/j.ydbio.2018.04.018Chahtane, H., & Tichtinsky, G. (2017). A flower is born : an update on Arabidopsis floral meristem formation Franc. Current Opinion in Plant Biology, 35, 15–22. https://doi.org/10.1016/j.pbi.2016.09.003Che, P., Lall, S., & Howell, S. H. (2007). Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta, 226, 1183–1194. https://doi.org/10.1007/s00425-007-0565-4Chutipaijit, S., & Sutjaritvorakul, T. (2018). Titanium dioxide ( TiO 2 ) Nanoparticles induced callus induction and plant regeneration of Indica rice. Digest Journal of Nanomaterials and Biostructures, 13(4), 1003–1010.Domínguez-Rosales, M. S., González-Jiménez, M. de la luz, Rosales-Goméz, C., Quiñones-Valles, C., Delgadillo D.L., S., Mireles-Ordaz, S. J., & Pérez Molphe-Balch, E. (2008). El cultivo in vitro como herramienta para el aprovechamiento , mejoramiento y conservación de especies del género Agave. Investigación y Ciencia, Universidad(41), 53–62.Dubrovsky, J. G., Sauer, M., Napsucialy-Mendivil, S., Ivanchenko, M. G., Friml, J., Shishkova, S., Benkova, E. (2008). Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proceedings of the National Academy of Sciences, 105(25), 8790–8794. https://doi.org/10.1073/pnas.0712307105El-sherif, N. A. (2018). Impact of Plant Tissue Culture on Agricultural Sustainability. Sustainability of Agricultural Environment in Egypt: Part II – Soil-Water-Plant Nexus. https://doi.org/10.1007/698Fehér, A. (2015a). Biochimica et Biophysica Acta Somatic embryogenesis — Stress-induced remodeling of plant cell fate ☆. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1849, 385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005Fehér, A. (2015). Somatic embryogenesis - stress-induced remodeling of plant cell fate. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms, 1849(4), 385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005Gaillochet, C., & Lohmann, J. U. (2015). The never-ending story: from pluripotency to plant developmental plasticity. Development, 142(13), 2237–2249. https://doi.org/10.1242/dev.117614García-Águila, L., Feria, M. De, & Autor, K. A. (2007). Aspectos básicos de la conservación in vitro de germoplasma vegetal. Biotecnología Vegetal, 7(2), 67–79.Gordon, S. P., Heisler, M. G., Reddy, G. V., Ohno, C., Das, P., & Meyerowitz, E. M. (2007). Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development, 134(19), 3539–3548. https://doi.org/10.1242/dev.010298Greb, T., & Lohmann, J. U. (2016). Plant Stem Cells. Current Biology, 26(17), R816–R821. https://doi.org/10.1016/j.cub.2016.07.070Growth, P., Yang, S., Poretska, O., Sieberer, T., & Growth, P. (2018). Copyright 2018 by the American Society of Plant Biologists. https://doi.org/10.1104/pp.18.00252Guo, X., Ji, L., Zhu, L., Song, L., Liu, S., Zang, Q., & Lin, X. (2017). Bamboo NiR gene is associated with regeneration capacity. The Journal of Horticultural Science and Biotechnology, 0316(July), 1–9. https://doi.org/10.1080/14620316.2017.1353894Haque, S., Ahmad, J. S., Clark, N. M., Williams, C. M., & Sozzani, R. (2019). ScienceDirect Computational prediction of gene regulatory networks in plant growth and development. Current Opinion in Plant Biology, 47, 96–105. https://doi.org/10.1016/j.pbi.2018.10.005Hays, J. B. (2002). Arabidopsis thaliana , a versatile model system for study of eukaryotic genome-maintenance functions. DNA Repair, 1, 579–600.He, C., Chen, X., Huang, H., & Xu, L. (2012). Reprogramming of H3K27me3 Is Critical for Acquisition of Pluripotency from Cultured Arabidopsis Tissues. PLoS Genetics, 8(8), 1–14. https://doi.org/10.1371/journal.pgen.1002911Heyman, J., Canher, B., Bisht, A., Christiaens, F., & Veylder, L. De. (2018). Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. Journal of Cell Biologists, 1–9.Huylenbroeck, J. Van. (2018). Ornamental Crops. Bélgica . SpringerIkeuchi, M., Iwase, A., Rymen, B., Lambolez, A., Kojima, M., Takebayashi, Y., … Sugimoto, K. (2017). Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiology Preview, 1–52. https://doi.org/10.1104/pp.17.01035Ikeuchi, M., Ogawa, Y., Iwase, A., & Sugimoto, K. (2016). Plant regeneration : cellular origins and molecular mechanisms. The Company of Biologist, 143, 1442–1451. https://doi.org/10.1242/dev.134668Ikeuchi, M., Shibata, M., Rymen, B., Iwase, A., Ba, A., Watt, L., … Science, R.(2018). A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration Special Focus Issue – Regular Paper, (February), 1–13. https://doi.org/10.1093/pcp/pcy013Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant Callus : Mechanisms of Induction and Repression. The Plant Cell Online, 25(September), 3159–3173. https://doi.org/10.1105/tpc.113.116053Iwase, A., Mita, K., Nonaka, S., & Ikeuchi, M. (2015). WIND1 ‑ based acquisition of regeneration competency in Arabidopsis and rapeseed. https://doi.org/10.1007/s10265-015-0714-yIwase, A., Mitsuda, N., Koyama, T., Hiratsu, K., Kojima, M., Arai, T., Sakakibara, H. (2011). Report The AP2 / ERF Transcription Factor WIND1 Controls Cell Dedifferentiation in Arabidopsis. Current Biology, 21(6), 508–514. https://doi.org/10.1016/j.cub.2011.02.020Kadokura, S., Sugimoto, K., Tarr, P., Suzuki, T., & Matsunaga, S. (2018). Characterization of somatic embryogenesis initiated from the Arabidopsis shoot apex. Developmental Biology. https://doi.org/10.1016/j.ydbio.2018.04.023Kareem, A., Durgaprasad, K., Scheres, B., Prasad, K., Kareem, A., Durgaprasad, K., Trivedi, Z. B. (2015). Article PLETHORA Genes Control Regeneration by a Two- PLETHORA Genes Control Regeneration by a Two-Step Mechanism, 1–14. https://doi.org/10.1016/j.cub.2015.02.022Kareem, A., Radhakrishnan, D., Wang, X., Bagavathiappan, S., Trivedi, Z. B., Sugimoto, K., … Prasad, K. (2016). Protocol: A method to study the direct reprogramming of lateral root primordia to fertile shoots. Plant Methods, 12(1), 1–14.https://doi.org/10.1186/s13007-016-0127-5Kareem, A., Roy, M. V, Radhakrishnan, D., Sugimoto, K., Sondhi, Y., Aiyaz, M., & Prasad, K. (2016). De novo assembly of plant body plan : a step ahead of Deadpool, (June), 182–197. https://doi.org/10.1002/reg2.68Kirakosyan, A., & Kaufman, P. B. (2009). Recent Advances in Plant Biotechnology. USA. SpringerKumar, V., & Van Staden, J. (2017). New insights into plant somatic embryogenesis : an epigenetic view. Acta Physiologiae Plantarum, (194), 1–17. https://doi.org/10.1007/s11738-017-2487-5Kozai, T. (1991). Acclimatization of micropropagated plants. Biotechnology in Agriculture and Forestry 17: High-Tech and Micropropagation, In: Bajaj Y. P. S. (Ed.)., 127-141.Krikorian, A.D.(1991). Medios de cultivo:generalidades,composición y preparación. En Roca,W (1a ed),Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones Cali, (pp.64-66). Cali.Colombia. CIALandge, A. N., Radhakrishnan, D., Kareem, A., & Prasad, K. (2018). Intermediate Development Phases during Regeneration. Oxford University Press, (January). https://doi.org/10.1093/pcp/pcy011/4816718Laplaze, L., Parizot, B., Baker, A., Ricaud, L., Martinière, A., Auguy, F., Haseloff, J. (2005). GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. Journal of Experimental Botany, 56(419), 2433–2442.https://doi.org/10.1093/jxb/eri236Lavenus, J., Goh, T., Roberts, I., Guyomarc, S., Lucas, M., Smet, I. De,Laplaze, L. (2013). Lateral root development in Arabidopsis : fifty shades of auxin. Trends in Plant Science, 1–9. https://doi.org/10.1016/j.tplants.2013.04.006Layola-Vargas, V. M., & Ochoa-Alejo, N. (2012). An introduction on Plant Cell Culture: The Future Ahead. (M. I. M. B. I. TM Series, Ed.) (3rd ed.).Lee, K., & Seo, P. J. (2018). Dynamic Epigenetic Changes during Plant Regeneration. Trends in Plant Science, 23(3), 235–247. https://doi.org/10.1016/j.tplants.2017.11.009Li, J., Wang, M., Li, Y., Zhang, Q., Lindsey, K., Daniell, H., … Kingdom, U. (2018). Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation (SRA) process, 0–3. https://doi.org/10.1111/pbi.12988Liu, B., Zhang, J., Yang, Z., Matsui, A., Seki, M., Li, S., … Oka, Y. (2018). PtWOX11 acts as master regulator conducting the expression of key transcription factors to induce de novo shoot organogenesis in poplar. Plant Molecular Biology, 1–18. https://doi.org/10.1007/s11103-018-0786-xLiu, H., Zhang, H., Dong, Y. X., Hao, Y. J., & Zhang, X. S. (2017). DNA methyltransferase -mediated shoot regeneration is regulated by cytokinin-induced cell cycle in Arabidopsis, 1. https://doi.org/10.1111/nph.14814Liu, J., Sheng, L., Xu, Y., Li, J., Yang, Z., Huang, H., & Xu, L. (2014). WOX11 and 12 Are Involved in the First-Step Cell Fate Transition during de Novo Root Organogenesis in Arabidopsis. Plant Cell Advanced Online, 7, 1–14. https://doi.org/10.1105/tpc.114.122887Liu, Y., Chaturvedi, P., Fu, J., Cai, Q., Weckwerth, W., & Yang, P. (2015). Induction and quantitative proteomic analysis of cell dedifferentiation during callus formation of lotus ( Nelumbo nucifera Gaertn . spp . baijianlian ). Journal of Proteomics. https://doi.org/10.1016/j.jprot.2015.10.010Long, J.-M., Liu, C.-Y., Feng, M.-Q., Liu, Y., Wu, X.-M., & Guo, W.-W. (2018). miR156-SPLs module regulates somatic embryogenesis induction in citrus callus. Society for Experimental Biology, (April), 1–46. https://doi.org/10.1093/jxb/ery132/4961423Ma, L., Liu, M., Yan, Y., Qing, C., Zhang, X., Zhang, Y., Shen, Y. (2018). Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies. Frontiers in Plant Science, 9(April), 1–15. https://doi.org/10.3389/fpls.2018.00561Meinke, D. W., Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D., & Koornneef, M. (1998). Arabidopsis thaliana : A Model Plant for Genome Analysis. Science, 662(1998). https://doi.org/10.1126/science.282.5389.662Nanda, A. K., & Melnyk, C. W. (2017). The role of plant hormones during grafting. Journal of Plant Research, 1–10. https://doi.org/10.1007/s10265-017-0994-5Nor, S., Muhamad, S., Ling, A. P., & Wong, C. (2018). Effect of plant growth regulators on direct regeneration and callus induction from Sargassum polycystum C . Agardh.Osorio-montalvo, P., Sáenz-Carbonell, L., & De-la-peña, C. (2018). 5-Azacytidine : A Promoter of Epigenetic Changes in the Quest to Improve Plant Somatic Embryogenesis. International Journal of Molecular Sciences, 19(October), 1–20. https://doi.org/10.3390/ijms19103182Perez-garcia, P., & Moreno-risueno, M. A. (2018). Stem Cells and Plant Regeneration. Developmental Biology, Accepted M, 2–23. https://doi.org/10.1016/j.ydbio.2018.06.021Perea, M. (2001). Biotecnología agrícola: Un enfoque hacia el mejoramiento de plantas. Bogotá, Colombia: Guadalupe Ltda.Pierik, R. L. (1990). Cultivo in vitro de las plantas superiores. Dordrecht, Holanda: Ediciones Mundi-Prensa.Pulianmackal, A. j., Kareem, A. V. K., Durgaprasad, K., Trivedi, Z. B., & Prasad, K. (2014). Competence and regulatory interactions during regeneration in plants. Frontiers in Plant Science, 5(April), 1–17. https://doi.org/10.3389/fpls.2014.00142Radhakrishnan, D., Kareem, A., Durgaprasad, K., Sreeraj, E., Sugimoto, K., & Prasad, K. (2018). Shoot regeneration: a journey from acquisition of competence to completion. Current Opinion in Plant Biology, 41(Cim), 23–31. https://doi.org/10.1016/j.pbi.2017.08.001Ricroch, A., Chopra, S., & Fleischer, S. (2014). Plant Biotechnology.USA. SpringerRoca, W. Mroginski, L. (1991). Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones Cali, Colombia.:CIAT.Rybel, B. De, Mähönen, A. P., Helariutta, Y., & Weijers, D. (2015). Plant vascular development : from early specification to differentiation. Nature Publishing Group. https://doi.org/10.1038/nrm.2015.6Sablowski, R. (2004). Plant and animal stem cells : conceptually similar , molecularly distinct ? Trends in Cell Biology, 14(11), 605–611. https://doi.org/10.1016/j.tcb.2004.09.011Sang, Y. L., Cheng, Z. J., & Zhang, X. S. (2018). iPSCs : A Comparison between Animals and Plants. Trends in Plant Science, 23(8), 660–666. https://doi.org/10.1016/j.tplants.2018.05.008Scheres, B. (2005). Stem Cells : A Plant Biology Perspective. Cell, 122, 499–504. https://doi.org/10.1016/j.cell.2005.08.006Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M., … Lohmann, J. U. (2005). A gene expression map of Arabidopsis thaliana development. Nature Genetics, 37(5), 501–506. https://doi.org/10.1038/ng1543Schmitz, R. J., & Ecker, J. R. (2012). Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends in Plant Science, 17(3), 149–154. https://doi.org/10.1016/j.tplants.2012.01.001Schwab, W., Markus, B., & Matthias, L. (2018). Biotechnology of Natural Products.USA. SpringerSenior-Martinez, J.-E. (2016). La apasionante historia de la biología molecular. Academia Libre, 7(December 2009), 57–71.Shahzad, A., Parveen, S., Sharma, S., Shaheen, A., Akhtar, R., Ahmad, Z., & Upadhyay, A. (2017). Plant Tissue Culture : Applications in Plant Improvement and Conservation. In Plant Biotechnology: Principles and Applications. (pp. 37–72). https://doi.org/10.1007/978-981-10-2961-5Shin, J., & Seo, P. J. (2018). Varying Auxin Levels Induce Distinct Pluripotent States in Callus Cells. Frontiers in Plant Science, 9(November), 1–4. https://doi.org/10.3389/fpls.2018.01653Stahl, Y., & Simon, R. (2005). Plant stem cell niches. International Journal of Developmental Biology, 49, 479–489. https://doi.org/10.1387/ijdb.041929ysSu, Y. H., Liu, Y. B., & Zhang, X. S. (2011). Auxin-cytokinin interaction regulates meristem development. Molecular Plant, 4(4), 616–625. https://doi.org/10.1093/mp/ssr007Sugimoto, K., Gordon, S. P., & Meyerowitz, E. M. (2011). Regeneration in plants and animals: Dedifferentiation, transdifferentiation, or just differentiation? Trends in Cell Biology, 21(4), 212–218. https://doi.org/10.1016/j.tcb.2010.12.004Sugimoto, K., Jiao, Y., & Meyerowitz, E. M. (2010). Arabidopsis Regeneration from Multiple Tissues Occurs via a Root Development Pathway. Developmental Cell, 18(3), 463–471. https://doi.org/10.1016/j.devcel.2010.02.004Sultana, M., & Gangopadhyay, G. (2018). Early expression of WUSCHEL is a marker for in vitro shoot morphogenesis in tobacco and Beta palonga. Plant Cell, Tissue and Organ Culture (PCTOC), 1–12. https://doi.org/10.1007/s11240-018-1421-xTaiz, L., & Zeiger, E. (2002). Plant Physiology (3rd ed.). Sunderland . Sianuer edicionesTeyssier, C., & Guérin, V. (2016). Vegetative propagation of larch species : somatic embryogenesis improvement towards its integration in breeding programs. Vegetative Propagation of Forest Tress, (2016), 551–571.Trevaskis, B. (2018). Developmental Pathways Are Blueprints for Designing Successful Crops. Frontiers in Plant Science, 9(June), 1–19. https://doi.org/10.3389/fpls.2018.00745Trinh, C. D., Laplaze, L., & Guyomarch, S. (2018). Lateral root formation: Building a mersitem de novo.(Vol. 1). https://doi.org/10.1002/9781119312994.apr0650Tucker, M. R., & Laux, T. (2007). Connecting the paths in plant stem cell regulation. Trends in Cell Biology, 17(8), 403–410. https://doi.org/10.1016/j.tcb.2007.06.002Tuskan, G. A., Mewalal, R., Gunter, L. E., Palla, K. J., Carter, K., Jacobson, D. A., … Muchero, W. (2018). Defining the genetic components of callus formation : A GWAS approach. PLOS One, 1–18.Villalobos, V.M y Thorpe T.A.1991.Micropropagación.conceptos ,metodología y resultados.(1 ed).En Roca, W. Mroginski, L. Cultivo de tejidos en la agricultura. Fundamentos y aplicaciones. (pp. 128-133).Cali, Colombia.:CIAT.Verdeil, J. L., Alemanno, L., Niemenak, N., & Tranbarger, T. J. (2007). Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends in Plant Science, 12(6), 245–252. https://doi.org/10.1016/j.tplants.2007.04.002Vogel, G. (2005). How Does a Single Somatic Cell Become A Whole Plant. Science, 309(July), 86.Wang, S., & Schiefelbein, J. (2014). Regulation of cell fate determination in plants. Frontiers in Plant Science, 5(July), 1–2. https://doi.org/10.3389/fpls.2014.00368Warghat, A. R., Thakur, K., & Sood, A. (2018). Plant stem cells : what we know and what is anticipated. Molecular Biology Reports, 0(0), 0. https://doi.org/10.1007/s11033-018-4344-zWhite, P. R. (1939). Controlled Differentiation in a Plant Tissue Culture. Bulletin of the Torrey Botanical Club, 66(8), 507–513.Williams, L., & Fletcher, J. C. (2005). Stem cell regulation in the Arabidopsis shoot apical meristem. Current Opinion in Plant Biology, 8(6), 582–586. https://doi.org/10.1016/j.pbi.2005.09.010Derechos Reservados - Universidad de Santander, 2019info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/http://purl.org/coar/access_right/c_abf2TotipotenciaDiferenciaciónRegeneraciónIn vitroActualización de los conceptos asociados con la regeneración celular en plantasTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PublicationTHUMBNAILActualización de los conceptos asociados con la regeneración celular en plantas.pdf.jpgActualización de los conceptos asociados con la regeneración celular en plantas.pdf.jpgGenerated Thumbnailimage/jpeg1167https://repositorio.udes.edu.co/bitstreams/96b5d830-e985-4d58-b553-af27c37aa902/download975f4d2a60c7d1f24b59d8ae47876527MD54TEXTActualización de los conceptos asociados con la regeneración celular en plantas.pdf.txtActualización de los conceptos asociados con la regeneración celular en plantas.pdf.txtExtracted texttext/plain142806https://repositorio.udes.edu.co/bitstreams/f377501f-858d-401a-875e-a1969432a369/download193092b2f50b73e8f4df940543079ad0MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-859https://repositorio.udes.edu.co/bitstreams/786592b3-40b4-4f0d-ac14-b7ec112cb2a0/download38d94cf55aa1bf2dac1a736ac45c881cMD52ORIGINALActualización de los conceptos asociados con la regeneración celular en plantas.pdfActualización de los conceptos asociados con la regeneración celular en plantas.pdfDocumento Principalapplication/pdf1058247https://repositorio.udes.edu.co/bitstreams/72329b79-2096-421d-87ba-9757e9266965/downloadd0ef471b8c4b0bae8ea96fb8a60f1af8MD51001/1063oai:repositorio.udes.edu.co:001/10632022-10-25 10:15:10.922https://creativecommons.org/licenses/by-nc/4.0/Derechos Reservados - Universidad de Santander, 2019https://repositorio.udes.edu.coRepositorio Universidad de Santandersoporte@metabiblioteca.comTGljZW5jaWEgZGUgUHVibGljYWNpw7NuIFVERVMKRGlyZWN0cmljZXMgZGUgVVNPIHkgQUNDRVNPCgo= |