Caracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, Santander

Digital

Autores:
Bravo Granados, Natalia Andrea
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad de Santander
Repositorio:
Repositorio Universidad de Santander
Idioma:
spa
OAI Identifier:
oai:repositorio.udes.edu.co:001/5530
Acceso en línea:
https://repositorio.udes.edu.co/handle/001/5530
Palabra clave:
Metagenómica
Piña
ADN
Secuenciación
Metagenomics
Pineapple
DNA
IlluminaMiSeq
Rights
openAccess
License
Derechos Reservados - Universidad de Santander, 2021
id RUDES2_6c9dcccb75f81d0249f2bdfb542e6143
oai_identifier_str oai:repositorio.udes.edu.co:001/5530
network_acronym_str RUDES2
network_name_str Repositorio Universidad de Santander
repository_id_str
dc.title.spa.fl_str_mv Caracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, Santander
title Caracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, Santander
spellingShingle Caracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, Santander
Metagenómica
Piña
ADN
Secuenciación
Metagenomics
Pineapple
DNA
IlluminaMiSeq
title_short Caracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, Santander
title_full Caracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, Santander
title_fullStr Caracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, Santander
title_full_unstemmed Caracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, Santander
title_sort Caracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, Santander
dc.creator.fl_str_mv Bravo Granados, Natalia Andrea
dc.contributor.advisor.none.fl_str_mv Rueda Forero, Nohora Juliana
Suárez Barrera, Miguel Orlando
dc.contributor.author.none.fl_str_mv Bravo Granados, Natalia Andrea
dc.subject.proposal.spa.fl_str_mv Metagenómica
Piña
ADN
Secuenciación
Metagenomics
Pineapple
DNA
topic Metagenómica
Piña
ADN
Secuenciación
Metagenomics
Pineapple
DNA
IlluminaMiSeq
dc.subject.proposal.eng.fl_str_mv IlluminaMiSeq
description Digital
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-21T01:16:20Z
dc.date.available.none.fl_str_mv 2021-08-21T01:16:20Z
dc.date.issued.none.fl_str_mv 2021-05-06
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.local.none.fl_str_mv T 33.21 B719c
dc.identifier.uri.none.fl_str_mv https://repositorio.udes.edu.co/handle/001/5530
identifier_str_mv T 33.21 B719c
url https://repositorio.udes.edu.co/handle/001/5530
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad de Santander, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Derechos Reservados - Universidad de Santander, 2021
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 159 p
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Bucaramanga : Universidad de Santander, 2021
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Exactas, Naturales y Agropecuarias
dc.publisher.place.spa.fl_str_mv Bucaramanga, Colombia
dc.publisher.program.spa.fl_str_mv Microbiología Industrial
institution Universidad de Santander
bitstream.url.fl_str_mv https://repositorio.udes.edu.co/bitstreams/d7cdff84-8f91-4c31-b9aa-bd33404cf4a6/download
https://repositorio.udes.edu.co/bitstreams/0af88ba0-af8f-4481-834f-2424a443d381/download
https://repositorio.udes.edu.co/bitstreams/3f63e337-9435-4c4b-ba89-fabdfa52a06e/download
https://repositorio.udes.edu.co/bitstreams/d5b00a00-210e-409e-a72c-15fe39ed462c/download
bitstream.checksum.fl_str_mv 38d94cf55aa1bf2dac1a736ac45c881c
b146a3146015420b56565d787c6b70fb
ee5cef9a2796f4193e75115dc39a25cd
8b1a7e2f877fb9f7e259b6dc8a91d1ec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Santander
repository.mail.fl_str_mv soporte@metabiblioteca.com
_version_ 1818101527029481472
spelling Rueda Forero, Nohora Julianafdefebdb-5a74-4c59-ba33-4ff4cc09bca4-1Suárez Barrera, Miguel Orlando335becb1-2371-418a-acf8-21265141ac00-1Bravo Granados, Natalia Andrea16e6a42d-caeb-4028-9efd-962d5556bec1-12021-08-21T01:16:20Z2021-08-21T01:16:20Z2021-05-06DigitalEl suelo es un hábitat diverso, su composición varía dependiendo del uso, condiciones climáticas y actividades antropogénicas; y conocer los microorganismos presentes requiere la implementación de herramientas de secuenciación de nueva generación. Ananás comosus es un cultivo de gran importancia para Santander, sin embargo, los estudios referentes a la caracterización biológica del suelo asociado, son escasas en la región y en el país. En ese sentido, este trabajo se centró en la caracterización microbiana del suelo destinado a un cultivo de piña. Para lograrlo, las muestras se tomaron aleatoriamente de cuatro lotes a 20 cm de profundidad, obteniendo un total de 14 muestras. Se estandarizó el protocolo de extracción de ADN genómico total de suelo y la cantidad de ADN de cada muestra fue >60 ng/μl. Posteriormente se enviaron a secuenciar a MacroGen mediante la plataforma Illumina MiSeq (2x300 pb), obteniéndose un total de 1’518.101 secuencias de las muestras analizadas. El empleo de herramientas metagenómicas como el FASTQC y el MG-RAST, permitieron establecer la calidad de las secuencias obtenidas y la clasificación desde dominio hasta género de los microorganismos presentes en los suelos estudiados. Filo como Actinobacteria (>50%), Acidobacteria (>18%), Firmicutes (>16%) y Verrumicrobia (>10%), se encontraron con mayor predominancia entre las 14 muestras estudiadas. A nivel de género se encontraron en abundancia Candidatus Koribacter, Streptomyces, Isosphaera, Bacillus, Candidatus Solibacter y Actinomadura. Con respecto a la diversidad α, esta varía por las condiciones nutricionales del suelo, es por esto que en la muestra del suelo Blanco los valores de esta diversidad son los más bajos. Finalmente, se evidenció elevada similitud entre la composición de las comunidades microbianas de los cuatro suelos en estudio, indicando que el plaguicida y el bioplaguicida, no tienen un efecto significativo en la composición de la población microbiana presentes en la rizosfera del cultivo de piña.The soil is a diverse habitat, its composition varies depending on the use, climatic conditions and anthropogenic activities; and knowing the groups of microorganisms present requires the implementation of next-generation sequencing tools. Ananas comosus is a crop of great importance for Santander, however, studies referring to the biological characterization of the associated soil are scarce in the region and the country. In this sense, this work focused on the microbial characterization of the soil destined for a pineapple crop. The samples were randomly taken from four batches at a depth of 20 cm, obtaining a total of 14 samples. The total genomic soil DNA extraction protocol was standardized and the amount of DNA in each sample was> 60 ng / μl. Subsequently, they were sent to be sequenced to MacroGen using the Illumina MiSeq platform, obtaining a total of 1,518,101 sequences of the analyzed samples. The use of metagenomic tools such as FASTQC and MG-RAST made it possible to establish the quality of the sequences obtained and the classification from domain to the gender of the microorganisms present in the soils studied. Phylum such as Actinobacteria (> 50%), Acidobacteria (> 18%), Firmicutes (> 16%) and Verrumicrobia (> 10%), were found to be more prevalent among the 14 samples studied. At the genus level, Candidatus Koribacter, Streptomyces, Isosphaera, Bacillus, Candidatus Solibacter and Actinomadura were found in abundance. Concerning the diversitPregradoMicrobiólogo Industrial1 ed.Introducción ..............................................................................................................................15 Marco Teórico ...........................................................................................................................18 El Suelo .................................................................................................................................18 Aspectos Físicos del Suelo ................................................................................................19 Aspectos Químicos del Suelo ............................................................................................21 Materia Orgánica ...............................................................................................................23 La Agricultura .....................................................................................................................24 Microbiota del Suelo ..............................................................................................................25 Microorganismos de la Rizosfera .......................................................................................25 Funciones de los Microorganismos ....................................................................................26 Secuenciación de Nueva Generación ....................................................................................28 NGS en la Agricultura ........................................................................................................32 Illumina ..............................................................................................................................33 Análisis Bioinformático de Secuencias ..................................................................................39 MG-RAST como Herramienta Bioinformática .....................................................................41 Análisis Estadístico................................................................................................................43 Past Software ....................................................................................................................44 Estado del Arte .........................................................................................................................46 Marco Legal ..............................................................................................................................50 Planteamiento y Justificación del Problema ..............................................................................51 Pregunta de investigación .........................................................................................................52 Hipótesis ...................................................................................................................................53 Objetivos ...................................................................................................................................54 Objetivo General ...................................................................................................................54 Objetivos Específicos ............................................................................................................54 Metodología ..............................................................................................................................55 Especificaciones del Cultivo de Piña .....................................................................................55 Muestreo ...............................................................................................................................56 Extracción de ADN Genómico ...............................................................................................57 Amplificación y Secuenciación del Gen Ribosomal 16S. .......................................................58 Análisis Bioinformáticos .........................................................................................................58 Análisis Estadísticos ..............................................................................................................59 Análisis Físico-Químicos (realizados por los estudiantes de la UPB, sede Bucaramanga) ....59 Resultados y Análisis de Resultados ........................................................................................60 Extracción y Cuantificación de ADN Metagenómico ..............................................................60 Análisis Bioinformático de Secuencias ..................................................................................61 Clasificación por Dominios .................................................................................................61 Clasificación por filo ...........................................................................................................63 Clasificación por Género ....................................................................................................65 Diversidad α .......................................................................................................................67 Abundancia Relativa de Géneros Dominantes ...................................................................68 Géneros Únicos y Comunes en los Tratamientos ..............................................................69 Géneros predominantes .....................................................................................................71 Análisis Estadísticos ..............................................................................................................73 Análisis de Componentes Principales (ACP) ......................................................................73 Diversidad β .......................................................................................................................77 Discusión ..................................................................................................................................78 Análisis Fisicoquímicos .........................................................................................................78 Propiedades Físicas del Suelo ...........................................................................................78 Propiedades Químicas del Suelo .......................................................................................78 Extracción de ADN ................................................................................................................81 Análisis Bioinformático de Secuencias ..................................................................................83 Clasificación por Dominio ...................................................................................................84 Clasificación por filo ...........................................................................................................85 Clasificación por Género ....................................................................................................91 Diversidad α ..................................................................................................................... 101 Abundancia Relativa y Efecto del Plaguicida (Lorsban) y Bioplaguicida (Nicotina y Capsaicina). ..................................................................................................................... 102 Géneros Únicos y Comunes en los Tratamientos ................................................................ 104 Análisis de Componentes Principales (ACP) ....................................................................... 106 Diversidad β ........................................................................................................................ 107 Conclusiones .......................................................................................................................... 109 Recomendaciones .................................................................................................................. 111 Referencias Bibliográficas ....................................................................................................... 112 Apéndices ............................................................................................................................... 149 Apendice A. Protocolo de Extracción de ADN Estandarizado: Kit E.Z.N.A.® Soil DNA Kit (OMEGA) ............................................................................................................................ 149 Apéndice B. Concentración de ADN Genómico Total de Suelos ......................................... 151 Apéndice C. Calidad del ADN Extraído ................................................................................ 152 Apéndice D. Secuencias Obtenidas por Muestra ................................................................. 153 Apéndice E. Curva de Rarefacción de los Suelos Analizados ............................................. 154 Apéndice F. Prueba de Kruskal Wallis – Composición microbiana sin diferencia significativa ............................................................................................................................................ 156 Apéndice G. Propiedades físicoquímicas de los suelos estudiados, realizados por los estudiantes de la Universidad Pontificia Bolivariana sede Bucaramanga ............................ 157 Cálculo de Nitrógeno de mg NTK/Kg a %. ........................................................................... 159159 papplication/pdfT 33.21 B719chttps://repositorio.udes.edu.co/handle/001/5530spaBucaramanga : Universidad de Santander, 2021Facultad de Ciencias Exactas, Naturales y AgropecuariasBucaramanga, ColombiaMicrobiología IndustrialDerechos Reservados - Universidad de Santander, 2021info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2MetagenómicaPiñaADNSecuenciaciónMetagenomicsPineappleDNAIlluminaMiSeqCaracterización de la Diversidad Microbiana de Suelos Destinados a Cultivos de Ananas comosus (piña), Tratados con Distintos Plaguicidas en el Municipio de Lebrija, SantanderTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_71e4c1898caa6e32Todas las AudienciasAguirre V., Delgado, V. (2010) Pesticidas naturales y sintéticos. Centro de investigaciones Científicas Escuela Politécnica del Ejército. Sangolquí, Ecuador, pp. 43-53.Ait Barka, E., Gognies, S., Nowak, J., Audran, J., Belarbi, A. (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24: 135–142Alaeddini, R. (2012) Forensic implications of PCR inhibition—a review, Forensic Sci. Int. Genet. 6 (3) 297–305.Alcaraz, L. (2016) Producción y comercialización de piña Gold. Asociación de productores, comercializadores y transformadores agropecuarios (AGROMUTUA), Valencia, España.Andrews, M., James, E., Sprent, J., Boddey, R., Gross, E., dos Reis Jr, F. (2011) Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecol Divers 4:131–140Angella, G., Frías, C., Salgado, R. (2016). Conceptos básicos de las relaciones agua-suelo-planta. INTA. Buenos Aires-Argentina.Araujo, J., de Castro, A., Costa, M., Togawa, R., Júnior, G., Quirino, B., Krüger, R. (2012). Characterization of soil bacterial assemblies in Brazilian savanna-like vegetation reveals acidobacteria dominance. Microbial ecology, 64(3), 760-770.Arbeli, Z., Fuentes, L. (2007). Accelerated biodegradation of pesticides: an overview of the phenomenon, its basis and possible solutions; and a discussion on the tropical dimension. Crop Protect. 26, 1733–1746. doi: 10.1016/j.cropro. 2007.03.009Ardley, J., Parker, M., De Meyer, S., Trengove, R., O’Hara, G., Reeve, W., Yates, R., Dilworth, M., Willems, A., Howieson, J. (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov., and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588Ashelford, K., Chuzhanova, N., Fry, J., Jones, A., Weightman, A. (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71: 7724–7736.Ayres, E., Steltzer, H., Simmons, B., Simpson, R., Steinweg, J., Wallenstein, M., Wall, D. (2009). Home-field advantage accelerates leaf litter decomposition in forests. Soil Biology and Biochemistry, 41(3), 606-610.Barranco, J. (2011). Efecto De Los Inhibidores De La Nitrificación Y De Los Productos Derivados De La Menadiona En La Calidad De Los Frutos De La Sandía. Almería: Escuela Politécnica Superior De Almería.Becking, L. (1934) Geobiologie, of Inleiding Tot de Milieukunde: Met Literatuurlijst en Ind. Wetenschappelijke Serie. Van Stockum.Ben Hania, W., Ghodbane, R., Postec, A., Brochier-Armanet, C., Hamdi, M., Fardeau, M., Ollivier, B. (2011) Cultivation of the first mesophilic representative (‘‘mesotoga’’) within the order Thermotogales. Syst Appl Microbiol 34:581–585Berendsen, R., Pieterse, C., Bakker, P. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).Berge, O., Guinebretie`r, W., Achouak, P., Normand, T., Heulin, P. (2002) Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616Bergmann, G., Bates, S., Eilers, K., Lauber, C., Caporaso, J., Walters, W., Knight, R., Fierer, N. (2011) The under-recognized dominance of verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43:1450–1455Biavati, G., Estrada J. (2016). El fósforo en la planta y en el suelo. Bolonia. Kemira Growhow. Recuperado de http://www.horticom.com/pd/imagenes/55/871/55871.pdfBinu, M., Woojin, S., Slik, J., Rahayu S., Salwana, J., Dong Ke, Adams Jonathan M. (2016) Distinctive Tropical Forest Variants Have Unique Soil Microbial Communities, But Not Always Low Microbial Diversity. Frontiers in Microbiology. 7 376-382.Björkroth, J., Dicks, L., Endo, A. (2014). The genus Weissella, in Lactic Acid Bacteria, Biodiversity and Taxonomy, eds Holzapfel W. H., Wood B. J. B. (Chichester: Wiley Blackwell; 418–428.Blackburn, T., Gaston, K. (2003) Macroecology: concepts and consequences. Blackwell Science, Oxford. Ed: 3.Bogdanova, T., Tsaphna, I., Kondrat’eva, T., Duda, V., Suzina, N., Melamud, V., Tourova, T., Karavaiko, G. (2006) Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium. Int J Syst Evol Microbiol. 56:1039–1042.Bomar, L., Maltz, M., Colston, S., Graf, J. (2011) Directed culturing of microorganisms using metatranscriptomics. MBio 2:e00012–11Boomsma, C., Vyn, T., (2008). Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis?. Field Crops Res. 108, 14–31. 10.1016/j.fcr.2008.03.002Bowers, K., Mesbah, N., Wiegel, J. (2009) Biodiversity of poly-extremophilic Bacteria: Does combining the extremes of high salt, alkaline pH and elevated temperature approach a physic-chemical boundary for life? Saline Syst. 5, 9.Bowman, B., Kim, M., Y-J Cho, J., Korlach, J. (2015) Long-Read, Single Molecule, Real-Time (SMRT) DNA sequencing for metagenomic applications. Metagenomics for Microbiology 2015:25-38.Bradford, D., Schwab, E. (2013), "Current usage of symbiosis and associated terminology", International Journal of Biology 5 (1): 32–45., doi:10.5539/ijb.v5n1p32Brandes-Ammann A, Kölle L, Brandl H. (2001) Detection of bacterial endospores in soil by terbium fluorescence. Int J Microbiol. 11:1-5. Doi:10.1155/2011/435281Briceno, G., Fuentes, M.S., Rubilar, O., Jorquera, M., Tortella, G. (2013) Removal of the insecticide diazinon from liquid media by free and immobilized Streptomyces sp. isolated from agricultural soil. J. Basic Microbiol. 53, 1e10.Brooksbank, C., Bergman, M., Apweiler, R. (2014) The European Bioinformatics Institute’s data resources 2014. Nucleic Acids Res 42 (Database issue):D18–D25Bruce, T., Martinez, I., Neto, O., Vicente, A., Kruger, R., Thompson, F. (2010) Bacterial community diversity in the Brazilian Atlantic forest soils. Microb Ecol 60:840–849Buckley, D., Schmidt, T. (2003) Diversity and dynamics of microbial communities in soils from agroecosystems. Environ. Microbiol. 5:441– 452.Bunemann, E., Bossio, D., Smithson, P., Frossard, E., Oberson, A. (2004) Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36:889–901Bürgmann, H., Pesaro, M., Widmer, F., Zeyer, J. (2001) A strategy for optimizing quality and quantity of DNA extracted from soil, J. Microbiol. Methods 45 (1) 7–20.Cai, P., Huang, Q., Jiang, D., Rong, X., Liang, W. (2006) Microcalorimetric studies on the adsorption of DNA by soil colloidal particles, Colloids Surf. B: Biointerfaces 49 (1) 49–54.Callaway, R. M. et al. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89, 1043–1055 (2008).Campbell, B. (2014) "The Family Acidobacteriaceae." The Prokaryotes. Springer Berlin Heidelberg, 405-415.Caporaso, J., Kuczynski, J., Stombaugh, J. (2010) QIIME allows analysis of highthroughput community sequencing data. Nat Methods 7:335–336Carbonetto, M. (2014). Diversidad de las comunidades microbianas de los suelos pampeanos. Enfoques ecológicos y metagenómicos (Doctoral dissertation, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales).Cardinale, B., Duffy, J., Gonzalez, A. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012). https://doi.org/10.1038/nature11148Castro, H. (1998), Fundamentos para el conocimiento y manejo de suelos agrícolas. Manual técnico. Tunja. Instituto Universitario Juan de Castellanos. Colombia.Cespedes, C. (2005). Relevancia de la materia organica del suelo. INIA, 31.Challacombe, J., Eichorst, S., Hauser, L., Land M., Xie G. (2001) "Biological consequences of ancient gene acquisition and duplication in the large genome of candidatus solibater usitatus Ellin6076". PLoS ONE 6(9): 248-282.Chaparro, J., Bhadri, D., Vivanco, J. (2014). "Rhizosphere microbiome assemblage is affected by plant development". The ISME Journal. 8 (4): 790–803. doi:10.1038/ismej.2013.196Chatli, A., Beri, V., Sidhu, B. (2008) Isolation and characterisation of phosphate solubilising microorganisms from the cold desert habitat of Salix alba Linn. in trans Himalayan region of Himachal Pradesh. Indian Journal of Microbiology. 48: 267-273.Chen, Y., Xin, L., Liu, J., Yuan, M., Liu, S., Jiang, W. y Chen, J. (2017). Cambios en la comunidad bacteriana del suelo inducidos por el retorno de la paja a largo plazo. Scientia Agricola , 74 (5), 349-356.Choudhary, O., Ghuman, B., Thuy, N., Buresh, R. (2011). Effects of long-term use of sodic water irrigation, amendments and crop residues on soil properties and crop yields in rice–wheat cropping system in a calcareous soil. Field Crops Research, 121(3), 363-372.Clarridge, J. (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews 17(4):840-862.Cole, J., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141–D145.Cole, J., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37: D141–D145.Coppens d’Eeckenbrugge, G., Sanewski, G., Smith, M., Duval, M., Leal, F. (2011) Ananas In: Kole,C. (ed). Wild Crop Relatives: Genomic and Breeding Resources: Tropical and Subtropical Fruits. Springer Science & Business Media, Science - pp.21-41.Costa, R., Götz, M., Mrotzek, N., Lottmann, J., Berg, G., Smalla, K. (2006). Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS microbiology ecology, 56(2), 236-249.Costello, E., Schmidt, S. (2006) Microbial diversity in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ Microbiol 8: 1471–1486.Cox, M., Peterson, D., Biggs, P. (2010) Solexaqa: at-a-glance quality assessment of illumina second-generation sequencing data. BMC Bioinformatics 11:485Craig, J., Chang, F., Kim, J., Obiajulu, S., Brady, S. (2010) Expanding small–molecule functional metagenomics through parallel screening of broad–host–range cosmid environmental DNA libraries in diverse proteobacteria. App Environ Microbiol 76:1633–1641. doi:10.1128/ AEM.02169-09Cruz-Martínez, K., Suttle, K., Brodie, E., Power, M., Andersen, G., Banfield, J. (2009) Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J. 3:738-744. Doi:10.1038/ismej.2009.16Cycoń, M., Piotrowska-Seget, Z., Kozdrój, J. (2010) Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soil. Intern. Biodeter. Biodegrad. 64:316 - 323.Da Silva, N., Birolli, W., Seleghim, M., Porto, A. (2013). “Biodegradation of the organophosphate pesticide profenofos by Marine Fungi,” in Applied Bioremediation-Active and Passive Approaches, eds Y. B. Patil and P. Rao (Rijeka: InTechWeb), 149–180. doi: 10.5772/56372Davis, K., Joseph, S., Janssen, P. (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71: 826–834.Davis, K., Sangwan, P., Janssen, P. (2011) Acidobacteria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colonyforming soil bacteria. Environ Microbiol 13: 798–805.De Angelis, K. M., E. L. Brodie, T. Z. DeSantis, G. L. Andersen, S. E. Lindow y M. K. Firestone. (2009) Selective progressive response of soil microbial community to wild oat roots. The ISME Journal 3:168-178.De Vries, F., Liiri, M., Bjørnlund, L., Bowker, M., Christensen, S., Setälä, H., Bardgett, R. (2012) Land use alters the resistance and resilience of soil food webs to drought, Nat. Clim. Change, 2, 276–280, doi:10.1038/nclimate1368De Wit, R., Bouvier, T. (2006) ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environmental Microbiology. 8(4): 755-758.DeAngelis, K., Brodie, E., De Santis, T., Andersen, G., Lindow, S., Firestone, M. (2009). Selective progressive response of soil microbial community to wild oat roots. The ISME journal, 3(2), 168-178DeBruyn, J., Nixon, L., Fawaz, M., Johnson, A., Radosevich, M. (2011) Biogeografía global y dinámica estacional cuantitativa de Gemmatimonadetes en el suelo. Microbiología Aplicada y Ambiental 77, 6295–6300Delgado-Baquerizo, M., Oliverio, A., Brewer, T., BenaventGonzález, A., Eldridge, .J, Bardgett, R. (2018) A global atlas of the dominant bacteria found in soil. Science. 359:320–5. Delmont, T., Prestat, E., Keegan, K., Faubladier, M., Robe, P., Clark, I. (2012). Structure, fluctuation and magnitude of a natural grassland soil metagenome. ISME J 6: 1677–1687.Deng, J., Gu, Y., Zhang, J., Xue, K., Qin, Y., Yuan, M., Yin, M., He, Z., Wu, L., Schuur, E., Tiedje, J., Zhou, J. (2015) Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska. Mol Ecol. 24(1):222-234. doi:10.1111/mec.13015Di Bella, J., Bao, Y., Gloor, G., Burton, J. (2013) High throughput sequencing methods and analysis for microbiome research. Journal of Microbiological Methods 95(3):401-414.Dillehay, J., Bowman, K., Rainey, F., Moe, W. (2014) Substrate interactions in dehalogenation of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane mixtures by Dehalogenimonas spp. Biaodegradation 25(2):301-312 doi:10.1007/s10532-013-9661-2Dillehay, J., Bowman, K., Rainey, F., Moe, W. (2014) Substrate interactions in dehalogenation of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane mixtures by Dehalogenimonas spp. Biaodegradation 25(2):301-312 doi:10.1007/s10532-013-9661-2Dominati, E., Patterson, M., MacKay, A. (2010) A framework for classifying and quantifying natural capital and ecosystem services of soils. Ecological Economics 69: 1858–1868Don, A., Schumacher, J., Freibauer, A. (2010) Impact of tropical land use change on soil organic carbon stocks – a meta-analysis, Global Change Biol., 17, 1658–1686.Edgar RC (2010) Search and clustering orders of magnitude faster than blast. Bioinformatics 26:2460–2461Eichorst, S., Breznak, J., Schmidt, T. (2007) Isolation and characterization of soil bacteria that define terriglobus in the phylum acidobacteria. Applied and Environmental Microbiology 73: 2708-2717.Epelde, L., Lanzen, A., Blanco, F., Urich, T., Garbisu, C. (2015) Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS Microbiol Ecol 91:1–11Fallows J. (2014) When will genomics cure cancer?. The Atlantic. (www.theatlantic.com/magazine/archive/2014/01/when-will-genomics-curecancer/355739/)Felske, A., Heyrman, J., Balcaen, A., De Vos, P. (2003). Multiplex PCR screening of soil isolates for novel Bacillus related lineages. J. Microbiol. Methods. 55, 447–458. doi: 10.1016/s0167-7012(03)00191-xFeng, G., Xie, T., Wang, X., Bai, J., Tang, L., Zhao, H., Wei, W., Wang, M., Zhao, Y. (2018). Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiology. 18. 10.1186/s12866-018-1152-5.Fernandez, L. (2006). Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. México.Ferrier, S., Guisan, A. (2006) Spatial modeling of biodiversity at the community level. J. Appl. Ecol. 43: 393– 404.Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, et al. (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6: 1007–1017.Fierer, N., Ladau, J., Clemente, J., Leff, J., Owens, S., Pollard, K., Knight, R., Gilbert, J., McCulley, R. (2013) Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342:621–624Fierer, N., Strickland, M.S., Liptzin, D., Bradford, M.A., Cleveland, C.C., (2009) Global patterns in belowground communities. Ecology Letters 12, 1238-1249.Freeman KR, Pescador MY, Reed SC, Costello EK, Robeson MS, et al. (2009) Soil CO2 flux and photoautotrophic community composition in high-elevation, ‘barren’ soil. Environ Microbiol 11: 674–686.Fujimoto, A., Nakagawa, H., Hosono, N., Nakano, K., Abe, T. (2010) Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nature Genetics. 42:931–936.Fukunaga, Y., Kurahashi, M., Sakiyama, Y., Ohuchi, M., Yokota, A. y Harayama, S. (2009). Phycisphaera mikurensis gen. nov., sp nov., aislado de un alga marina, y propuesta de Phycisphaeraceae fam. nov., Phycisphaerales ord. nov y Phycisphaerae classis nov en el phylum Planctomycetes. J. Gen. Appl. Microbiol 55, 267–275. doi: 10.2323 / jgam.55.267Gabor, E., de Vries, E., Janssen, D. (2003) Efficient recovery of environmental DNA for expression cloning by indirect extraction methods, FEMS Microbiol. Ecol. 44 (2) 153–163.Garbeva, P., vanVeen, J. A., and van Elsas, J. D. (2003). Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb. Ecol. 45, 302–316. doi: 10.1007/s00248-002-2034-8Garcia-Fraile P., Menendez E., Rivas R. (2015). Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng. 2, 183–205. 10.3934/bioeng.2015.3.183Gardener, B. (2004). Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology. 94, 1252–1258. doi: 10.1094/PHYTO.2004.94. 11.1252Gardner, T., Ferreira, J., Barlow, J., Lees, A., Parry, L., Vieira, I., Berenguer, E., Abramovay, R., Aleixo, A., Andretti, C., (2013) A social and ecological assessment of tropical land uses at multiple scales: The Sustainable Amazon Network. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120166. [Gaston, K., Rodrigues, A., van Rensburg, B., Koleff, P., Chown, S. (2001) Complementary representation andzones of ecological transition. Ecology Letters, 4, 4–9.Gilbert, J., Jansson, J., Knight, R. (2014) The earth microbiome project: Successes and aspirations. BMC Biology 12:69Gomez-Alvarez, V., Teal, T., Schmidt, T. (2009) Systematic artifacts in metagenomes from complex microbial communities. ISME J 3:1314–1317Gondim-Porto C. (2012). Análisis microbiológico de un suelo agrícola mediterráneo tras la aplicación de lodos de depuradora urbana. Tesis Doctoral. Dept. Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid.Gontang, E., Fenical, W., Jensen, P. (2007) Phylogenetic diversity of gram-positive bacteria cultured from marine sediments. Appl. Environ. Microbiol. 73, 3272-3282.Gonzales, J. (2014). Efecto del uso y ocupación en las propiedades físicas y químicas en un suelo del piedemonte llanero. Bogotá. Colombia. Universidad Nacional de Colombia Recuperado de http://bdigital.unal.edu.co/46801/1/51627124.2014.pdfGoujon, M., McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., Lopez, R. (2010) A new bioinformatics analysis tools framework at EMBL-EBI. 2010. Nucleic acids research, 38 Suppl: W695-9.Gu, Y., Zhang, X., Tu, S., Lindstrom K., (2009) Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping, Eur. J. Soil. Biol., 45, 239–246Gutierrez, C. (2010). Uso De Bioinsecticidas Para El Control De Plagas De Hortalizas En Comunidades Rurales. Revista de Sociedad, Cultura y Desarrollo Sustentable (Ra Ximhai), (6), pp. 17-22.Hammer, Ø., Harper, D. (2006) Paleontological Data Analysis. Blackwell.Hammer, Ø., Harper, D., Ryan, P. (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9pp.Hartmann, M., Howes, C., VanInsberghe, D., Yu, H., Bachar, D., Christen, R. (2012). Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J 6: 2199–2218Hartmann, M., Widmer, F. (2006) Community structure anañysis are more sensitive to differences in soil bacterial communities tan Anonymous diversity índices. Appl Environ. Microbiol. 72, 7804 – 7812.Hatfield, J.L. (2006). Erosion: On-Site and Off-Site Impacts In Lal, R. Encyclopedia of Soil Science, 2nd Ed. Taylor& Francis, Retrieved on 17 usugm2014.Hayat, R., Ali, S., Amara, U., Khalid, R., Ahmed, I. (2010). "Soil beneficial bacteria and their role in plant growth promotion:a review". Annual Microbiology. 4: 579–598.Hemmat, J., Mohammad, D., Safari, S., Ali, A., Mirzaie-asl, A., Tahmourespour, A. (2018). Analysis of microbial communities in heavy metals-contaminated soils using the metagenomic approach. Ecotoxicology. 27. 1281-1291. 10.1007/s10646-018-1981-x.Hernández & Peña (2009) La marchitez de la piña producida por cochinillas, ¿Un problema complejo o un complejo de problemas? Instituto de Investigaciones en Fruticultura Tropical. La Habana, Cuba. 24(1):22-28.Heungens, K., Parke, J. (2000) Zoospore homing and infection events: effects of the biocontrol bacterium Burkholderia cepacia AMMDR1 on two oomycete pathogens of pea (Pisum sativum L.). Appl Environ Microbiol 66: 5192–5200Herlemann, D., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J., Andersson, A. (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579. doi: 10.1038/ismej.2011.41Hong, C., Si, Y., Xing, Y. (2015) Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environ Sci Pollut Res 22, 10788–10799. https://doi.org/10.1007/s11356-015-4186-3Hong, C., Si, Y., Xing, Y., Li, Y. (2015). Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environmental science and pollution research international. 22. 10.1007/s11356-015-4186-3.Hong, C., Si, Y., Xing, Y., Li, Y. (2015). Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environmental Science and Pollution Research, 22(14), 10788-10799.Hong, S., Bunge, J., Jeon, S., Epstein, S. (2006) Predicting microbial species richness. Proc Natl Acad Sci U S A 103: 117–122.Hruska, K., Kaevska, M. (2013) Mycobacteria in water, soil, plants and air: a review. Veterinarni Medicina 57:623– 679.Huang, W., Bai, Z., Hoefel, D., Hu, Q., Lv, Q., Zhuang, G., Xu, S., Qi, H., Zhang, H. (2012) Effects of cotton straw amendment on soil fertility and microbial communities. Front Environ Sci Eng 6:336–349Hubbell, S. (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, N.J.Huber, T., Faulkner, G., Hugenholtz, P. (2004) Bellerophon: A program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317–2319.Hulcr, J., Adams, A., Raffa, K., Hofstetter, R., Klepzig, K., Currie, C., (2011) Presence and diversity of Streptomyces in Dendroctonus and sympatric bark beetle galleries across North America. Microb. Ecol. 61, 759-768.Hung, J., Weng, Z. (2016) Sequence Alignment and Homology Search. Cold Spring Harb Protoc. (11) doi:10.1101/pdb.top093070Hussain, S., Saleem, M., Arshad, M., Khalid, A. (2009) Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Chapter 5. Adv. Agron. 102:159 - 200.IFOAM (2013) Criticisms and Frequent Misconceptions about Organic Agriculture: The Counter-Arguments: Misconception Number 7.Iftikhar, A., Yokota, A., Yamazoe, A., Fujiwara, T. (2007) "Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. International Journal of Systematic Evolutinary Microbiology 57 (5): 1117-1125.Ilin, A., Raiko, T. (2010) Practical approaches to Principal Component Analysis in the presence of missing values. Journal of Machine Learning Research 11:1957-2000.Illumina (2014) Nextera DNA Library Preparation Kits data sheet. (www.illumina.com/documents/products/datasheets/datasheet_nextera_dna_sample_prep.pdf).Illumina (2016) Illumina MiSeq system: Denature and dilute libraries guide. https://support.illumina.com/content/dam/illumina-support/ documents/documentation/system_Isanapong, J., Hambright, W., Willis, A., Boonmee, A., Callister, S., Burnum, K., Pasˇa-Tolic´, L., Nicora, C., Wertz, J., Schmidt, T., Rodrigues, J. (2013) Development of an ecophysiological model forDiplosphaera colotermitum TAV2, atermite hindgut Verrucomicrobium. ISME J 7:1803–1813Jangid, K., Williams, M., Franzluebbers, A., Sanderlin, J., Reeves, J., Jenkins, M., (2008) Endale D.M., Coleman D.S., Whitman W.B., Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems, Soil Biol. Biochem., 40, 2843–2853Janssen, P. (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology 72, 1719-1728.Jaramillo, D. (2002). Introducción a la Ciencia del Suelo. Medellín.Jaramillo, D. (2002). Introducción a la ciencia del suelo. Universidad Nacional de Colombia. Facultad de ciencias. Recuperado de http://www.bdigital.unal.edu.co/2242/1/70060838.2002.pdfJena, R., Aqel, M., Srivastava, P., Mahanti, P. (2009). Soft computing methodologies in bioinformatics. European Journal of Scientific Research, 26(2), 189-203.Jia, X., Han, S., Zhao, Y., Zhou, Y. (2006) Comparisons of extraction and purification methods of soil microorganism DNA from rhizosphere soil, J. For. Res. 17 (1) 31–34.Johnson, R. Wichern, D. (1998). Applied Multivariate Statistical Analysis, 4th edn. Upper Saddle River, NJ: Prentice-Hall.Jones, R., Robeson, M., Lauber, C., Hamady, M., Knight, R., Fierer, N. (2009). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME journal, 3(4), 442-453.Joseph, S. V. (2018). Repellent Effects of Insecticides Against Protaphorura fimata (Collembola: Poduromorpha: Onychiuridae). Journal of economic entomology, 111(2), 747-754.Kaltenpoth, M., Goettler, W., Koehler, S., Strohm, E., (2009) Life cycle and population dynamics of a protective insect symbiont reveal severe bottlenecks during vertical transmission. Evol. Ecol. 24, 463-477.Kamalakaran, S., Varadan, A., Janevski, N., Banerjee, N. (2013) Translating next generation sequencing to practice: Opportunities and necessary steps. Molecular Oncology 7(4):743-755.Kamensky, M., Ovadis, M., Chet, I., Chernin, L. (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem. 35(2):323–31.Kanaly, R., Harayama, S. (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182: 2059–2067.Kang, S., Radhakrishnan, R., Lee, I. (2015). Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J. Microbiol. Biotechnol. 31, 1517–1527. 10.1007/s11274-015-1896-0Kant, R., Van Passel, M., Palva, A., Lucas, S., Lapidus, A., del Rio, T. (2011) Genome sequence of Chthoniobacter flavus Ellin428, an aerobic heterotrophic soil bacterium. J Bacteriol. 2011; 193:2902–2903Karimi, B., Terrat, S., Dequiedt, S., Saby, N., Horrigue, W., Lelièvre, M., Nowak, V., Jolivet, C., Arrouays, D., Wincker, P., Cruaud, C., Bispo, A., Maron, P., Bouré, N., Ranjard, L. (2018) Biogeography of soil bacteria and archaea across France. Sci Adv 4:1808. https://doi.org/10.1126/sciadv.aat1808.Kastanis, G., Santana‐Quintero, L., Sanchez‐Leon, M., Lomonaco, S., Brown, E., Allard, M. (2019). In‐depth comparative analysis of Illumina® MiSeq run metrics: Development of a wet‐lab quality assessment tool. Molecular ecology resources, 19(2), 377-387.Keegan, K., Trimble, W., Wilkening, J. (2012) A platform-independent method for detecting errors in metagenomic sequencing data, Drisee. PLoS Comput Biol 8:e1002541Keppler, F., Borchers, R., Pracht, J., Rheinberger, S., Schöler, H. (2002). Natural formation of vinyl chloride in the terrestrial environment. Environ Sci Technol 36: 2479–2483.Khadem, A., Pol, A., Jetten, M., Op den Camp, H. (2010) Nitrogen fixation by the verrucomicrobial methanotroph BMethylacidiphilum fumariolicum^ SolV. Microbiology 156:1052–1059Khan, K., Joergensen, R. (2009) Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresour Technol 100: 303–309Khan, S., Tamura, T., Takagi, M., Shin-ya, K., (2010) Streptomyces tateyamensis sp. nov., Streptomyces marinus sp. nov. and Streptomyces haliclonae sp. nov., isolated from the marine sponge Haliclona sp. Int. J. Syst. Evol. Microbiol. 60, 2775-2779.Kielak, A., Cipriano, M., Kuramae, E. (2016). "Acidobacteria strains from subdivision 1 act as plant growth‐promoting bacteria". Archives of Microbiology. 198 (10): 987–993. doi:10.1007/s00203-016-1260-2Kielak, A., Pijl, A., van Veen, J., Kowalchuk, G., (2009) Phylogenetic diversity of Acidobacteria in a former agricultural soil. ISME J. 3 (3), 378 – 382.Kieser, T., Bibb, M., Buttner, M., Chater, K., Hopwood, D. (2000) Practical Streptomyces Genetics. JIF, Norwich.Kim, J., Dungan, R., Kwon, S., Weon, H. (2006) The community composition of root-associated bacteria of the tomato plant. World Journal of Microbiology and Biotechnology 22:1267-1273.Kim, K., Ahn, J., Kim, T., Park, S., Seong, C., Song, H. (2009). Genetic and phenotypic diversity of fenitrothion-degrading bacteria isolated from soils. J. Microbiol. Biotechnol. 19, 113–120. doi: 10.4014/jmb. 0808.467King, C., Kong, G. (2014) Description of Thermogemmatispora carboxidivorans sp. Nov., a novel carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated fron a geothermally-heated biofilm, and análisis of carbon monoxide oxidation by members of the class Ktedonobacter. Int J Syst Evol Microbiol 64:1244-1251.King, G., Weber, C. (2007) "Distribution, diversity, and ecology of aerobic CO-oxidizing bacteria". Nat. Rev. Microbiol. 5:107-118Kircher, M., Sawyer, S., Meyer, M. (2012) Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic AcidsRes. 2513–2524.Kleinsteuber, S., Muller, F., Chatzinotas, A., Wendt-Potthoff, K., Harms, H. (2008). "Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake". FEMS Microbiology Ecology. 63 (1): 107–117. doi:10.1111/j.1574-6941.2007.00402.xKlindworth, A., Pruesse, E., Schweer, T., Peplies, J. (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41(1):e1.Koleff, P., Gaston, K., Lennon, J. (2003). Measuring beta diversity for presence–absence data. Journal of Animal Ecology, 72(3), 367-382.Koboldt, D., Steinberg, K., Larson, D., Wilson, R. (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155(1):27-38.Koleva, L., Mitrev, S., Maksimova, V., Spasov, D. (2012). Content of capsaicin extracted from hot pepper (Capsicum annuum ssp. microcarpum L.) and its use as an ecopesticide. Faculty of Agricultural Sciences and Faculty of Medical Sciences, Goce Delcev University, Stip, Macedonia.Kopecky, J., Kyselkova, M., Omelka, M., Cermak, L., Novotna, J., Grundmann, G., Moënne-Loccoz, Y., Sagova-Mareckova, M. (2011) Environmental mycobacteria closely related to the pathogenic species evidenced in an acidic forest wetland. Soil Biol Biochem 43:697–700. https://doi.org/10.1016/j .soilbio.2010.11.033.Kopytko, M. (2016) Estudio del efecto de la nicotina y capsaicina como bioinsecticida. Universidad Pontificia Bolivariana. Prototipo Industrial.Krzmarzick, M., Crary, B., Harding, J., Oyerinde, O., Leri, A., Myneni, S., (2012). Natural niche for organohalide-respiring Chloroflexi. Appl Environ Microbiol 78: 393–401.Kulmatiski, A., Beard, K., Heavilin, J. (2012) Plant–soil feedbacks provide an additional explanation for diversity–productivity relationships. Proc. Biol. Sci. 279, 3020–3026.Kumar, V., AlMomin, S., Al-Aqeel, H., Al-Salameen, F., Nair, S., Shajan, A. (2018) Metagenomic analysis of rhizosphere microflora of oil-contaminated soil planted with barley and alfalfa. PLoS One. 13(8). doi: 10.1371/journal.pone.0202127.Labeda, D., Kroppenstedt, R. (2005) Stackebrandtia nassauensis gen. nov., sp. nov. and emended description of the family Glycomycetaceae. Int J Syst Evol Microbiol. 55:1687–1691.Lahr, D., Katz, L. (2009) Reducing the impact of PCR-mediated recombination in molecular evolution and environmental studies using a newgeneration high-fidelity DNA polymerase. Biotechniques 47: 857–866.Langmead, B., Trapnell, C., Pop, M. (2009) Ultrafast and memory-effi cient alignment of short DNA sequences to the human genome. Genome Biol 10:R25Lauber, C., Strickland, M., Bradford, M. Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology & Biochemistry, 40: 2407-2415.Lee, S., Lee, C., Jung, K., Park, K., Lee, D., Kim, P. (2009) Changes of soil organic carbon and its fractions in relation to soil physical properties in a long-term fertilized paddy. Soil Tillage Res. 104, 227–232.León, T. S. (2000). Efectos de plantaciones forestales sobre suelo y agua. Síntesis de resultados: 1996-2000. programa Conif - Minambiente sobre evaluaciones del impacto ambiental de las plantaciones forestales en Colombia. Santafé de Bogotá. Serie Técnica ISSN: 0121-0300 ed: CONIF v.1 fasc.47 p.5 – 84.Leschine, S., Paster, B. J. & Canale-Parola, E. (2006). Free-living saccharolytic spirochetes: the genus Spirochaeta. In The Prokaryotes 3rd edn, vol. 7, pp. 195–210. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.Lever, J., Krzywinski, M., Altman, N. (2017) Points of significance: Principal components anlysis. Nature America, Nature Methods. 14 (7) 641-642.Li, Q., Liao, S., Zhi, H., Xing, D., Xiao, Y., Yang, Q. (2019). Characterization and sequence analysis of potential biofertilizer and biocontrol agent Bacillus subtilisstrain SEM-9 from silkworm excrement. Can. J. Microbiol. 65, 45–58. doi: 10.1139/cjm-2018-0350Li, W., Roberts, D., Dery, P., Meyer, S., Lohrke, S., Lumsden, R., Hebbar, K. (2002) Broad spectrum antibiotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot 21: 129–135Liszka, M., Clark, M., Schneider, E., Clark, D. (2012). Nature versus nurture: developing enzymes that function under extreme conditions. Annu. Rev. Chem. Biomol. Eng. 3, 77–102. doi: 10.1146/annurev-chembioeng-061010- 114239López-Lozano, N., Heidelberg, K., Nelson, W., Garcia-Oliva, F., Eguiarte, L., Souza, V. (2013) Microbial secondary succession in soil microcosms of a desert oasis in the Cuatro Cienegas Basin, Mexico. http://dx.doi.org/10.7717/peerj.47.Lorenz, P., Eck, J. (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516.Lovelock J., Margulis L. (1970) Captando genomas: Hipótesis de Gaia. P. 184.Lucero, M., DeBolt, S., Unc, A., Ruiz-Font, A. (2014) Using microbial community interactions within plant microbiomes to advance an evergreen agricultural revolution. En: Sustainable agroecosystems in climate change mitigation. M. Oelbermann (ed.). Wageningen Academic Publishers, GermanyLuján, M., Gracia, J., Jordan, A. (2016) Geología del PN de los Alcornocales en torno a Alcalá de los Gazules.Lynch, M., Bartram, A., Neufeld, J. (2012) Targeted recovery of novel phylogenetic diversity from next-generation sequence data. ISME J 6:2067–2077. doi:10.1038/ismej.2012.50.Lyngwi, N., Joshi, S. (2014). Economically important Bacillus and related genera: a mini review. in Biology of Useful Plants and Microbes. ed Sen A. (New Delhi: Narosa Publishing House; ), 33–43.Maclaurin, J., Sterelny, K. (2008) What is biodiversity? The University of Chicago Press, Chicago. 224 p.Mandic-Mulec, I., Stefanic, P., Van Elsas, J. (2016). “Ecology of Bacillaceae,” in The Bacterial Spore: From Molecules to Systems, eds P. Eichenberger and A. Driks (Washington, DC: ASM Press), 59–85.Manivasagan, P., Venkatesan, J., Sivakumar, K., Kim, S., (2013) Marine actinobacterial metabolites: current status and future perspectives. Microbiol. (168) 311-332.Martínez, E., Fuentes, J., Acevedo, E. (2008). Soil organic carbon and soil properties. Scielo, (8), pp. 68-96Martínez, J. (2013). Producción y descomposición de hojarasca en sistema silvopastoriles de estrattos múltiples y su efecto sobre propiedades biorganicas y su efecto en el suelo en el valle medio del Rio Sinú. Universidad Nacional de Colombia.Martinez-Garcia, M., Brazel, D., Swan, B., Arnosti, C., Chain, P., Reitenga, K., Xie, G., Poulton, N., Lluesma Gomez, M., Masland, D., Thompson, B., Bellows, W., Ziervogel, K., Ahmed, S., Gleasner, C., Detter, C., Stepanauskas, R. (2012) Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of verrucomicrobia. PLoS One 7:309-314Master, E., Lai, V., Kuipers, B., Cullen, W., Mohn, W. (2002) Sequential anaerobic–aerobic treatment of soil contaminated with weathered aroclor 1260. Environ Sci Technol 36: 100– 103.Mayak, S., Tirosh, T., Glick, B. (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530Mehrshad, M., Salcher, M., Okazaki, Y., Nakano, S., Šimek, K., Andrei, A. (2018) Hidden in plain sight—highly abundant and diverse planktonic freshwater Chloroflexi. Microbiome. 6:176.Meneses, C., Rozo, L., Franco, J. (2011) Tecnologías bioinformáticas para el análisis de secuencias de ADN. Scientia et Technica Año XVI, No 49:116-121. Universidad Tecnológica de Pereira. ISSN 0122-1701.Methé, B., Nelson, K., Pop, M., Creasy, H., Giglio, M., Huttenhower, C., Gevers, D., Petrosino, J., Abubucker, S., Badger, J. (2012) A framework for human microbiome research. Nature 486:215-221.Meyer, F., Paarmann, D., D’Souza, M. (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386Mezzatesta, M., Gona, F., Stefani, S. (2012) Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol. 7: 887-902.Mikanová, O., Šimon, T., Kopecký, J., Ságová-Marečková, M. (2015) Soil biological characteristics and microbial community structure in a fieldexperiment. Open Life Sci. 10:249–259.Miller, C., Baker, B., Thomas, C., Singer, S. (2011) EMIRGE: Reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biology 12(5):R44.Miller, C., Handley, K., Wrighton, K., Frischkorn, R. (2013) Short-Read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS ONE 8(2):e56018.Mizrahi-Man. O., Davenport, E., Gilad, Y. (2013) Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: Evaluation of effective study designs. PLoS ONE 8(1):e53608.Moe, W., Yan, J., Nobre, M., Da Costa, M., Rainey, F. (2009). "Dehalogenimonas lykanthroporepellens gen. Nov., sp. Nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater". International Journal of Systematic and Evolutionary Microbiology. 59 (11): 2692–2697.Moreno, C. (2001) Métodos para medir la biodiversidad. M&T-Manuales y tesis SEA, vol.1. Programa Iberoamericano de ciencia y tecnología para el desarrollo. Oficina Regional de Ciencia y Tecnología para América Latina y Caribe, UNESCO. GORFI. Zaragoza.Moreno-Barriga, F., Faz, Á., Acosta, J. A, Soriano-Disla, M., Martínez-Martínez, S., Zornoza, R. (2017). Uso de Piptatherum miliaceum para el manejo de fitosanitarios de Technosols modificados con biochar derivados de relaves piríticos para mejorar la agregación del suelo y reducir la movilidad del metal (loid). Geoderma, 307, 159-171. doi: 10.1016 / j. geoderma.2017.07.040Morgan, J., Carr, I., Sheridan, E., Chu, C., Hayward, B. (2010) Genetic diagnosis of familial breast cancer using clonal sequencing. Hum Mutat. 31(4):484–91.Mumy, K., Findlay, R. (2004) Convenient determination of DNA extraction efficiency using an external DNA recovery standard and quantitative-competitive PCR. J Microbiol Methods 57, 259–268.Munk, C., Lapidus, A., Copeland, A., Jando, M., Mayilraj, S., Glavina Del Rio, T., Nolan, M., Chen, F., Lucas, S., Tice, H., Cheng, J.F., Han, C., Detter, J.C., Bruce, D., Goodwin, L., Chain, P., Pitluck, S., Goker, M. (2009) Complete genome sequence of Stackebrandtia nassauensis type strain (LLR-40K-21). Stand. Genomic Sci. 1:292-299.Nadal Rocamora, I. (2016). Alteraciones fisiológicas, metabólicas y de la composición de las poblaciones bacterianas de la microbiota de un suelo agrícola tras la aplicación de residuos orgánicos urbanos (Doctoral dissertation, Universidad Complutense de Madrid).Naether, A., Foesel, B., Naegele, V., Wüst, P., Weinert, J., Bonkowski, M., Gockel, S. (2012). Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Applied and Environmental Microbiology, 78(20), 7398-7406.Nagórska, K., Bikowski, M., Obuchowski, M. (2007) Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica Polonica 54:495-508.Nakagawa, S., Takai, K., Inagaki, F., Horikoshi, K., Sako, Y. (2005). "Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough". International Journal of Systematic and Evolutionary Microbiology. 55 (2): 925–933. doi:10.1099/ijs.0.63480-0Nakazato, T., Ohta, T., Bono, H. (2013) Experimental design-based functional mining and characterization of high-throughput sequencing data in the sequence read archive. PLoS One. 8(10):e77910.Naureen, Z., Rehman, N., Hussain, H., Hussain, J., Gilani, S., Al Housni, S., Mabood, F., Khan, A., Farooq, S., Abbas, G., Harrasi, A. (2017). Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Frontiers in microbiology, 8, 1477.Nava, E., García, C., Camacho, J., Vázquez, E. (2012). Bioplaguicidas: una opción para el control biológico de plagas. Ra Ximhai, 8(3), 17-29.Navarrete, A., Soares, T., Rossetto, R., van Veen, J., Tsai, S., Kuramae, E. (2015). Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie van Leeuwenhoek, 108(3), 741-752.Nayak, A., Sanjeev, K., Santosh, K., Anjaneya, O., Karegoudar, T. (2011) A catabolic pathway for the degradation of chrysene by Pseudoxanthomonas sp. PNK-04. FEMS Microbiol Lett. 320: 128–134. https://doi.org/10.1111/j.1574-6968.2011.02301.xNesbo, C., Kumaraswamy, R., Dlutek, M., Doolittle, W., Foght, J. (2010) Searching for mesophilic Thermotogales bacteria: ‘‘mesotogas’’ in the wild. Appl Environ Microbiol 76:4896–4900Neumann, S., Wessels, H., Rijpstra, W., Sinninghe Damsté, J., Kartal, B., Jetten, M. (2014) Aislamiento y caracterización de un organelo de células procariotas de la bacteria anammox Kuenenia stuttgartiensis . Mol. Microbiol 94, 794–802. doi: 10.1111 / mmi.12816.Nielsen, S., Minchin, T., Kimber, S., Van Zwieten, L., Gilbert, J., Munroe, P., Joseph, S., Thomas, T. (2014). Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agriculture, Ecosystems & Environment. 191. 10.1016/j.agee.2014.04.006.Nieminen, T., Pakarinen, J., Tsitko, I., Salkinoja-Salonen, M., Breitenstein, A., Ali-Vehmas, T., Neubauer, P. (2006) 16S rRNA targeted sandwich hybridization method for direct quantification of mycobacteria in soils. J Microbiol Methods 67:44 –55. https://doi.org/10.1016/j.mimet.2006.02 .015.Niva, M., Hernesmaa, A., Haahtela, K., Salkinoja-Salonen, M., Sivonen, K., Haukka, K., Haahtela, A., Sivonen, M. (2006) Actinobacterial communities of boreal forest soil and lake water are rich in mycobacteria. Boreal Environ Res 11:45–53Norby, B., Fosgate, G., Manning, E., Collins, M., Roussel, A. (2007) Environmental mycobacteria in soil and water on beef ranches: association between presence of cultivable mycobacteria and soil and water physicochemical characteristics. Vet Microbiol 124:153–159. https://doi.org/ 10.1016/j.vetmic.2007.04.015.Nunes, A., de Almeida, A., Coelho, C. (2011) Impacts of land use and cover type on runoff and soil erosion in a marginal area of Portugal, Appl. Geogr., 31, 687–699.Oger, P., Mansouri, H., Nesme, X. Dessaux, Y. (2004). Engineering root exudation of Lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microb Ecol 47, 96–103.Okihiro, G. (2009) Pineapple culture. A history of the tropical and temperate zones. Berkeley: University of California Press.Oliveros, J. (2007-2015) Venny. An interactive tool for comparing lists with Venn's diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.htmlOMEGA (2016) E.Z.N.A.®Soil DNA Kit. Product manual. HiBind®, E.Z.N.A.®, and MicroElute® are registered trademarks of Omega Bio-tek, Inc.Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2013). El Manejo Del Suelo En La Producción De Hortalizas Con Buenas Prácticas Agrícolas. Antioquia. FAO Recuperado de http://www.fao.org/3/a-i3361s.pdfOrganización de las Naciones Unidas para la Alimentación y la Agricultura. (2014). Permeabilidad del suelo. FAO Recuperado de http://www.fao.org/tempref/FI/CDrom/FAO_Training/FAO_Training/General/x6706s/.!33794!x6706s09.htmOrganización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2018). Mapa de Abono Orgánico de Suelo. Italia, Roma. FAO.Pace, N., Stahl, D., Lane, D., Olsen, G. (1986) The analysis of natural microbial populations by ribosomal RNA sequences. Advances in Microbial Ecology 9:1-55.Padmanabhan, R., Mishra, A., Raoult, D., Fournier, P. (2013) Genomics and metagenomics in medical microbiology. Journal of Microbiological Methods 95(3):415-424.Pan, Y., Cassman, N., de Hollander, M., Mendes, L., Korevaar, H., Geerts, R., Van Veen, J., Kuramae, E. (2014) Impact of long term N, P, K and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiol Ecol 90:195–205Pantanella, F., Berlutti, F., Passariello, C., Sarli, S., Morea, C., Schippa, S. (2007) Violacein and biofilm production in Janthinobacterium lividum. J. Appl. Microbiol. 102:992–999. doi: 10.1111/j.1365-2672.2006.03155.xPapatheodorou, E., Efthimiadou, E., Stamou, G. (2008) Functional diversity of soil bacteria as affected by management practices and phenological stage of Phaseolus vulgaris. European Journal of Soil Biology 44:429-436.Paull, R., Duarte, O. (2011) Tropical Fruits, CAB International, 2nd Ed., (1).pp. 327-365Pearce, D., Newsham, K., Thorne, M., Clavo-Bado, L., Kresk, M., Laskaris, P. (2012) "Metagenomic analysis of a southern mairitime Antartic soil". Frontiers in Microbio. 3:403.Pearson, W. (2013). An introduction to sequence similarity ("homology") searching. Current protocols in bioinformatics, Chapter 3, Unit3.1. https://doi.org/10.1002/0471250953.bi0301s42Pentecost, A. (2005). Travertine. Springer Science & Business Media.Pérez-Montaño, F., Guasch-Vidal, B., González-Barroso, S., López-Baena, F., Cubo, T., Ollero, F., Espuny, M. (2011). Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Research in microbiology, 162(7), 715-723.Philippot, L., Raaijmakers, J. M., Lemanceau, P., Van der Putten, W. (2013) Going back to the roots: the microbial ecology of the rhizosphere, Nat. Rev. Microbiol., 11, 789–799.PHOEBE CHEN, Y. (2005) Bioinformatics Technologies. Alemania: Springer-Verlag Berlin Heidelberg, 396p. ISBN 3-540-20873-9Pitombo, L., Carmo, J., Cantarella, H., Rossetto, R., Hollander, M., López, M., Kuramae, E. (2015) Exploring soil microbial 16S rRNA sequence data to increase carbon yield and nitrogen efficiency of a bioenergy crop. Glob Change Biol Bioenergy. doi:10.1111/gcbb.12284Plaza-Bonilla, D., Álvaro-Fuentes, J., Cantero-Martínez, C. (2014) Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil Tillage Res. 139, 19–22Pointing, S., Chan, Y., Lacap, D., Lau, M., Jurgens, J. (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106: 19964–19969.Polti, M., Aparicio, J., Benimeli, C., Amoroso, M. (2014) Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria. Int. Biodeterior. Biodegrad. (88) 48-55.Porwal, S., Kumar, T., Lal, S., Rani, A., Kumar, S., Cheema, S. (2008). Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour. Technol. 99, 5444– 5451. doi: 10.1016/j.biortech.2007.11.011PremaLatha, K., Soni, R., Khan, M., Marla, S., Goel, R. (2009) Exploration of csp gene(s) from temperate and glacier soils of Indian Himalaya and in silico analysis of encoding proteins. Curr Microbiol 58:343–348. doi:10.1007/s00284-008-9344-0Pukall, R., Lapidus, A., Glavina Del Rio, T., Copeland, A., Tice, H., Cheng, F., Lucas, S., Chen, F., Nolan, M., Bruce, D., Goodwine, L., Pitluck, S. (2010) Complete genome sequence of Conexibacter woesei type strain (ID131577). Stand Genomic Sci. 2(2):212-219. doi:10.4056/sigs.751339Putrie, R. F. W., Aryantha, I. N. P., IRIAWATI, I., & Antonius, S. (2020). Diversity of endophytic and rhizosphere bacteria from pineapple (Ananas comosus) plant in semi-arid ecosystem. Biodiversitas Journal of Biological Diversity, 21(7).Quince, C., Lanzen, A., Curtis, T., Davenport, R., Hall, N., Head, I., Read, L., Sloan, W. (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6: 639–641.Rabus, R., Boll, M., Heider, J., Meckenstock, R., Buckel, W. (2016) Anaerobic microbial degradation of hydrocarbons: from enzymatic reactions to the environment. J Mol Microbiol Biotechnol. 26: 5–28Ramos, E., Zúñiga, D. (2008). Efecto de la humedad, temperatura y pH del suelo en la actividad microbiana a nivel de laboratorio. Ecología aplicada, 7(1-2), 123-130.Rao, J., Rash, B., Nobre, M., da Costa, M., Rainey, F., Moe, W. (2012) Actinomycetes nature sp. Nov., the first Actinomycetessp. Insolated from a non-human or animal source. Antonic van Leeuwenhoek. J Microbiol 101(1):155-168. Doi: 10.1007/s10482-011-9644-4.Ravi, R., Walton, K., Khosroheidari, M. (2018) MiSeq: A Next Generation Sequencing Platform for Genomic Analysis. Disease Gene Identification: Methods and Protocols, Methods in Molecular Biology, (1706) 223 – 232. https://doi.org/10.1007/978-1-4939-7471-9_12Ray, D. (1991). Pesticides derived from plants and other organisms. In W.J. Hayes, Jr. & E.R. Laws (Eds.), Handbook of Pesticide Toxicology. Vol. 2. (pp.585- 593). Toronto: Academic Press.Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N., Anderson, I., Cheng, J., Darling, A., Malfatti, S., Swan, B., Gies, E., Dodsworth, J., Hedlund, B., Tsiamis, G., Sievert, S., Liu, W., Eisen, J., Hallam, S., Kyrpides, N., Stepanauskas, R., Rubin, E., Hugenholtz, P., Woyke, T. (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437.Rios, R. (2005). Estudio de la estimulación biológica para el tratamiento de residuos de perdoracion petrolera empleando lisímetros. Universidad Autónoma Metropolitana. Unidad Iztapalapa. Casa Abierta al Tiempo. México D.F.Ross, M., Russ, C., Costello, M. (2013) Characterizing and measuring bias in sequence data. Genome Biol. 14(5):R51.Rota, C., Millspaugh, J., Rumble, M., Lehman, C., Kesler, D. (2014). The role of wildfire, prescribed fire, and mountain pine beetle infestations on the population dynamics of black-backed woodpeckers in the black hills, South dakota. PLoS ONE 9:e94700. doi: 10.1371/journal.pone.0094700Sait, M., Hugenholtz, P., Janssen, P. (2002) Cultivation of globally-distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4:654-666.Sandhya, V., Ali, S., Grover, M., Reddy, G., Bandi, V. (2011). Drought- tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6, 1–14. 10.1080/17429145.2010.535178Schlatter, D., Fubuh, A., Xiao, K., Hernandez, D., Hobbie, S., Kinkel, L., (2009) Resource amendments influence density and competitive phenotypes of Streptomyces in soil. Microb. Ecol. 57, 413-420.Schloss, P., Allen, H., Klimowicz, A., Mlot, C., Gross, J., Savengsuksa, S., McEllin, J., Clardy, J., Ruess, R., Handelsman, J. (2010) Psychrotrophic strain of Janthinobacterium lividum from a cold Alaskan soil produces prodigiosin. DNA Cell Biol. 29:533–541. doi: 10.1089/dna.2010.1020Schloss, P., Gevers, D., Westcott, S. (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6(12):e27310.Schoenborn, L., Yates, P., Grinton, B., Hugenholtz, P., Janssen, P. (2004) Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl. Environ. Microbiol. 70, 4363–4366.Shen, C., Ge, Y., Yang, T., Chu, H. (2017). Verrucomicrobial elevational distribution was strongly influenced by soil pH and carbon/nitrogen ratio. Journal of Soils and Sediments, 17(10), 2449-2456.Shen, Y., Kim, H., Tong, M., Li, Q. (2011) Influence of solution chemistry on the deposition and detachment kinetics of RNA on silica surfaces, Colloids Surf. B: Biointerfaces 82 (2) 443–449.Sim, K., Cox, M., Wopereis, H., Martin, R., Knol, J., Li, M., Cookson, W., Moffatt, M., Kroll, J. (2012) Improved detection of bifidobacteria with optimised 16S rRNAgene based pyrosequencing. PLoS One, 7(3):e32543.Soliman, T., Yang, S., Yamazaki, T., Jenke-Kodama, H. (2017). Profiling soil microbial communities with next-generation sequencing: The influence of DNA kit selection and technician technical expertise. PeerJ. 5. 10.7717/peerj.4178.Soni, R., Goel, R. (2010) Triphasic approach for assessment of bacterial population in different soil systems. Ekologija 56:94–98. doi:10.2478/v10055-010-0014-8Soni, R., Goel, R. (2011) nifH homologous from soil metagenome. Ekologija 57:87–95. doi:10.6001/ ekologija.v57i3.1914Stegle, O., Teichmann, S., Marioni, J. (2015). Computational and analytical challenges in single-cell transcriptomics. Nature Reviews. Genetics, 16(3), 133–145. https:// doi.org/10.1038/nrg3833.Stevens, H., Stubner, M., Simon, M., Brinkhoff, T., (2005) Phylogeny of Proteobacteria and Bacteroidetes from oxic habitats of a tidal flat ecosystem. FEMS Microbiol. Ecol. 54, 351–365.Stockdale, E., Goulding, K., George, T., Murphy, D. (2013). Soil fertility In Gregoty, P.J. & Nortcliff, S. (2013). Soil Conditions and Plant Growth, Ed. WileyBlackwell, U.K. Retrieved on18 rebmetpeS2014Surmann, E., Efferth, T. (2014) Biodiversity and metagenomics. In: Kuete V, Efferth T (eds) Biodiversity natural, products and cancer treatment. World Scientific Publishing Co., Singapore, pp 35–69. doi:10.1142/9789814583510_0002Tago, K., Sekiya, E., Kiho, A., Katsuyama, C., Hoshito, Y., Yamada, N. (2006). Diversity of fenitrothion-degrading bacteria in soils from distant geographical areas. Microbes Environ. 21, 58–64. doi: 10.1264/jsme2.21.58Taiwo, L., Adegbite, A. (2001) Effect of arbuscular mycorrhiza and Bradyrhizobium inoculation on growth, N2 fixation and yield of promiscuously nodulating soybean (Glycine max), J. Agri. Res. 2:110–118.Takaku, H., Kodaira, A. Kimoto, M. Nashimoto, A., Takagi, M. (2006) Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and -independent approaches. J. Biosci. Bioeng. 101:42-50.Taylor, R., Williams, W., Sistani, K. (1991) N2 fixation by soybean Bradyrhizobium combinations under acidity, low P, and high Al stressess In: Wright, eds. Plant soil interactions at low pH Dordrecht: Kluwer. pp 293–300.Teixeira, L., Peixoto, R., Cury, J., Sul, W., Pellizari, V., Tiedje, J., Rosado, A. (2010). Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISME journal, 4(8), 989-1001.Thakuria, D., Schmidt, O., Siúrtáin, M., Egan, D., Doohan, F. (2008) Importance of DNA quality in comparative soil microbial community structure analyses, Soil Biol. Biochem. 40 (6) 1390–1403.Thomas, T., Gilbert, J., Meyer, F. (2012) Metagenomics-a guide from sampling to data analysis. Microbial Informatics and Experimentation 2(3):1-12.Thompson, L. (2002). Los Suelos y su Fertilidad. Mexico: McGraw-Hill Book Company.Thompson, L., Sanders, J., McDonald, D., Amir, A., Ladau, J., Locey, K. (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 551:457–63.Trân Van, V., Berge, O., Ke, S., Balandreau, J., Heulin, T. (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218: 273–284Trimble, W., Keegan, K., D’Souza, M. (2012) Short-read reading-frame predictors are not created equal, sequence error causes loss of signal. BMC Bioinformatics 13:183Tsaplina, I., Zhuravleva, A., Egorova, M., Bogdanova, T., Krasil’nikova, E., Zakharchuk, L., Kondrat’eva, T. (2010) Response to oxygen limitation in bacteria of the genus sulfobacillus. Microbiology. 79:13–22.Tsiafouli, M., Thebault, E., Sgardelis, S., de Ruiter, P., van der Putten, W., Birkhofer, K., Hemerik, L., de Vries, F., Bardgett, R., Brady, M. (2016) Intensive agriculture reduces soil biodiversity across Europe, Global Change Biol., 21, 973– 985.Tuomisto, H. (2010). A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33(1), 2-22.Uroz, S., Buée, M., Murat, C., Frey-Klett, P., Martin, F. (2010). Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2: 281–288Uroz, S., Buee, M., Murat, C., Frey-Klett, P., Martin, F. (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ. Microbiol. Rep. 2, 281–288.Valdes, N., Soto, P., Cottet, L., Alarcon, P., Gonzalez, A., Castillo, A., Corsini, G., Tello, M. (2015) Draft genome sequence of Janthinobacterium lividum strain MTR reveals its mechanism of capnophilic behavior. Stand. Genom. Sci. 10:110. doi: 10.1186/s40793-015-0104-z.Van Dijk, E., Auger, H., Jaszczyszyn, Y., Thermes, C. (2014) Ten years of next-generation sequencing technology. Trends Genet. (9):418–426.Van Passel, M., Kant, R., Palva, A., Copeland, A., Lucas, S., Lapidus, A. (2011) Genome sequence of the verrucomicrobium Opitutus terrae PB90-1, an abundant inhabitant of rice paddy soil ecosystems. J Bacteriol. 193:2367–2368Vessey, J. (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil. 255: 571-586.Vivas, A., Barea, J., Azcon, R. (2005) Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environ Pollut 134(2):257–266Wang, J., Jenkins, R. Webb, J., Fuerst, A. (2002) Isolation of Gemmata-like and Isosphaera-like planctomycete bacteria from soil and freshwater. Appl. Environ. Microbiol. 68(1):417–422.Wang, K., Yan, P., Cao, L., Ding, Q,, Shao, C., Zhao, T. (2013) Potential of chitinolytic Serratia marcescens strain JPP1 for biological control of Aspergillus parasiticus and aflatoxin. BioMed Research International. Article ID 397142. https://doi.org/10.1155/2013/397142Ward, N. (2010). “Filo XXV. Planctomycetes Garrity y Holt 2001, 137 enmienda. Ward ", en el Manual de Bergey de bacteriología sistemática: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae y Planctomycetes, Vol. 4, eds NR Krieg, JT Staley, DR Brown, BP Hedlund, BJ Paster y NL Ward (Nueva York, NY: Springer), 879–925. doi: 10.1007 / 978-0-387-68572-4_14Ward, N., Challacombe, J., Janssen, P. (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 75 (7), 2046–2056.Ward, N., Staley, J., Fuerst, J., Giovannoni, S., Schlesner, H., Stackebrandt, E. (2006). The order planctomycetales, including the genera planctomyces, pirellula, gemmata and isosphaera and the candidatus genera brocadia, kuenenia and scalindua. Chapter 8.1. Prokaryotes 7:757 – 793.Watling, H., Perrot, F., Shiers, D. (2008) Comparison of selected characteristics of Sulfobacillus species and review of their occurrence in acidic and bioleaching environments. Hydrometallurgy. 93:57–65.Watve, M., Tickoo, R., Jog, M., Bhole, B. (2001) How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 176, 386-390.Wei, Z., Yang, X., Yin, S., Shen, Q., Ran, W., Xu, Y. (2011) Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field. Applied Soil Ecology 48:152-159Whitman, W. (2015) Bergey’s manual of systematics of Archaea and Bacteria. Wiley Online Library; New York, United States.Whittaker, R. (1972) Evolution and measurement of species diversity. Taxon 21: p. 213–251.Wilkening, J., Wilke, A., Desai, N. (2009) Using clouds for metagenomics. A case study. In: IEEE Cluster, 2009Wooley, J., Godzik, A., Friedberg, I. (2010) A primer on metagenomics. PLoS ONE 6:e1000667.Xu, M., Zhang, Q., Xia, C., Zhang, Y., Sun, G., Guo, J. (2014) Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME J. 8: 1932–1944. https:// doi.org/10.1038/ismej.2014.42 PMID: 24671084Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F. (2014) Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology 12(9):635-645.Yuan, C., Lei, J., Cole, J., Sun, Y. (2015) Reconstructing 16S rRNA genes in metagenomic data. Bioinformatics 31(12):i35–i43.Zakharova, S., Zenova, G., Zvyagintsev, D. (2003). Some approaches to the selective isolation of actinomycetes of the genus Actinomadura from soil. Microbiology, 72: 110–113.Zambrano, B. (2019) Análisis de cambios en las propiedades fisicoquímicas y microbiológicas de un suelo cultivado con piña y sometido a la fumigación con el insecticida químico y biológico en el municipio de Lebrija, Santander. Tesis de pregrado. Universidad Pontificia Bolivariana. Bucaramanga, Santander.Zavarzina, D., Tourova, T., Kolganova, T., Boulygina, E., Zhilina, T. (2009) Description of Anaerobacillus alkalilacustre gen. nov., sp. nov. Strictly anaerobic diazotrophic bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new combinations A. arseniciselenatis comb. nov., A. macyae comb. nov., and A. alkalidiazotrophicus comb. nov. Microbiology. 78:723–731.Zenova, G., Zakharova, O., Zvyagintsev, D., (2001) The Ecological Status of Actinomycetes of the Genus Actinomadura, Pochvovedenie. no. 4.Zhang, L., Xu, Z., (2008) Assessing bacterial diversity in soil. Journal of Soils and Sediments 8, 379-388.Zhao, J., Guo, L., Sun, P., Han, C., Bai, L., Liu, C., Li, Y., Xiang, W., Wang, X. (2015) Actinomadura jiaoheensis sp. nov. and Actinomadura sporangiiformans sp. nov., two novel actinomycetes isolated from muddy soil and emended description of the genus Actinomadura. Antonie Van Leeuwenhoek 108:1331–1339.PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-859https://repositorio.udes.edu.co/bitstreams/d7cdff84-8f91-4c31-b9aa-bd33404cf4a6/download38d94cf55aa1bf2dac1a736ac45c881cMD52ORIGINALCaracterización de la diversidad microbiana de suelos destinados a cultivos de Ananas comosus (piña)....pdfCaracterización de la diversidad microbiana de suelos destinados a cultivos de Ananas comosus (piña)....pdfDocumento Principalapplication/pdf2311935https://repositorio.udes.edu.co/bitstreams/0af88ba0-af8f-4481-834f-2424a443d381/downloadb146a3146015420b56565d787c6b70fbMD51TEXTCaracterización de la diversidad microbiana de suelos destinados a cultivos de Ananas comosus (piña)....pdf.txtCaracterización de la diversidad microbiana de suelos destinados a cultivos de Ananas comosus (piña)....pdf.txtExtracted texttext/plain101496https://repositorio.udes.edu.co/bitstreams/3f63e337-9435-4c4b-ba89-fabdfa52a06e/downloadee5cef9a2796f4193e75115dc39a25cdMD53THUMBNAILCaracterización de la diversidad microbiana de suelos destinados a cultivos de Ananas comosus (piña)....pdf.jpgCaracterización de la diversidad microbiana de suelos destinados a cultivos de Ananas comosus (piña)....pdf.jpgGenerated Thumbnailimage/jpeg5935https://repositorio.udes.edu.co/bitstreams/d5b00a00-210e-409e-a72c-15fe39ed462c/download8b1a7e2f877fb9f7e259b6dc8a91d1ecMD54001/5530oai:repositorio.udes.edu.co:001/55302022-10-25 10:11:43.436https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad de Santander, 2021https://repositorio.udes.edu.coRepositorio Universidad de Santandersoporte@metabiblioteca.comTGljZW5jaWEgZGUgUHVibGljYWNpw7NuIFVERVMKRGlyZWN0cmljZXMgZGUgVVNPIHkgQUNDRVNPCgo=