Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors
Digital
- Autores:
-
Cova, Tânia
Vitorino, Carla
Ferreira, Márcio
Nunes, Sandra
Rondon-Villarreal, Paola
Pais, Alberto
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Universidad de Santander
- Repositorio:
- Repositorio Universidad de Santander
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.udes.edu.co:001/7336
- Acceso en línea:
- https://doi.org/10.1007/978-1-0716-1787-8_14
https://repositorio.udes.edu.co/handle/001/7336
- Palabra clave:
- Artificial intelligence
Machine learning
Quantum computing
Drug discovery
Drug development
Drug life cycle
- Rights
- closedAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RUDES2_64dbc642be1dfb2e184d68cbb281db9b |
---|---|
oai_identifier_str |
oai:repositorio.udes.edu.co:001/7336 |
network_acronym_str |
RUDES2 |
network_name_str |
Repositorio Universidad de Santander |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors |
title |
Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors |
spellingShingle |
Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors Artificial intelligence Machine learning Quantum computing Drug discovery Drug development Drug life cycle |
title_short |
Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors |
title_full |
Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors |
title_fullStr |
Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors |
title_full_unstemmed |
Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors |
title_sort |
Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors |
dc.creator.fl_str_mv |
Cova, Tânia Vitorino, Carla Ferreira, Márcio Nunes, Sandra Rondon-Villarreal, Paola Pais, Alberto |
dc.contributor.author.none.fl_str_mv |
Cova, Tânia Vitorino, Carla Ferreira, Márcio Nunes, Sandra Rondon-Villarreal, Paola Pais, Alberto |
dc.subject.proposal.eng.fl_str_mv |
Artificial intelligence Machine learning Quantum computing Drug discovery Drug development Drug life cycle |
topic |
Artificial intelligence Machine learning Quantum computing Drug discovery Drug development Drug life cycle |
description |
Digital |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11-04 |
dc.date.accessioned.none.fl_str_mv |
2022-08-03T21:09:45Z |
dc.date.available.none.fl_str_mv |
2022-08-03T21:09:45Z |
dc.type.spa.fl_str_mv |
Capítulo - Parte de Libro |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-1-0716-1787-8_14 |
dc.identifier.eisbn.spa.fl_str_mv |
978-1-0716-1787-8 |
dc.identifier.isbn.spa.fl_str_mv |
978-1-0716-1786-1 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.udes.edu.co/handle/001/7336 |
url |
https://doi.org/10.1007/978-1-0716-1787-8_14 https://repositorio.udes.edu.co/handle/001/7336 |
identifier_str_mv |
978-1-0716-1787-8 978-1-0716-1786-1 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
347 |
dc.relation.citationstartpage.spa.fl_str_mv |
321 |
dc.relation.cites.none.fl_str_mv |
Cova, T., Vitorino, C., Ferreira, M., Nunes, S., Rondon-Villarreal, P., Pais, A. (2022). Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors. In: Heifetz, A. (eds) Artificial Intelligence in Drug Design. Methods in Molecular Biology, vol 2390. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1787-8_14 |
dc.relation.ispartofbook.spa.fl_str_mv |
Artificial Intelligence in Drug Design |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Suiza |
dc.source.spa.fl_str_mv |
https://link.springer.com/protocol/10.1007/978-1-0716-1787-8_14 |
institution |
Universidad de Santander |
bitstream.url.fl_str_mv |
https://repositorio.udes.edu.co/bitstreams/ceef21ae-aa2e-4271-a808-116097e76986/download https://repositorio.udes.edu.co/bitstreams/24a3d126-354d-47d8-9dc8-8c381c30192e/download https://repositorio.udes.edu.co/bitstreams/c63fcd93-9ddf-470e-8166-798243d9083d/download https://repositorio.udes.edu.co/bitstreams/d246f4c2-80bf-4ec5-9cc5-d5520df3d9dc/download |
bitstream.checksum.fl_str_mv |
9fa886d2e8ca00d422c8e543b4255cc8 38d94cf55aa1bf2dac1a736ac45c881c 5dbe86c1111d64f45ba435df98fdc825 f953cbbf7557754199deb5c0211bdc64 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Santander |
repository.mail.fl_str_mv |
soporte@metabiblioteca.com |
_version_ |
1818101982407163904 |
spelling |
Cova, Tânia84399b61-f66a-4d15-b57e-6e11c2665e58-1Vitorino, Carla1102d03a-657f-434d-a953-f8697a9426b2-1Ferreira, Márcio4a64a993-5864-4e38-b4b5-c85ff697e196-1Nunes, Sandrad90bdd31-25ec-4d78-a2ad-bd989603c0f9-1Rondon-Villarreal, Paola11c8f1f2-3d60-445c-926a-bdc78cf4e626-1Pais, Alberto87855d80-cda3-4990-a9cf-3ec973d6c3cc-12022-08-03T21:09:45Z2022-08-03T21:09:45Z2021-11-04DigitalArtificial intelligence (AI) consists of a synergistic assembly of enhanced optimization strategies with wide application in drug discovery and development, providing advanced tools for promoting cost-effectiveness throughout drug life cycle. Specifically, AI brings together the potential to improve drug approval rates, reduce development costs, get medications to patients faster, and help patients complying with their treatments. Accelerated pharmaceutical development and drug product approval rates can further benefit from the quantum computing (QC) technology, which will ultimately enable larger profits from patent-protected market exclusivity. Key pharma stakeholders are endorsing cutting-edge technologies based on AI and QC , covering drug discovery, preclinical and clinical development, and postapproval activities. Indeed, AI-QC applications are expected to become standard in the pharma operating model over the next 5–10 years. Generalizing scalability to larger pharmaceutical problems instead of specialization is now the main principle for transforming pharmaceutical tasks on multiple fronts, for which systematic and cost-effective solutions have benefited in areas such as molecular screening, synthetic pathway design, and drug discovery and development. The information generated by coupling the life cycle of drugs and AI and/or QC through data-driven analysis, neural network prediction, and chemical system monitoring will enable (1) better understanding of the complexity of process data, (2) streamlining the design of experiments, (3) discovering new molecular targets and materials, and also (4) planning or rethinking upcoming pharmaceutical challenges The power of AI-QC makes accessible a range of different pharmaceutical problems and their rationalization that have not been previously addressed due to a lack of appropriate analytical tools, demonstrating the breadth of potential applications of these emerging multidimensional approaches. In this context, creating the right AI-QC strategy often involves a steep learning path, especially given the embryonic stage of the industry development and the relative lack of case studies documenting success. As such, a comprehensive knowledge of the underlying pillars is imperative to extend the landscape of applications across the drug life cycle. The topics enclosed in this chapter will focus on AI-QC methods applied to drug discovery and development, with emphasis on the most recent advances in this field.application/pdfhttps://doi.org/10.1007/978-1-0716-1787-8_14978-1-0716-1787-8978-1-0716-1786-1https://repositorio.udes.edu.co/handle/001/7336engSuiza347321Cova, T., Vitorino, C., Ferreira, M., Nunes, S., Rondon-Villarreal, P., Pais, A. (2022). Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors. In: Heifetz, A. (eds) Artificial Intelligence in Drug Design. Methods in Molecular Biology, vol 2390. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1787-8_14Artificial Intelligence in Drug Design© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Natureinfo:eu-repo/semantics/closedAccessAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_14cbhttps://link.springer.com/protocol/10.1007/978-1-0716-1787-8_14Artificial intelligenceMachine learningQuantum computingDrug discoveryDrug developmentDrug life cycleArtificial Intelligence and Quantum Computing as the Next Pharma DisruptorsCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Todas las AudienciasPublicationORIGINALArtificial Intelligence and Quantum Computing as the Next Pharma Disruptors.pdfArtificial Intelligence and Quantum Computing as the Next Pharma Disruptors.pdfapplication/pdf214082https://repositorio.udes.edu.co/bitstreams/ceef21ae-aa2e-4271-a808-116097e76986/download9fa886d2e8ca00d422c8e543b4255cc8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-859https://repositorio.udes.edu.co/bitstreams/24a3d126-354d-47d8-9dc8-8c381c30192e/download38d94cf55aa1bf2dac1a736ac45c881cMD52TEXTArtificial Intelligence and Quantum Computing as the Next Pharma Disruptors.pdf.txtArtificial Intelligence and Quantum Computing as the Next Pharma Disruptors.pdf.txtExtracted texttext/plain5https://repositorio.udes.edu.co/bitstreams/c63fcd93-9ddf-470e-8166-798243d9083d/download5dbe86c1111d64f45ba435df98fdc825MD53THUMBNAILArtificial Intelligence and Quantum Computing as the Next Pharma Disruptors.pdf.jpgArtificial Intelligence and Quantum Computing as the Next Pharma Disruptors.pdf.jpgGenerated Thumbnailimage/jpeg9653https://repositorio.udes.edu.co/bitstreams/d246f4c2-80bf-4ec5-9cc5-d5520df3d9dc/downloadf953cbbf7557754199deb5c0211bdc64MD54001/7336oai:repositorio.udes.edu.co:001/73362023-10-10 09:32:35.742https://creativecommons.org/licenses/by/4.0/© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Naturehttps://repositorio.udes.edu.coRepositorio Universidad de Santandersoporte@metabiblioteca.comTGljZW5jaWEgZGUgUHVibGljYWNpw7NuIFVERVMKRGlyZWN0cmljZXMgZGUgVVNPIHkgQUNDRVNPCgo= |