Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors

Digital

Autores:
Cova, Tânia
Vitorino, Carla
Ferreira, Márcio
Nunes, Sandra
Rondon-Villarreal, Paola
Pais, Alberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad de Santander
Repositorio:
Repositorio Universidad de Santander
Idioma:
eng
OAI Identifier:
oai:repositorio.udes.edu.co:001/7336
Acceso en línea:
https://doi.org/10.1007/978-1-0716-1787-8_14
https://repositorio.udes.edu.co/handle/001/7336
Palabra clave:
Artificial intelligence
Machine learning
Quantum computing
Drug discovery
Drug development
Drug life cycle
Rights
closedAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RUDES2_64dbc642be1dfb2e184d68cbb281db9b
oai_identifier_str oai:repositorio.udes.edu.co:001/7336
network_acronym_str RUDES2
network_name_str Repositorio Universidad de Santander
repository_id_str
dc.title.spa.fl_str_mv Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors
title Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors
spellingShingle Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors
Artificial intelligence
Machine learning
Quantum computing
Drug discovery
Drug development
Drug life cycle
title_short Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors
title_full Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors
title_fullStr Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors
title_full_unstemmed Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors
title_sort Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors
dc.creator.fl_str_mv Cova, Tânia
Vitorino, Carla
Ferreira, Márcio
Nunes, Sandra
Rondon-Villarreal, Paola
Pais, Alberto
dc.contributor.author.none.fl_str_mv Cova, Tânia
Vitorino, Carla
Ferreira, Márcio
Nunes, Sandra
Rondon-Villarreal, Paola
Pais, Alberto
dc.subject.proposal.eng.fl_str_mv Artificial intelligence
Machine learning
Quantum computing
Drug discovery
Drug development
Drug life cycle
topic Artificial intelligence
Machine learning
Quantum computing
Drug discovery
Drug development
Drug life cycle
description Digital
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-11-04
dc.date.accessioned.none.fl_str_mv 2022-08-03T21:09:45Z
dc.date.available.none.fl_str_mv 2022-08-03T21:09:45Z
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-1-0716-1787-8_14
dc.identifier.eisbn.spa.fl_str_mv 978-1-0716-1787-8
dc.identifier.isbn.spa.fl_str_mv 978-1-0716-1786-1
dc.identifier.uri.none.fl_str_mv https://repositorio.udes.edu.co/handle/001/7336
url https://doi.org/10.1007/978-1-0716-1787-8_14
https://repositorio.udes.edu.co/handle/001/7336
identifier_str_mv 978-1-0716-1787-8
978-1-0716-1786-1
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 347
dc.relation.citationstartpage.spa.fl_str_mv 321
dc.relation.cites.none.fl_str_mv Cova, T., Vitorino, C., Ferreira, M., Nunes, S., Rondon-Villarreal, P., Pais, A. (2022). Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors. In: Heifetz, A. (eds) Artificial Intelligence in Drug Design. Methods in Molecular Biology, vol 2390. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1787-8_14
dc.relation.ispartofbook.spa.fl_str_mv Artificial Intelligence in Drug Design
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv closedAccess
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Suiza
dc.source.spa.fl_str_mv https://link.springer.com/protocol/10.1007/978-1-0716-1787-8_14
institution Universidad de Santander
bitstream.url.fl_str_mv https://repositorio.udes.edu.co/bitstreams/ceef21ae-aa2e-4271-a808-116097e76986/download
https://repositorio.udes.edu.co/bitstreams/24a3d126-354d-47d8-9dc8-8c381c30192e/download
https://repositorio.udes.edu.co/bitstreams/c63fcd93-9ddf-470e-8166-798243d9083d/download
https://repositorio.udes.edu.co/bitstreams/d246f4c2-80bf-4ec5-9cc5-d5520df3d9dc/download
bitstream.checksum.fl_str_mv 9fa886d2e8ca00d422c8e543b4255cc8
38d94cf55aa1bf2dac1a736ac45c881c
5dbe86c1111d64f45ba435df98fdc825
f953cbbf7557754199deb5c0211bdc64
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Santander
repository.mail.fl_str_mv soporte@metabiblioteca.com
_version_ 1818101982407163904
spelling Cova, Tânia84399b61-f66a-4d15-b57e-6e11c2665e58-1Vitorino, Carla1102d03a-657f-434d-a953-f8697a9426b2-1Ferreira, Márcio4a64a993-5864-4e38-b4b5-c85ff697e196-1Nunes, Sandrad90bdd31-25ec-4d78-a2ad-bd989603c0f9-1Rondon-Villarreal, Paola11c8f1f2-3d60-445c-926a-bdc78cf4e626-1Pais, Alberto87855d80-cda3-4990-a9cf-3ec973d6c3cc-12022-08-03T21:09:45Z2022-08-03T21:09:45Z2021-11-04DigitalArtificial intelligence (AI) consists of a synergistic assembly of enhanced optimization strategies with wide application in drug discovery and development, providing advanced tools for promoting cost-effectiveness throughout drug life cycle. Specifically, AI brings together the potential to improve drug approval rates, reduce development costs, get medications to patients faster, and help patients complying with their treatments. Accelerated pharmaceutical development and drug product approval rates can further benefit from the quantum computing (QC) technology, which will ultimately enable larger profits from patent-protected market exclusivity. Key pharma stakeholders are endorsing cutting-edge technologies based on AI and QC , covering drug discovery, preclinical and clinical development, and postapproval activities. Indeed, AI-QC applications are expected to become standard in the pharma operating model over the next 5–10 years. Generalizing scalability to larger pharmaceutical problems instead of specialization is now the main principle for transforming pharmaceutical tasks on multiple fronts, for which systematic and cost-effective solutions have benefited in areas such as molecular screening, synthetic pathway design, and drug discovery and development. The information generated by coupling the life cycle of drugs and AI and/or QC through data-driven analysis, neural network prediction, and chemical system monitoring will enable (1) better understanding of the complexity of process data, (2) streamlining the design of experiments, (3) discovering new molecular targets and materials, and also (4) planning or rethinking upcoming pharmaceutical challenges The power of AI-QC makes accessible a range of different pharmaceutical problems and their rationalization that have not been previously addressed due to a lack of appropriate analytical tools, demonstrating the breadth of potential applications of these emerging multidimensional approaches. In this context, creating the right AI-QC strategy often involves a steep learning path, especially given the embryonic stage of the industry development and the relative lack of case studies documenting success. As such, a comprehensive knowledge of the underlying pillars is imperative to extend the landscape of applications across the drug life cycle. The topics enclosed in this chapter will focus on AI-QC methods applied to drug discovery and development, with emphasis on the most recent advances in this field.application/pdfhttps://doi.org/10.1007/978-1-0716-1787-8_14978-1-0716-1787-8978-1-0716-1786-1https://repositorio.udes.edu.co/handle/001/7336engSuiza347321Cova, T., Vitorino, C., Ferreira, M., Nunes, S., Rondon-Villarreal, P., Pais, A. (2022). Artificial Intelligence and Quantum Computing as the Next Pharma Disruptors. In: Heifetz, A. (eds) Artificial Intelligence in Drug Design. Methods in Molecular Biology, vol 2390. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1787-8_14Artificial Intelligence in Drug Design© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Natureinfo:eu-repo/semantics/closedAccessAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_14cbhttps://link.springer.com/protocol/10.1007/978-1-0716-1787-8_14Artificial intelligenceMachine learningQuantum computingDrug discoveryDrug developmentDrug life cycleArtificial Intelligence and Quantum Computing as the Next Pharma DisruptorsCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Todas las AudienciasPublicationORIGINALArtificial Intelligence and Quantum Computing as the Next Pharma Disruptors.pdfArtificial Intelligence and Quantum Computing as the Next Pharma Disruptors.pdfapplication/pdf214082https://repositorio.udes.edu.co/bitstreams/ceef21ae-aa2e-4271-a808-116097e76986/download9fa886d2e8ca00d422c8e543b4255cc8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-859https://repositorio.udes.edu.co/bitstreams/24a3d126-354d-47d8-9dc8-8c381c30192e/download38d94cf55aa1bf2dac1a736ac45c881cMD52TEXTArtificial Intelligence and Quantum Computing as the Next Pharma Disruptors.pdf.txtArtificial Intelligence and Quantum Computing as the Next Pharma Disruptors.pdf.txtExtracted texttext/plain5https://repositorio.udes.edu.co/bitstreams/c63fcd93-9ddf-470e-8166-798243d9083d/download5dbe86c1111d64f45ba435df98fdc825MD53THUMBNAILArtificial Intelligence and Quantum Computing as the Next Pharma Disruptors.pdf.jpgArtificial Intelligence and Quantum Computing as the Next Pharma Disruptors.pdf.jpgGenerated Thumbnailimage/jpeg9653https://repositorio.udes.edu.co/bitstreams/d246f4c2-80bf-4ec5-9cc5-d5520df3d9dc/downloadf953cbbf7557754199deb5c0211bdc64MD54001/7336oai:repositorio.udes.edu.co:001/73362023-10-10 09:32:35.742https://creativecommons.org/licenses/by/4.0/© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Naturehttps://repositorio.udes.edu.coRepositorio Universidad de Santandersoporte@metabiblioteca.comTGljZW5jaWEgZGUgUHVibGljYWNpw7NuIFVERVMKRGlyZWN0cmljZXMgZGUgVVNPIHkgQUNDRVNPCgo=