Evaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en contenido lipídico

Digital

Autores:
Alvarado Vesga, Daniela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad de Santander
Repositorio:
Repositorio Universidad de Santander
Idioma:
spa
OAI Identifier:
oai:repositorio.udes.edu.co:001/5128
Acceso en línea:
https://repositorio.udes.edu.co/handle/001/5128
Palabra clave:
Aceite de soya
Bacterias ruminales
Parámetros fermentativos
Lípidos
Soybean oil
Lipids
Ruminal bacteria
Fermentative parameters
Rights
openAccess
License
Derechos Reservados - Universidad de Santander, 2020
id RUDES2_28223bc2bb07cd8c98d8c7a94e8bbeef
oai_identifier_str oai:repositorio.udes.edu.co:001/5128
network_acronym_str RUDES2
network_name_str Repositorio Universidad de Santander
repository_id_str
dc.title.spa.fl_str_mv Evaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en contenido lipídico
title Evaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en contenido lipídico
spellingShingle Evaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en contenido lipídico
Aceite de soya
Bacterias ruminales
Parámetros fermentativos
Lípidos
Soybean oil
Lipids
Ruminal bacteria
Fermentative parameters
title_short Evaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en contenido lipídico
title_full Evaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en contenido lipídico
title_fullStr Evaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en contenido lipídico
title_full_unstemmed Evaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en contenido lipídico
title_sort Evaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en contenido lipídico
dc.creator.fl_str_mv Alvarado Vesga, Daniela
dc.contributor.advisor.none.fl_str_mv Granja Salcedo, Yury Tatiana
Narváez Bedoya, Héctor-Javier
dc.contributor.author.none.fl_str_mv Alvarado Vesga, Daniela
dc.subject.proposal.spa.fl_str_mv Aceite de soya
Bacterias ruminales
Parámetros fermentativos
Lípidos
topic Aceite de soya
Bacterias ruminales
Parámetros fermentativos
Lípidos
Soybean oil
Lipids
Ruminal bacteria
Fermentative parameters
dc.subject.proposal.eng.fl_str_mv Soybean oil
Lipids
Ruminal bacteria
Fermentative parameters
description Digital
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-06-03
dc.date.accessioned.none.fl_str_mv 2021-06-03T19:40:05Z
dc.date.available.none.fl_str_mv 2021-06-03T19:40:05Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.local.none.fl_str_mv T 35.20 A591e
dc.identifier.uri.none.fl_str_mv https://repositorio.udes.edu.co/handle/001/5128
identifier_str_mv T 35.20 A591e
url https://repositorio.udes.edu.co/handle/001/5128
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad de Santander, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Derechos Reservados - Universidad de Santander, 2020
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 85 p
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Exactas, Naturales y Agropecuarias
dc.publisher.place.spa.fl_str_mv Bucaramanga, Colombia
dc.publisher.program.spa.fl_str_mv Medicina Veterinaria
institution Universidad de Santander
bitstream.url.fl_str_mv https://repositorio.udes.edu.co/bitstreams/df78ba62-f779-4c44-b3f2-d69124c004ae/download
https://repositorio.udes.edu.co/bitstreams/c5beb837-d082-4a74-b359-af76ad07cd11/download
https://repositorio.udes.edu.co/bitstreams/cf8216a4-150d-42c1-96ba-8713ce91fc61/download
https://repositorio.udes.edu.co/bitstreams/de399297-de54-4c0d-ba64-456dca8ca441/download
bitstream.checksum.fl_str_mv 38d94cf55aa1bf2dac1a736ac45c881c
36f451d993e84cafc0dc029c949dbf07
c86e441200e297cdcb96ba8218092505
2167c266c5fcb2f13248b65e63063b93
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Santander
repository.mail.fl_str_mv soporte@metabiblioteca.com
_version_ 1814158501584306176
spelling Granja Salcedo, Yury Tatianaec909882-e7b2-4b03-ae09-d60fcb91668b-1Narváez Bedoya, Héctor-Javier4beb318d-8862-4acd-9c86-64fdbeaabb4a-1Alvarado Vesga, Daniela551b07cb-607e-4c23-8e37-94fce101509d-12021-06-03T19:40:05Z2021-06-03T19:40:05Z2020-06-03DigitalEl objetivo de este estudio fue evaluar los cambios en la fermentación, la población microbiana ruminal y caracterizar la adaptación del ambiente ruminal en machos Nelore en confinamiento alimentados con una dieta alta en contenido lipídico. En este estudio se utilizaron ocho machos Nelore castrados con un peso promedio (501 ± 18 kg), siendo un diseño completamente al azar (DCA) con medidas repetidas en el tiempo, con dos tratamientos (dieta control vs lipídica), ocho repeticiones (animales) y cuatro días de colecta (21, 28, 35 y 42). Los ingredientes utilizados en la dieta control fueron: 30% de heno de Tifton 85 como fuente de forraje y 70% de concentrado compuesto por maíz molido, torta de soya y urea (Control); en la dieta lipídica los animales recibieron 60 g/kg de materia seca (MS) de aceite de soya en substitución energética al maíz molido. El consumo de materia seca (CMS) con la suplementación lipídica fue reducido a partir de la inclusión de la dieta lipídica (P=0.026), el pH ruminal incrementó a través del tiempo (P=0.034), el nitrógeno amoniacal (NH3-N) y la proporción de acetato ruminal no presentaron alteraciones. La síntesis de proteína microbiana (Nmic) fue menor en el día 28 (P= 0.030). La población relativa de protozoos fue disminuida por la inclusión de aceite de soya (P<0.001). En la cuantificación de las bacterias fibrolíticas, se redujo el crecimiento de Ruminococcus albus, Fibrobacter succinogenes y Ruminococcus flavefaciens. Sin embargo, la abundancia relativa de la bacteria Anaerovibrio lipolytica fue estimulada y Butyrivibrio fibrisolvens reducida. La población de bacterias fermentadoras de carbohidratos no estructurales; Prevotella spp se vio estimulada, mientras que la abundancia relativa de Selenomonas spp no presentó alteraciones. En conclusión, los efectos de la suplementación lipídica, son negativos durante los primeros 7 días de adaptación, sin embargo, a los 14 días se evidencia una recuperación parcial del ambiente ruminal.Soybean oil, lipids, ruminal bacteria, fermentative parameters. The aim of this study was to evaluate the changes in fermentation, the ruminal microbial population and characterize for 21 days the adaptation of the ruminal environment in Nellore males fed a diet high in lipid content in feedlot. Eight Nellore males with an average weight (501 ± 18 kg) were used in this study, being a completely randomized design (CRD) with two treatments (control vs. lipid diet), eight repetitions (animals) and four days of collection (21, 28, 35 and 42). The ingredients used in the control diet were: 30% of Tifton 85 hay as forage source and 70% of concentrate consisting of ground corn, soybean cake and urea (Control); in the lipid diet the animals received 60 g / kg of dry matter (DM) of soybean oil as an energy substitute for ground corn. The intake of dry matter (DMI) with lipid supplementation was reduced from the inclusion of the lipid diet (P = 0.026), the ruminal pH increased over time (P = 0.034), the ammoniacal nitrogen (NH3-N) and the proportion of ruminal acetate did not show alterations. Microbial protein synthesis (Nmic) was lower on day 28 (P = 0.030). The relative protozoan population was decreased by the inclusion of soybean oil (P <0.001). In the quantification of fibrolytic bacteria, the growth of Ruminococcus albus, Fibrobacter succinogenes and Ruminococcus flavefaciens was inhibited. However, the relative abundance of Anaerovibrio lipolytica bacteria was stimulated and Butyrivibrio fibrisolvens reduced. The population of non-structural carbohydrate fermenting bacteria; Prevotella spp was stimulated, while the relative abundance of Selenomonas spp was unchanged. In conclusion, the effects of lipid supplementation are negative during the first 7 days of adaptation, however, after 14 days a partial recovery of the ruminal environment is evident.PregradoMédico Veterinario1 ed.LISTA DE TABLAS...................................................................................................... vi LISTA DE FIGURAS.............................................................................................. vii RESUMEN.............................................................................................................. vii INTRODUCCIÓN....................................................................................................... x 1. PLANTEAMIENTO DEL PROBLEMA.................................................................. 1 2. PREGUNTA DE INVESTIGACIÓN...................................................................... 2 3. JUSTIFICACIÓN................................................................................................... 4 4. MARCO TEÓRICO.............................................................................................. 6 4.1 Terminación de bovinos en confinamiento............................................................ 6 4.2 Población microbiana ruminal................................................................................ 9 4.3 Fermentación ruminal................................................................................... 14 4.4 Dietas lipídicas para bovinos de carne............................................................. 20 5. ESTADO DEL ARTE ............................................................................................... 24 6. HIPÓTESIS....................................................................................................... 27 7. OBJETIVOS.................................................................................................... 28 7.1 Genera........................................................................................................... 28 7.2 Específicos..................................................................................................... 28 8. METODOLOGÍA..................................................................................................... 29 8.1 Animales y dieta............................................................................................. 29 8.2 Consumo........................................................................................................ 31 8.3 Parámetros de fermentación ruminal y síntesis de proteína microbiana ruminal.. 31 8.4 Bacterias ruminales....................................................................................... 32 8.5 Protozoos del Rumen.................................................................................... 34 8.6 Análisis de laboratorio................................................................................... 34 8.7 Diseño experimental y análisis estadístico...................................................... 36 9. RESULTADOS ........................................................................................................ 38 9.1 Consumo......................................................................................................... 38 9.2 Parámetros de fermentación ruminal............................................................... 39 9.3 Bacterias ruminales.............................................................................................. 40 10. DISCUSIÓN DE RESULTADOS.................................................................... 44 11. CONCLUSIÓN............................................................................................... 51 12. REFERENCIAS BIBLIOGRÁFICAS............................................................... 5285 papplication/pdfT 35.20 A591ehttps://repositorio.udes.edu.co/handle/001/5128spaFacultad de Ciencias Exactas, Naturales y AgropecuariasBucaramanga, ColombiaMedicina VeterinariaDerechos Reservados - Universidad de Santander, 2020info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Aceite de soyaBacterias ruminalesParámetros fermentativosLípidosSoybean oilLipidsRuminal bacteriaFermentative parametersEvaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en contenido lipídicoTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceTodas las AudienciasA. Corallo, & J. Amoracyr. (2015). Nutrição de bovinos de corte fundamentos e aplicações (Vol. 1-1). www.embrapa.br/fale-conosco/sacAbubakr, A. R., Alimon, A. R., Yaakub, H., Abdullah, N., & Ivan, M. (2013). Digestibility, rumen protozoa, and ruminal fermentation in goats receiving dietary palm oil by-products. Journal of the Saudi Society of Agricultural Sciences, 12(2), 147-154. https://doi.org/10.1016/j.jssas.2012.11.002Ahima, R. S., Saper, C. B., Flier, J. S., & Elmquist, J. K. (2000). Leptin Regulation of Neuroendocrine Systems. Frontiers in Neuroendocrinology, 21(3), 263-307. https://doi.org/10.1006/frne.2000.0197Allen, M. S. (2000). Effects of Diet on Short-Term Regulation of Feed Intake by Lactating Dairy Cattle. Journal of Dairy Science, 83(7), 1598-1624. https://doi.org/10.3168/jds.S0022-0302(00)75030-2Anderson, B. M., & Ma, D. W. (2009). Are all n-3 polyunsaturated fatty acids created equal? Lipids in Health and Disease, 8(1), 33. https://doi.org/10.1186/1476-511X-8-33Arcuri, P., Ferraz, F., & Costa, J. (2011). Microbiologia do rumen, Cap5, Nutriçao de ruminantes. (2.a ed., Vol. 1-1).Arrigoni, M. D. B., Martins, C. L., Sarti, L. M. N., & Barducci, R. S. (2013). Níveis elevados de concentrado na dieta de bovinos em confinamento. 13.Baruselli. (2018). Quanto custa manter um bovino no sistema de confinamento. 1.Behan, Loh, Fakurazi, Kaka, Kaka, & Samsudin. (2019). Effects of Supplementation of Rumen Protected Fats on Rumen Ecology and Digestibility of Nutrients in Sheep. Animals, 9(7), 400. https://doi.org/10.3390/ani9070400Belanche, A., Abecia, L., Holtrop, G., Guada, J. A., Castrillo, C., de la Fuente, G., & Balcells, J. (2011). Study of the effect of presence or absence of protozoa on rumen fermentation and microbial protein contribution to the chyme1. Journal of Animal Science, 89(12), 4163-4174. https://doi.org/10.2527/jas.2010-3703Belanche, Alejandro, Doreau, M., Edwards, J. E., Moorby, J. M., Pinloche, E., & Newbold, C. J. (2012). Shifts in the Rumen Microbiota Due to the Type of Carbohydrate and Level of Protein Ingested by Dairy Cattle Are Associated with Changes in Rumen Fermentation. The Journal of Nutrition, 142(9), 1684-1692. https://doi.org/10.3945/jn.112.159574Belury, M. A., Mahon, A., & Banni, S. (2003). The Conjugated Linoleic Acid (CLA) Isomer, t10c12-CLA, Is Inversely Associated with Changes in Body Weight and Serum Leptin in Subjects with Type 2 Diabetes Mellitus. The Journal of Nutrition, 133(1), 257S-260S. https://doi.org/10.1093/jn/133.1.257SBerchielli., T, Alexandre V. Pires, & Simone G. Oliveira. (2011). Nutriçao de ruminantes (2.a ed., Vol. 1). prol editora grafica. https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=958466&biblioteca=vazio&busca=autoria:%22BERCHIELLI,%20T.T.%22&qFacets=autoria:%22BERCHIELLI,%20T.T.%22&sort=&paginacao=t&paginaAtual=1Bertrand, J. A., Sudduth, T. Q., Condon, A., Jenkins, T. C., & Calhoun, M. C. (2005). Nutrient Content of Whole Cottonseed. Journal of Dairy Science, 88(4), 1470-1477. https://doi.org/10.3168/jds.S0022-0302(05)72815-0Botelho, A. P., Santos-Zago, L. F., Reis, S. M. P. M., & Oliveira, A. C. de. (2007). O efeito da suplementação com ácido linoléico conjugado sobre o perfil lipídico sérico em ratos. Revista Brasileira de Tecnologia Agroindustrial, 1(2). https://doi.org/10.3895/S1981-36862007000200001Brokaw, L., Hess, B. W., & Rule, D. C. (2001). Supplemental soybean oil or corn for beef heifers grazing summer pasture: Effects on forage intake, ruminal fermentation, and site and extent of digestion. Journal of Animal Science, 79(10), 2704. https://doi.org/10.2527/2001.79102704xBuccioni, A., Decandia, M., Minieri, S., Molle, G., & Cabiddu, A. (2012). Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Animal Feed Science and Technology, 174(1-2), 1-25. https://doi.org/10.1016/j.anifeedsci.2012.02.009Carvalho, I. P. C. de, Fiorentini, G., Castagnino, P. de S., Jesus, R. B. de, Messana, J. D., Granja-Salcedo, Y. T., Detmann, E., Padmanabha, J., McSweeney, C. S., & Berchielli, T. T. (2017). Supplementation with lipid sources alters the ruminal fermentation and duodenal flow of fatty acids in grazing Nellore steers. Animal Feed Science and Technology, 227, 142-153. https://doi.org/10.1016/j.anifeedsci.2017.02.017Castagnino, P. S., Messana, J. D., Fiorentini, G., de Jesus, R. B., San Vito, E., Carvalho, I. P. C., & Berchielli, T. T. (2015). Glycerol combined with oils did not limit biohydrogenation of unsaturated fatty acid but reduced methane production in vitro. Animal Feed Science and Technology, 201, 14-24. https://doi.org/10.1016/j.anifeedsci.2014.12.004Cenkvari, E., Fekete, S., Febel, H., Veresegyhazi, T., & Andrasofszky, E. (2005). Investigations on the effects of Ca-soap of linseed oil on rumen fermentation in sheep and on milk composition of goats. Journal of Animal Physiology and Animal Nutrition, 89(3-6), 172-178. https://doi.org/10.1111/j.1439-0396.2005.00538.xChaucheyras-Durand, F., & Ossa, F. (2014). REVIEW: The rumen microbiome: Composition, abundance, diversity, and new investigative tools. The Professional Animal Scientist, 30(1), 1-12. https://doi.org/10.15232/S1080-7446(15)30076-0Chen, X. B., & Gomes, M. J. (1992). Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives. 23.Christopherson, M. R., Dawson, J. A., Stevenson, D. M., Cunningham, A. C., Bramhacharya, S., Weimer, P. J., Kendziorski, C., & Suen, G. (2014). Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis. BMC Genomics, 15(1), 1066. https://doi.org/10.1186/1471-2164-15-1066Costa, E. C. da, Restle, J., Pascoal, L. L., Vaz, F. N., Alves Filho, D. C., & Arboitte, M. Z. (2002). Desempenho de Novilhos Red Angus Superprecoces, Confinados e Abatidos com Diferentes Pesos. Revista Brasileira de Zootecnia, 31(1), 129-138. https://doi.org/10.1590/S1516-35982002000100015Cotta, M. A. (1988). Amylolytic activity of selected species of ruminal bacteria. Applied and Environmental Microbiology, 54(3), 772-776. https://doi.org/10.1128/AEM.54.3.772-776.1988D’Agosto, M., & Carneiro, M. E. (1999). Evaluation of lugol solution used for counting rumen ciliates. Revista Brasileira de Zoologia, 16(3), 725-729. https://doi.org/10.1590/S0101-81751999000300011De Beni Arrigoni, M., Martins, C. L., & Factori, M. A. (2016). Lipid Metabolism in the Rumen. En Danilo Domingues Millen, M. De Beni Arrigoni, & R. D. Lauritano Pacheco (Eds.), Rumenology (pp. 103-126). Springer International Publishing. https://doi.org/10.1007/978-3-319-30533-2_4De Jesus, R., Granja-Salcedo, Y. T., Messana, J. D., Takeshi-Kishi, L., Macedo-Lemos, E. G., Marcondes-de-Souza, J. A., & Teresinha-Berchielli, T. (2019). Characterization of ruminal bacteria in grazing Nellore steers. Revista Colombiana de Ciencias Pecuarias, 32(4), 248-260. https://doi.org/10.17533/udea.rccp.v32n4a01Dehority, B. A. (2005). Effect of pH on viability of Entodinium caudatum, Entodinium exiguum, Epidinium caudatum, and Ophryoscolex purkynjei in vitro. The Journal of Eukaryotic Microbiology, 52(4), 339-342. https://doi.org/10.1111/j.1550-7408.2005.00041.xDenman, S. E., & McSweeney, C. S. (2006). Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen: Real-time PCR assay of the rumen anaerobic fungal population. FEMS Microbiology Ecology, 58(3), 572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.xDevendra, & Lewis. (1974). Fat in ruminants diets: A review.Diaz, H. L., Karnati, S. K. R., Lyons, M. A., Dehority, B. A., & Firkins, J. L. (2014). Chemotaxis toward carbohydrates and peptides by mixed ruminal protozoa when fed, fasted, or incubated with polyunsaturated fatty acids. Journal of Dairy Science, 97(4), 2231-2243. https://doi.org/10.3168/jds.2013-7428Dilzer, A., & Park, Y. (2012). Implication of Conjugated Linoleic Acid (CLA) in Human Health. Critical Reviews in Food Science and Nutrition, 52(6), 488-513. https://doi.org/10.1080/10408398.2010.501409DMS. (2019). Censo de Confinamento DSM 2019 registra crescimento do rebanho confinado no Brasil. https://www.dsm.com/latam/pt_BR/arquivo-de-noticias/2019/Censo-de-Confinamento-DSM-2019-registra-crescimento-do-rebanho.htmlDohme, Machmuéller, & Wasserfallen. (2001). Ruminal methanogenesis as in¯uenced by individual fatty acids supplemented to complete ruminant diets.Duckett, S. K., & Gillis, M. H. (2010). Effects of oil source and fish oil addition on ruminal biohydrogenation of fatty acids and conjugated linoleic acid formation in beef steers fed finishing diets. Journal of Animal Science, 88(8), 2684-2691. https://doi.org/10.2527/jas.2009-2375Edwards, H. D., Anderson, R. C., Taylor, T. M., Miller, R. K., Hardin, M. D., Nisbet, D. J., Krueger, N. A., & Smith, S. B. (2013). Interactions Between Oil Substrates and Glucose on Pure Cultures of Ruminal Lipase-Producing Bacteria. Lipids, 48(7), 749-755. https://doi.org/10.1007/s11745-013-3793-3Enjalbert, F., Combes, S., Zened, A., & Meynadier, A. (2017). Rumen microbiota and dietary fat: A mutual shaping. Journal of Applied Microbiology, 123(4), 782-797. https://doi.org/10.1111/jam.13501F. Dohme, A. MachmuÈ ller, & A. Wasserfallen. (2001). Dohme2008.pdf. Letters in Applied Microbiology. https://sfamjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1472-765X.2001.00863.xFerguson, J. D. (2015). Global Food Security Food Insecurity What About Livestock Systems? Part 2. 12.Fernandes, A. R. M., Sampaio, A. A. M., Henrique, W., Oliveira, E. A., Tullio, R. R., & Perecin, D. (2008). Características da carcaça e da carne de bovinos sob diferentes dietas, em confinamento. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 60(1), 139-147. https://doi.org/10.1590/S0102-09352008000100020Fievez, V., Vlaeminck, B., Jenkins, T., Enjalbert, F., & Doreau, M. (2007). Assessing rumen biohydrogenation and its manipulationin vivo,in vitro andin situ. European Journal of Lipid Science and Technology, 109(8), 740-756. https://doi.org/10.1002/ejlt.200700033Fiorentini, G., Carvalho, I. P. C., Messana, J. D., Canesin, R. C., Castagnino, P. S., Lage, J. F., Arcuri, P. B., & Berchielli, T. T. (2015). Effect of Lipid Sources with Different Fatty Acid Profiles on Intake, Nutrient Digestion and Ruminal Fermentation of Feedlot Nellore Steers. Asian-Australasian Journal of Animal Sciences, 28(11), 1583-1591. https://doi.org/10.5713/ajas.15.0130Fiorentini, G., Santana, M. C. A., Sampaio, A. A. M., Reis, R. A., Ribeiro, A. F., & Berchielli, T. T. (2012). Intake and performance of confined crossbred heifers fed different lipid sources. Revista Brasileira de Zootecnia, 41(6), 1490-1498. https://doi.org/10.1590/S1516-35982012000600025Fisher, D. S., BURNSt, F. J. C., & Pond, K. R. (1987). Modeling Ad Libitum Dry Matter Intake by Ruminants as Regulated by Distension and Chemostatic Feedbackst. 12.Fuentes, M. C., Calsamiglia, S., Cardozo, P. W., & Vlaeminck, B. (2009). Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. Journal of Dairy Science, 92(9), 4456-4466. https://doi.org/10.3168/jds.2008-1722Global Rumen Census Collaborators, Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., & Janssen, P. H. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 5(1), 14567. https://doi.org/10.1038/srep14567Gottschall, C. S., Canellas, L. C., Marques, P. R., & Bittencourt, H. R. (2009). Relationships between age, weight, average weight gain and days on feed of beef steers slaughtered at 15 or 27 months of age. 30(3), 117-726.Granja-Salcedo, M. Y. T. (2016). Glicerina bruta e lipídeos na dieta: Manipulando o metabolismo ruminal de bovinos de corte. 6.Granja-Salcedo, Yury T., Ribeiro Júnior, C. S., de Jesus, R. B., Gomez-Insuasti, A. S., Rivera, A. R., Messana, J. D., Canesin, R. C., & Berchielli, T. T. (2016). Effect of different levels of concentrate on ruminal microorganisms and rumen fermentation in Nellore steers. Archives of Animal Nutrition, 70(1), 17-32. https://doi.org/10.1080/1745039X.2015.1117562Granja-Salcedo, Yury Tatiana, Dias, A. V. L., Gomez-Insuasti, A. S., Messana, J. D., & Berchielli, T. T. (2017). Diet containing glycerine and soybean oil can reduce ruminal biohydrogenation in Nellore steers. Animal Feed Science and Technology, 225, 195-204. https://doi.org/10.1016/j.anifeedsci.2017.01.021Granja-Salcedo, Yury Tatiana, Duarte Messana, J., Carneiro de Souza, V., Lino Dias, A. V., Takeshi Kishi, L., Rocha Rebelo, L., & Teresinha Berchielli, T. (2017). Effects of partial replacement of maize in the diet with crude glycerin and/or soyabean oil on ruminal fermentation and microbial population in Nellore steers. British Journal of Nutrition, 118(9), 651-660. https://doi.org/10.1017/S0007114517002689Henning, J., & Lawrence, L. (2019). Production and Management of Hay and Haylage. En Horse Pasture Management (pp. 177-208). Elsevier. https://doi.org/10.1016/B978-0-12-812919-7.00011-1Hess, B. W., Moss, G. E., & Rule, D. C. (2008). A decade of developments in the area of fat supplementation research with beef cattle and sheep1. Journal of Animal Science, 86(suppl_14), E188-E204. https://doi.org/10.2527/jas.2007-0546Hobson, P. N. (1961). The Isolation of Glycerol-Fermenting and Lipolytic Bacteria from the Rurnen of the Sheep. https://doi.org/10.1099/00221287-25-2-227Houseknecht, K. L., Heuvel, J. P. V., Moya-Camarena, S. Y., Portocarrero, C. P., Peck, L. W., Nickel, K. P., & Belury, M. A. (1998). Dietary Conjugated Linoleic Acid Normalizes Impaired Glucose Tolerance in the Zucker Diabetic Fatty fa/fa Rat. Biochemical and biophysical research communicationS, 244(3), 5.Hungate. (1996). The Rumen and its Microbes.Hungate, R. E. (1966). The Rumen Protozoa. En The Rumen and its Microbes (pp. 91-147). Elsevier. https://doi.org/10.1016/B978-1-4832-3308-6.50006-1IBGE. (2019). Instituto Brasileiro de Geografia e Estadistica. https://www.ibge.gov.br/indicadoresJami, E., & Mizrahi, I. (2012). Similarity of the ruminal bacteria across individual lactating cows. Anaerobe, 18(3), 338-343. https://doi.org/10.1016/j.anaerobe.2012.04.003Jenkins, T. C. (1993). Lipid Metabolism in the Rumen.Jenkins, T. C., & McGuire, M. A. (2006). Major Advances in Nutrition: Impact on Milk Composition. Journal of Dairy Science, 89(4), 1302-1310. https://doi.org/10.3168/jds.S0022-0302(06)72198-1Jóźwiak, M., Filipowska, A., Fiorino, F., & Struga, M. (2020). Anticancer activities of fatty acids and their heterocyclic derivatives. European Journal of Pharmacology, 871, 172937. https://doi.org/10.1016/j.ejphar.2020.172937Karnati, S. K. R., Sylvester, J. T., Ribeiro, C. V. D. M., Gilligan, L. E., & Firkins, J. L. (2009). Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis. Journal of Dairy Science, 92(8), 3849-3860. https://doi.org/10.3168/jds.2008-1436Khafipour, E., Li, S., Plaizier, J. C., & Krause, D. O. (2009). Rumen Microbiome Composition Determined Using Two Nutritional Models of Subacute Ruminal Acidosis. Applied and Environmental Microbiology, 75(22), 7115-7124. https://doi.org/10.1128/AEM.00739-09Koike, S., & Kobayashi, Y. (2001). Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiology Letters, 204(2), 361-366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.xKozloski. (2009). Bioquimica dos Rumiantes (2.a ed.). editoraufsm.Krehbiel, C. R. (2014). INVITED REVIEW: Applied nutrition of ruminants: Fermentation and digestive physiology1. The Professional Animal Scientist, 30(2), 129-139. https://doi.org/10.15232/S1080-7446(15)30100-5Krysl, L. J., Judkins, M. B., & Bohman, V. R. (1991). Influence of ruminal or duodenal soybean oil infusion on intake, ruminal fermentation, site and extent of digestion, and microbial protein synthesis in beef heifers consuming grass hay. Journal of Animal Science, 69(6), 2585. https://doi.org/10.2527/1991.6962585xKucuk, O., Hess, B. W., & Rule, D. C. (2004). Soybean oil supplementation of a high-concentrate diet does not affect site and extent of organic matter, starch, neutral detergent fiber, or nitrogen digestion, but influences both ruminal metabolism and intestinal flow of fatty acids in limit-fed lambs. Journal of Animal Science, 82(10), 2985-2994. https://doi.org/10.2527/2004.82102985xLan, W., & Yang, C. (2019). Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Science of The Total Environment, 654, 1270-1283. https://doi.org/10.1016/j.scitotenv.2018.11.180atorre, S, Alvarado, J, Moreno, G, & Rojas, J. (2000). Subproductos agricolas para nutricion en rumiantes. Litograiaf La BastillaL tda.Lourenço, M., Ramos-Morales, E., & Wallace, R. J. (2010). The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal, 4(7), 1008-1023. https://doi.org/10.1017/S175173111000042XMaczulak, A. E. (1981). Effects of Long-Chain Fatty Acids on Growth of Rumen Bacteriat. APPL. ENVIRON. MICROBIOL., 42, 7.Maia, M. R., Chaudhary, L. C., Bestwick, C. S., Richardson, A. J., McKain, N., Larson, T. R., Graham, I. A., & Wallace, R. J. (2010). Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiology, 10(1), 52. https://doi.org/10.1186/1471-2180-10-52Maia, M. R. G., Chaudhary, L. C., Figueres, L., & Wallace, R. J. (2007). Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek, 91(4), 303-314. https://doi.org/10.1007/s10482-006-9118-2Manso, T., Castro, T., Mantecón, A. R., & Jimeno, V. (2006). Effects of palm oil and calcium soaps of palm oil fatty acids in fattening diets on digestibility, performance and chemical body composition of lambs. Animal Feed Science and Technology, 127(3-4), 175-186. https://doi.org/10.1016/j.anifeedsci.2005.08.013MAPA. (2019). Quantidade de Abate Estadual por Ano/Espécie.Marques, R. S., Cooke, R. F., Rodrigues, M. C., Brandão, A. P., Schubach, K. M., Lippolis, K. D., Moriel, P., Perry, G. A., Lock, A., & Bohnert, D. W. (2017). Effects of supplementing calcium salts of polyunsaturated fatty acids to late-gestating beef cows on performance and physiological responses of the offspring1. Journal of Animal Science, 95(12), 5347-5357. https://doi.org/10.2527/jas2017.1606McSweeney, C., & Mackie, R. (2012). Commission on genetic resources for food and agriculture. 62.Medeiros, S. (2015). Lipídios na nutrição de ruminantes. En Nutrição de Bovinos de Corte (Vol. 1). Embrapa.Millen, D. D., Pacheco, R. D. L., Arrigoni, M. D. B., Galyean, M. L., & Vasconcelos, J. T. (2009). A snapshot of management practices and nutritional recommendations used by feedlot nutritionists in Brazil. Journal of Animal Science, 87(10), 3427-3439. https://doi.org/10.2527/jas.2009-1880Miron, J., Ben-Ghedalia, D., & Morrison, M. (2001). Invited Review: Adhesion Mechanisms of Rumen Cellulolytic Bacteria. Journal of Dairy Science, 84(6), 1294-1309. https://doi.org/10.3168/jds.S0022-0302(01)70159-2Nagaraja, T. (Ed.). (2016). Rumenology. Springer International Publishing. https://doi.org/10.1007/978-3-319-30533-2Nagaraja, T. G. (2016). Microbiology of the Rumen. En Danilo Domingues Millen, M. De Beni Arrigoni, & R. D. Lauritano Pacheco (Eds.), Rumenology (pp. 39-61). Springer International Publishing. https://doi.org/10.1007/978-3-319-30533-2_2Nagaraja, T. G., Newbold, C. J., van Nevel, C. J., & Demeyer, D. I. (1997). Manipulation of ruminal fermentation. En P. N. Hobson & C. S. Stewart (Eds.), The Rumen Microbial Ecosystem (pp. 523-632). Springer Netherlands. https://doi.org/10.1007/978-94-009-1453-7_13Nam, I. S., & Garnsworthy, P. C. (2007). Biohydrogenation of linoleic acid by rumen fungi compared with rumen bacteria. Journal of Applied Microbiology, 103(3), 551-556. https://doi.org/10.1111/j.1365-2672.2007.03317.xNicholson, T., & Omer, S. A. (1983). The inhibitory effect of intestinal infusions of unsaturated long-chain fatty acids on forestomach motility of sheep. British Journal of Nutrition, 50(1), 141-149. https://doi.org/10.1079/BJN19830081Oliveira, R. L., Assunção, D. M. P., Barbosa, M. A. A. de F., Ladeira, M. M., Silva, M. M. P. da, & Oliveira, R. L. de. (2007). Desempenho produtivo e custos com alimentação de novilhos bubalinos alimentados com dietas com diferentes fontes de lipídeos. Revista Brasileira de Zootecnia, 36(3), 727-732. https://doi.org/10.1590/S1516-35982007000300028Owens, F. N., & Basalan, M. (2016). Ruminal Fermentation. En Danilo Domingues Millen, M. De Beni Arrigoni, & R. D. Lauritano Pacheco (Eds.), Rumenology (pp. 63-102). Springer International Publishing. https://doi.org/10.1007/978-3-319-30533-2_3Palmquist, D. L., & Conrad, H. R. (1971). Origin of Plasma Fatty Acids in Lactating Cows Fed High Grain or High Fat Diets. Journal of Dairy Science, 54(7), 1025-1033. https://doi.org/10.3168/jds.S0022-0302(71)85966-0Palmquist, & Mattos. (2011). Metabolismo de lipidos. En Nutriçao de ruminantes (2.a ed., Vol. 1, p. 616). https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=958466&biblioteca=vazio& busca=autoria:%22BERCHIELLI,%20T.T.%22&qFacets=autoria:%22BERCHIELLI,%20T.T.%22&sort=&paginacao=t&paginaAtual=1Park, B.-K., Lee, S.-M., Kim, H.-C., Chang, S.-S., Kim, T.-I., Cho, Y.-M., Choi, C.-W., Hong, S.-K., & Kwon, E.-G. (2010). Effects of Ruminally Protected Amino Acid-enriched Fatty Acids on Growth Performance and Carcass Characteristics of Fattening Hanwoo Cows. Journal of Animal Science and Technology, 52(6), 499-504. https://doi.org/10.5187/JAST.2010.52.6.499Park, T., & Yu, Z. (2018). Do Ruminal Ciliates Select Their Preys and Prokaryotic Symbionts? Frontiers in Microbiology, 9, 1710. https://doi.org/10.3389/fmicb.2018.01710Parsons, Shelor, & Drouillard. (2008). Parsons2008.pdf. https://www.ncbi.nlm.nih.gov/pubmed/18849392Passafaro, L. (2014). Análise genética de características de crescimento e de resistência a parasitos em bovinos Nelore por meio de regressão aleatória.Patra, A.K., & Yu, Z. (2013). Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro. Journal of Dairy Science, 96(3), 1782-1792. https://doi.org/10.3168/jds.2012-6159Patra, Amlan K., & Yu, Z. (2012). Effects of Essential Oils on Methane Production and Fermentation by, and Abundance and Diversity of, Rumen Microbial Populations. Applied and Environmental Microbiology, 78(12), 4271-4280. https://doi.org/10.1128/AEM.00309-12Pierre, A.-S., Minville-Walz, M., Fèvre, C., Hichami, A., Gresti, J., Pichon, L., Bellenger, S., Bellenger, J., Ghiringhelli, F., Narce, M., & Rialland, M. (2013). Trans-10, cis-12 conjugated linoleic acid induced cell death in human colon cancer cells through reactive oxygen species-mediated ER stress. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1831(4), 759-768. https://doi.org/10.1016/j.bbalip.2013.01.005Portela Santos, F. A., & Mendonça, A. (2011). Metabolismo de proteinas. En Nutricao de Rumiantes (2.a ed.). https://www.bdpa.cnptia.embrapa.br/consulta/busca?b=ad&id=958466&biblioteca=vazio&busca=autoria:%22BERCHIELLI,%20T.T.%22&qFacets=autoria:%22BERCHIELLI,%20T.T.%22&sort=&paginacao=t&paginaAtual=1Primavesi, O., Frighetto, R. T. S., Pedreira, M. dos S., Lima, M. A. de, Berchielli, T. T., & Barbosa, P. F. (2004). Metano entérico de bovinos leiteiros em condições tropicais brasileiras. Pesquisa Agropecuária Brasileira, 39(3), 277-283. https://doi.org/10.1590/S0100-204X2004000300011Ranum, P., Peña-Rosas, J. P., & Garcia-Casal, M. N. (2014). Global maize production, utilization, and consumption: Maize production, utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 105-112. https://doi.org/10.1111/nyas.12396Reveneau, C., Ribeiro, C. V. D. M., Eastridge, M. L., & Firkins, J. L. (2012). Interaction of unsaturated fat or coconut oil with monensin in lactating dairy cows fed 12 times daily. II. Fatty acid flow to the omasum and milk fatty acid profile. Journal of Dairy Science, 95(4), 2061-2069. https://doi.org/10.3168/jds.2011-4888Roy, A., Mandal, G. P., & Patra, A. K. (2017). Effects of different vegetable oils on rumen fermentation and conjugated linoleic acid concentration in vitro. Veterinary World, 10(1), 11-16. https://doi.org/10.14202/vetworld.2017.11-16Salas, R. Z., Builes, L. A. G., & Echeverry, D. P. (2011). Papel de los protozoos ciliados ruminales en la síntesis de ácido linoleico conjugado. Revisión. 15.Salcedo, Y. T. G. (2017). Métodos de armazenamento da amostra ruminal para estudos microbiológicos e metabolismo ruminal de novilhos nelore alimentados com glicerina associado AO ÓLEO. 107.Santana, M. C. A., Fiorentini, G., Messana, J. D., Dian, P. H. M., Canesin, R. C., Reis, R. A., & Berchielli, T. T. (2017). Different forms and frequencies of soybean oil supplementation do not alter rumen fermentation in grazing heifers. Animal Production Science, 57(3), 530. https://doi.org/10.1071/AN14608Shang, X., Wang, C., Zhang, G., Liu, Q., Guo, G., Huo, W., Zhang, J., & Pei, C. (2019). Effects of soybean oil and dietary copper levels on nutrient digestion, ruminal fermentation, enzyme activity, microflora and microbial protein synthesis in dairy bulls. Archives of Animal Nutrition, 1-14. https://doi.org/10.1080/1745039X.2019.1679562Tarazona, A. M., Ceballos, M. C., Naranjo, J. F., & Cuartas, C. A. (2012). Factores que afectan el comportamiento de consumo y selectividad de forrajes en rumiantes. 15.van Cleef, E. H. C. B., D’Áurea, A. P., Fávaro, V. R., van Cleef, F. O. S., Barducci, R. S., Almeida, M. T. C., Machado Neto, O. R., & Ezequiel, J. M. B. (2017). Effects of dietary inclusion of high concentrations of crude glycerin on meat quality and fatty acid profile of feedlot fed Nellore bulls. PLOS ONE, 12(6), e0179830. https://doi.org/10.1371/journal.pone.0179830Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2Vito, E. S., Granja-Salcedo, Y. T., Lage, J. F., Oliveira, A. S., Gionbelli, M. P., Messana, J. D., Dallantonia, E. E., Reis, R. A., & Berchielli, T. T. (2018). Crude glycerin as an alternative to corn as a supplement for beef cattle grazing in pasture during the dry season. Semina: Ciências Agrárias, 39(5), 2215. https://doi.org/10.5433/1679-0359.2018v39n5p2215Wada, F. Y., Moletta, J. L., & Visentainer, J. V. (2008). grãos de linhaça e de canola sobre o desempenho, digestibilidade aparente e características de carcaça de novilhas nelore terminadas em confinamento. Ciência Animal Brasileira, 9(4), 13.Wanapat, M., Mapato, C., Pilajun, R., & Toburan, W. (2011). Effects of vegetable oil supplementation on feed intake, rumen fermentation, growth performance, and carcass characteristic of growing swamp buffaloes. Livestock Science, 135(1), 32-37. https://doi.org/10.1016/j.livsci.2010.06.006Wang, C., Liu, Q., Guo, G., Huo, W. J., Ma, L., Zhang, Y. L., Pei, C. X., Zhang, S. L., & Wang, H. (2018). Effects of dietary soybean oil and coated folic acid on ruminal digestion kinetics, fermentation, microbial enzyme activity and bacterial abundance in Jinnan beef steers. Livestock Science, 217, 92-98. https://doi.org/10.1016/j.livsci.2018.09.017Weimer, P. J. (2015). Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00296Williams. (1989). Metabolic activities of rumen protozoa. En The Role of Protozoa and Fungi in Ruminant Digestion.Workman, S. D., & Strynadka, N. C. J. (2020). A Slippery Scaffold: Synthesis and Recycling of the Bacterial Cell Wall Carrier Lipid. Journal of Molecular Biology, S0022283620302588. https://doi.org/10.1016/j.jmb.2020.03.025Yang, S. L., Bu, D. P., Wang, J. Q., Hu, Z. Y., Li, D., Wei, H. Y., Zhou, L. Y., & Loor, J. J. (2009). Soybean oil and linseed oil supplementation affect profiles of ruminal microorganisms in dairy cows. Animal, 3(11), 1562-1569. https://doi.org/10.1017/S1751731109990462Yue, Z.-B., Li, W.-W., & Yu, H.-Q. (2013). Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass. Bioresource Technology, 128, 738-744. https://doi.org/10.1016/j.biortech.2012.11.073PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-859https://repositorio.udes.edu.co/bitstreams/df78ba62-f779-4c44-b3f2-d69124c004ae/download38d94cf55aa1bf2dac1a736ac45c881cMD52ORIGINALEvaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en.pdfEvaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en.pdfDocumento Principalapplication/pdf1165113https://repositorio.udes.edu.co/bitstreams/c5beb837-d082-4a74-b359-af76ad07cd11/download36f451d993e84cafc0dc029c949dbf07MD51TEXTEvaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en.pdf.txtEvaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en.pdf.txtExtracted texttext/plain101688https://repositorio.udes.edu.co/bitstreams/cf8216a4-150d-42c1-96ba-8713ce91fc61/downloadc86e441200e297cdcb96ba8218092505MD53THUMBNAILEvaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en.pdf.jpgEvaluación de los cambios en la fermentación y la población microbiana ruminal en machos castrados Nelore alimentados con una dieta alta en.pdf.jpgGenerated Thumbnailimage/jpeg6186https://repositorio.udes.edu.co/bitstreams/de399297-de54-4c0d-ba64-456dca8ca441/download2167c266c5fcb2f13248b65e63063b93MD54001/5128oai:repositorio.udes.edu.co:001/51282022-10-25 09:52:44.825https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad de Santander, 2020https://repositorio.udes.edu.coRepositorio Universidad de Santandersoporte@metabiblioteca.comTGljZW5jaWEgZGUgUHVibGljYWNpw7NuIFVERVMKRGlyZWN0cmljZXMgZGUgVVNPIHkgQUNDRVNPCgo=