Evaluación de la Interacción de los Péptidos Ib-M1 e Ib-M2 con los Ácidos Nucleicos de Escherichia coli
Digital
- Autores:
-
Peña-Niño, Juan Diego
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad de Santander
- Repositorio:
- Repositorio Universidad de Santander
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.udes.edu.co:001/10459
- Palabra clave:
- Escherichia coli
Péptidos Antimicrobianos
Mecanismos de Acción
Resistencia Antimicrobiana
Docking Molecular
Ensayo de Cambio de la Movilidad Electroforética
Escherichia coli
Antimicrobial Peptides
Mechanisms Of Action
Antimicrobial Resistance
- Rights
- embargoedAccess
- License
- http://purl.org/coar/access_right/c_f1cf
id |
RUDES2_0fbdd522d36f292afcdedea35448b3ba |
---|---|
oai_identifier_str |
oai:repositorio.udes.edu.co:001/10459 |
network_acronym_str |
RUDES2 |
network_name_str |
Repositorio Universidad de Santander |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de la Interacción de los Péptidos Ib-M1 e Ib-M2 con los Ácidos Nucleicos de Escherichia coli |
dc.title.translated.none.fl_str_mv |
Evaluation of the Interaction of Ib-M1 and Ib-M2 Peptides With Escherichia coli Nucleic Acids |
title |
Evaluación de la Interacción de los Péptidos Ib-M1 e Ib-M2 con los Ácidos Nucleicos de Escherichia coli |
spellingShingle |
Evaluación de la Interacción de los Péptidos Ib-M1 e Ib-M2 con los Ácidos Nucleicos de Escherichia coli Escherichia coli Péptidos Antimicrobianos Mecanismos de Acción Resistencia Antimicrobiana Docking Molecular Ensayo de Cambio de la Movilidad Electroforética Escherichia coli Antimicrobial Peptides Mechanisms Of Action Antimicrobial Resistance |
title_short |
Evaluación de la Interacción de los Péptidos Ib-M1 e Ib-M2 con los Ácidos Nucleicos de Escherichia coli |
title_full |
Evaluación de la Interacción de los Péptidos Ib-M1 e Ib-M2 con los Ácidos Nucleicos de Escherichia coli |
title_fullStr |
Evaluación de la Interacción de los Péptidos Ib-M1 e Ib-M2 con los Ácidos Nucleicos de Escherichia coli |
title_full_unstemmed |
Evaluación de la Interacción de los Péptidos Ib-M1 e Ib-M2 con los Ácidos Nucleicos de Escherichia coli |
title_sort |
Evaluación de la Interacción de los Péptidos Ib-M1 e Ib-M2 con los Ácidos Nucleicos de Escherichia coli |
dc.creator.fl_str_mv |
Peña-Niño, Juan Diego |
dc.contributor.advisor.none.fl_str_mv |
Farfán-Garcia, Ana Elvira Alarcon-Aldana, Juan Sebastian |
dc.contributor.author.none.fl_str_mv |
Peña-Niño, Juan Diego |
dc.contributor.jury.none.fl_str_mv |
Arias-Guerrero, Monica Yurley Osorio-Alvarado, Carlos Enrique |
dc.contributor.researchgroup.none.fl_str_mv |
Nova Ciencia |
dc.subject.proposal.spa.fl_str_mv |
Escherichia coli Péptidos Antimicrobianos Mecanismos de Acción Resistencia Antimicrobiana Docking Molecular Ensayo de Cambio de la Movilidad Electroforética |
topic |
Escherichia coli Péptidos Antimicrobianos Mecanismos de Acción Resistencia Antimicrobiana Docking Molecular Ensayo de Cambio de la Movilidad Electroforética Escherichia coli Antimicrobial Peptides Mechanisms Of Action Antimicrobial Resistance |
dc.subject.proposal.eng.fl_str_mv |
Escherichia coli Antimicrobial Peptides Mechanisms Of Action Antimicrobial Resistance |
description |
Digital |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-11-08 |
dc.date.accessioned.none.fl_str_mv |
2024-05-29T20:41:43Z |
dc.date.available.none.fl_str_mv |
2024-05-29T20:41:43Z 2025-11-15 |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_71e4c1898caa6e32 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/submittedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
submittedVersion |
dc.identifier.instname.none.fl_str_mv |
Universidad de Santander |
dc.identifier.local.none.fl_str_mv |
T 17.23 P261e |
dc.identifier.reponame.none.fl_str_mv |
Repositorio Digital Universidad de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.udes.edu.co |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.udes.edu.co/handle/001/10459 |
identifier_str_mv |
Universidad de Santander T 17.23 P261e Repositorio Digital Universidad de Santander |
url |
https://repositorio.udes.edu.co https://repositorio.udes.edu.co/handle/001/10459 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Pulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M, Chin CF, Sudesh K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci. 2022 Mar 1;170:106103. doi: 10.1016/j.ejps.2021.106103. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022 Feb 12;399(10325):629-655. doi: 10.1016/S0140-6736(21)02724-0. Colombia. Instituto Nacional de Salud. Protocolo de Vigilancia en Salud Pública de Resistencia Bacteriana a los antimicrobianos en el ámbito hospitalario. versión 3. European Centre for Disease Prevention and Control, Antimicrobial resistance surveillance in Europe : annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2015. Publications Office; 2017. Available from: doi/10.2900/6928 Serra-Burriel M, Keys M, Campillo-Artero C, Agodi A, Barchitta M, Gikas A, Palos C, López-Casasnovas G. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS One. 2020 Jan 10;15(1):e0227139. doi: 10.1371/journal.pone.0227139. Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022 Jul;12(7):3049-3062. doi: 10.1016/j.apsb.2022.02.002. Tautermann CS. Current and Future Challenges in Modern Drug Discovery. Methods Mol Biol. 2020;2114:1-17. doi: 10.1007/978-1-0716-0282-9_1. Van Norman GA. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Is it Time to Rethink Our Current Approach? JACC Basic Transl Sci. 2019 Nov 25;4(7):845-854. doi: 10.1016/j.jacbts.2019.10.008. de Sousa Oliveira K, de Lima LA, Cobacho NB, Dias SC, Franco OL. Mechanisms of antibacterial resistance: shedding some light on these obscure processes. Antibiotic Resistance. 2016;4:19-35. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309-18. doi: 10.1179/2047773215Y.0000000030. Casellas JM. Resistencia a los antibacterianos en América Latina: consecuencias para la infectología [Antibacterial drug resistance in Latin America: consequences for infectious disease control]. Rev Panam Salud Publica. 2011 Dec;30(6):519-28. Dadgostar P. Antimicrobial Resistance: Implications and Costs. Infect Drug Resist. 2019 Dec 20;12:3903-3910. doi: 10.2147/IDR.S234610. Pons, M.J., de Toro, M., Medina, S., Sáenz, Y. y Ruiz, J. (2020). «Antimicrobianos, resistencia antibacteriana y salud sostenible». South Sustainability, 1(1), e001 DOI: 10.21142/SS-0101-2020-001 Svenson J, Molchanova N, Schroeder CI. Antimicrobial Peptide Mimics for Clinical Use: Does Size Matter? Front Immunol. 2022 May 26;13:915368. doi: 10.3389/fimmu.2022.915368. Chen CH, Lu TK. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications. Antibiotics (Basel). 2020 Jan 13;9(1):24. doi: 10.3390/antibiotics9010024.. Araos R, García P, Chanqueo L, Labarca J. Daptomicina: características farmacológicas y aporte en el tratamiento de infecciones por cocáceas gram positivas [Daptomycin: pharmacological characteristics and its role in the treatment of gram positive infections]. Rev Chilena Infectol. 2012 Apr;29(2):127-31. Spanish. doi: 10.4067/S0716-10182012000200001. Tailor RH, Acland DP, Attenborough S, Cammue BP, Evans IJ, Osborn RW, Ray JA, Rees SB, Broekaert WF. A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J Biol Chem. 1997 Sep 26;272(39):24480-7. doi: 10.1074/jbc.272.39.24480. Prada-Prada S, Flórez-Castillo J, Farfán-García A, Guzmán F, Hernández-Peñaranda I. Antimicrobial activity of Ib-M peptides against Escherichia coli O157: H7. PLoS One. 2020 Feb 13;15(2):e0229019. doi: 10.1371/journal.pone.0229019. Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006 Jul;19(3):491-511. doi: 10.1128/CMR.00056-05. Singh T, Choudhary P, Singh S. Antimicrobial Peptides: Mechanism of Action [Internet]. Insights on Antimicrobial Peptides. IntechOpen; 2022. Available from: doi.org/10.5772/intechopen.99190 Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules. 2018 Jan 19;8(1):4. doi: 10.3390/biom8010004. Wang G, editor. Antimicrobial peptides: discovery, design and novel therapeutic strategies. Cabi; 2010. Flórez-Castillo, J.M., Perullini, M., Jobbágy, M. et al. Enhancing Antibacterial Activity Against Escherichia coli K-12 of Peptide Ib-AMP4 with Synthetic Analogues. Int J Pept Res Ther 20, 365–369 (2014). doi.org/10.1007/s10989-014-9391-2. World Health Organization B. No time to wait: securing the future from drug-resistant infections. Report to the Secretary-General of the United Nations. Interagency Coordination Group on Antimicrobial Resistance. 2019 Apr. Spaulding CN, Klein RD, Schreiber HL 4th, Janetka JW, Hultgren SJ. Precision antimicrobial therapeutics: the path of least resistance? NPJ Biofilms Microbiomes. 2018 Feb 27;4:4. doi: 10.1038/s41522-018-0048-3. Ibarzabal Lachaga G. Reacciones adversas a medicamentos en un hospital de media-larga estancia. Metas enferm. 2015:19-24. Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control. 2017 May 15;6:47. doi: 10.1186/s13756-017-0208-x. da Silva JB Jr, Espinal M, Ramón-Pardo P. Resistencia a los antimicrobianos: tiempo para la acción. Rev Panam Salud Publica. 2020 Sep 23;44:e122. Spanish. doi: 10.26633/RPSP.2020.122. Organización Panamericana de la Salud/Organización Mundial de la Salud. OPS/ OMS, (2021). Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol. 2018 Nov 30;9:2928. doi: 10.3389/fmicb.2018.02928. Santajit S, Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed Res Int. 2016;2016:2475067. doi: 10.1155/2016/2475067. Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016 Dec 27;6:194. doi: 10.3389/fcimb.2016.00194. Boparai JK, Sharma PK. Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein Pept Lett. 2020;27(1):4-16. doi: 10.2174/0929866526666190822165812. McMillan KAM, Coombs MRP. Review: Examining the Natural Role of Amphibian Antimicrobial Peptide Magainin. Molecules. 2020 Nov 20;25(22):5436. doi: 10.3390/molecules25225436. Nagaoka I, Tamura H, Reich J. Therapeutic Potential of Cathelicidin Peptide LL-37, an Antimicrobial Agent, in a Murine Sepsis Model. Int J Mol Sci. 2020 Aug 19;21(17):5973. doi: 10.3390/ijms21175973. Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A. The human cathelicidin LL-37--A pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta. 2016 Mar;1858(3):546-66. doi: 10.1016/j.bbamem.2015.11.003. Raghuraman H, Chattopadhyay A. Melittin: a membrane-active peptide with diverse functions. Biosci Rep. 2007 Oct;27(4-5):189-223. doi: 10.1007/s10540-006-9030-z. Memariani H, Memariani M, Moravvej H, Shahidi-Dadras M. Melittin: a venom-derived peptide with promising anti-viral properties. Eur J Clin Microbiol Infect Dis. 2020 Jan;39(1):5-17. doi: 10.1007/s10096-019-03674-0. van den Bogaart G, Guzmán JV, Mika JT, Poolman B. On the mechanism of pore formation by melittin. J Biol Chem. 2008 Dec 5;283(49):33854-7. doi: 10.1074/jbc.M805171200. Cardoso MH, Meneguetti BT, Costa BO, Buccini DF, Oshiro KGN, Preza SLE, Carvalho CME, Migliolo L, Franco OL. Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets. Int J Mol Sci. 2019 Oct 1;20(19):4877. doi: 10.3390/ijms20194877. Jang SA, Kim H, Lee JY, Shin JR, Kim DJ, Cho JH, Kim SC. Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb. Peptides. 2012 Apr;34(2):283-9. doi: 10.1016/j.peptides.2012.01.015. Cho JH, Sung BH, Kim SC. Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim Biophys Acta. 2009 Aug;1788(8):1564-9. doi: 10.1016/j.bbamem.2008.10.025. Hao G, Shi YH, Tang YL, Le GW. The intracellular mechanism of action on Escherichia coli of BF2-A/C, two analogues of the antimicrobial peptide Buforin 2. J Microbiol. 2013 Apr;51(2):200-6. doi: 10.1007/s12275-013-2441-1. Batista Araujo J, Sastre de Souza G, Lorenzon EN. Indolicidin revisited: biological activity, potential applications and perspectives of an antimicrobial peptide not yet fully explored. World J Microbiol Biotechnol. 2022 Jan 12;38(3):39. doi: 10.1007/s11274-022-03227-2. Hsu CH, Chen C, Jou ML, Lee AY, Lin YC, Yu YP, Huang WT, Wu SH. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 2005 Jul 20;33(13):4053-64. doi: 10.1093/nar/gki725. Bechinger B, Gorr SU. Antimicrobial Peptides: Mechanisms of Action and Resistance. J Dent Res. 2017 Mar;96(3):254-260. doi: 10.1177/0022034516679973. Vishnepolsky B, Zaalishvili G, Karapetian M, Nasrashvili T, Kuljanishvili N, Gabrielian A, Rosenthal A, Hurt DE, Tartakovsky M, Grigolava M, Pirtskhalava M. De Novo Design and In Vitro Testing of Antimicrobial Peptides against Gram-Negative Bacteria. Pharmaceuticals (Basel). 2019 Jun 3;12(2):82. doi: 10.3390/ph12020082. Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019 Jul 15;11(7):3919-3931. Andrei S, Droc G, Stefan G. FDA approved antibacterial drugs: 2018-2019. Discoveries (Craiova). 2019 Dec 31;7(4):e102. doi: 10.15190/d.2019.15. Parilti R, Caprasse J, Riva R, Alexandre M, Vandegaart H, Bebrone C, Dupont-Gillain C, Howdle SM, Jérôme C. Antimicrobial peptide encapsulation and sustained release from polymer network particles prepared in supercritical carbon dioxide. J Colloid Interface Sci. 2018 Dec 15;532:112-117. doi: 10.1016/j.jcis.2018.07.125. Fantner GE, Barbero RJ, Gray DS, Belcher AM. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol. 2010 Apr;5(4):280-5. doi: 10.1038/nnano.2010.29. Jochumsen N, Marvig RL, Damkiær S, Jensen RL, Paulander W, Molin S, Jelsbak L, Folkesson A. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. Nat Commun. 2016 Oct 3;7:13002. doi: 10.1038/ncomms13002. Mathur D, Prakash S, Anand P, Kaur H, Agrawal P, Mehta A, Kumar R, Singh S, Raghava GP. PEPlife: A Repository of the Half-life of Peptides. Sci Rep. 2016 Nov 7;6:36617. doi: 10.1038/srep36617. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013 Nov 28;6(12):1543-75. doi: 10.3390/ph6121543. Jacob B, Rajasekaran G, Kim EY, Park IS, Bang JK, Shin SY. The stereochemical effect of SMAP-29 and SMAP-18 on bacterial selectivity, membrane interaction and anti-inflammatory activity. Amino Acids. 2016 May;48(5):1241-51. doi: 10.1007/s00726-016-2170-y. Jiang Y, Wu Y, Wang T, Chen X, Zhou M, Ma C, Xi X, Zhang Y, Chen T, Shaw C, Wang L. Brevinin-1GHd: a novel Hylarana guentheri skin secretion-derived Brevinin-1 type peptide with antimicrobial and anticancer therapeutic potential. Biosci Rep. 2020 May 29;40(5):BSR20200019. doi: 10.1042/BSR20200019. Ya-Li Tang; Yong-Hui Shi; Wei Zhao; Gang Hao; Guo-Wei Le (2009). Interaction of MDpep9, a novel antimicrobial peptide from Chinese traditional edible larvae of housefly, with Escherichia coli genomic DNA. , 115(3), 867–872. doi:10.1016/j.foodchem.2008.12.102 Ma L, Xie X, Liu H, Huang Y, Wu H, Jiang M, Xu P, Ye X, Zhou C. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics. 2020 Jan 1;10(3):1373-1390. doi: 10.7150/thno.39157. Shagaghi N, Bhave M, Palombo EA, Clayton AH. Revealing the sequence of interactions of PuroA peptide with Candida albicans cells by live-cell imaging. Sci Rep. 2017 Mar 2;7:43542. doi: 10.1038/srep43542. Yan J, Liang X, Liu C, Cheng Y, Zhou L, Wang K, Zhao L. Influence of Proline Substitution on the Bioactivity of Mammalian-Derived Antimicrobial Peptide NK-2. Probiotics Antimicrob Proteins. 2018 Mar;10(1):118-127. doi: 10.1007/s12602-017-9335-1 Ajish C, Yang S, Kumar SD, Shin SY. Proadrenomedullin N-terminal 20 peptide (PAMP) and its C-terminal 12-residue peptide, PAMP(9-20): Cell selectivity and antimicrobial mechanism. Biochem Biophys Res Commun. 2020 Jun 30;527(3):744-750. doi: 10.1016/j.bbrc.2020.04.063. Lee JK, Gopal R, Park SC, Ko HS, Kim Y, Hahm KS, Park Y. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs. PLoS One. 2013 Jul 23;8(7):e67597. doi: 10.1371/journal.pone.0067597. Lim MP, Firdaus-Raih M, Nathan S. Nematode Peptides with Host-Directed Anti-inflammatory Activity Rescue Caenorhabditis elegans from a Burkholderia pseudomallei Infection. Front Microbiol. 2016 Sep 12;7:1436. doi: 10.3389/fmicb.2016.01436. Carroll KC, Butel JS, Morse SA. Jawetz Melnick & Adelbergs Medical Microbiology 27 E. McGraw Hill Professional; 2015 Aug 12. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010 May;2(5):a000414. doi: 10.1101/cshperspect.a000414. Beveridge TJ. Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol. 1999 Aug;181(16):4725-33. doi: 10.1128/JB.181.16.4725-4733.1999. Sandy EH, Yao J, Zheng S, Gogra AB, Chen H, Zheng H, Yormah TB, Zhang X, Zaray G, Ceccanti B, Choi MM. A comparative cytotoxicity study of isomeric alkylphthalates to metabolically variant bacteria. J Hazard Mater. 2010 Oct 15;182(1-3):631-9. doi: 10.1016/j.jhazmat.2010.06.079. Farfán-García AE, Ariza-Rojas SC, Vargas-Cárdenas FA, Vargas-Remolina LV. Mecanismos de virulencia de Escherichia coli enteropatógena [Virulence mechanisms of enteropathogenic Escherichia coli]. Rev Chilena Infectol. 2016 Aug;33(4):438-450. Spanish. doi: 10.4067/S0716-10182016000400009. Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004 Feb;2(2):123-40. doi: 10.1038/nrmicro818. Organización Panamericana de la Salud/Organización Mundial de la Salud. OPS/ OMS, (2018). E.coli. Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018 Jun 26;4(3):482-501. doi: 10.3934/microbiol.2018.3.482. Yu VL. Guidelines for hospital-acquired pneumonia and health-care-associated pneumonia: a vulnerability, a pitfall, and a fatal flaw. Lancet Infect Dis. 2011 Mar;11(3):248-52. doi: 10.1016/S1473-3099(11)70005-6. Munita JM, Arias CA. 2016. Mechanisms of antibiotic resistance. Microbiol Spectrum 4(2):VMBF-0016-2015. doi:10.1128 /microbiolspec.VMBF-0016-2015. Kadri SS. Key Takeaways From the U.S. CDC's 2019 Antibiotic Resistance Threats Report for Frontline Providers. Crit Care Med. 2020 Jul;48(7):939-945. doi: 10.1097/CCM.0000000000004371. Maragakis LL, Perencevich EN, Cosgrove SE. Clinical and economic burden of antimicrobial resistance. Expert Rev Anti Infect Ther. 2008 Oct;6(5):751-63. doi: 10.1586/14787210.6.5.751. Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens. 2021 Oct 12;10(10):1310. doi: 10.3390/pathogens10101310. Torres C, Alonso CA, Ruiz-Ripa L, León-Sampedro R, del Campo R, Coque TM. 2018. Antimicrobial resistance in Enterococcus spp. of animal origin. Microbiol Spectrum 6(4):ARBA0032-2018. doi:10.1128/microbiolspec.ARBA-0032-2018 Wu D, Ding Y, Yao K, Gao W, Wang Y. Antimicrobial Resistance Analysis of Clinical Escherichia coli Isolates in Neonatal Ward. Front Pediatr. 2021 May 25;9:670470. doi: 10.3389/fped.2021.670470. Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, Schwarz S. Antimicrobial Resistance in Escherichia coli. Microbiol Spectr. 2018 Jul;6(4). doi: 10.1128/microbiolspec.ARBA-0026-2017. Morrison L, Zembower TR. Antimicrobial Resistance. Gastrointest Endosc Clin N Am. 2020 Oct;30(4):619-635. doi: 10.1016/j.giec.2020.06.004. Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci. 2021 Oct 28;22(21):11691. doi: 10.3390/ijms222111691. Ramachander Turaga, V.N. (2020). Peptaibols: Antimicrobial Peptides from Fungi. In: Singh, J., Meshram, V., Gupta, M. (eds) Bioactive Natural products in Drug Discovery. Springer, Singapore. doi.org/10.1007/978-981-15-1394-7_26 Chang CY, Lin CW, Chiang SK, Chen PL, Huang CY, Liu SJ, Chong P, Huang MH. Enzymatic stability and immunoregulatory efficacy of a synthetic indolicidin analogue with regular enantiomeric sequence. ACS Med Chem Lett. 2013 Apr 24;4(6):522-6. doi: 10.1021/ml400081f. Hsu JC, Yip CM. Molecular dynamics simulations of indolicidin association with model lipid bilayers. Biophys J. 2007 Jun 15;92(12):L100-2. doi: 10.1529/biophysj.107.108050. Agerberth B, Lee JY, Bergman T, Carlquist M, Boman HG, Mutt V, Jörnvall H. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem. 1991 Dec 18;202(3):849-54. doi: 10.1111/j.1432-1033.1991.tb16442.x. Holani R, Shah C, Haji Q, Inglis GD, Uwiera RRE, Cobo ER. Proline-arginine rich (PR-39) cathelicidin: Structure, expression and functional implication in intestinal health. Comp Immunol Microbiol Infect Dis. 2016 Dec;49:95-101. doi: 10.1016/j.cimid.2016.10.004. Veldhuizen EJ, Schneider VA, Agustiandari H, van Dijk A, Tjeerdsma-van Bokhoven JL, Bikker FJ, Haagsman HP. Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS One. 2014 Apr 22;9(4):e95939. doi: 10.1371/journal.pone.0095939. Wang G, Narayana JL, Mishra B, Zhang Y, Wang F, Wang C, Zarena D, Lushnikova T, Wang X. Design of Antimicrobial Peptides: Progress Made with Human Cathelicidin LL-37. Adv Exp Med Biol. 2019;1117:215-240. doi: 10.1007/978-981-13-3588-4_12. Chieosilapatham P, Ikeda S, Ogawa H, Niyonsaba F. Tissue-specific Regulation of Innate Immune Responses by Human Cathelicidin LL-37. Curr Pharm Des. 2018;24(10):1079-1091. doi: 10.2174/1381612824666180327113418. Cobo ER, Chadee K. Antimicrobial Human β-Defensins in the Colon and Their Role in Infectious and Non-Infectious Diseases. Pathogens. 2013 Mar 19;2(1):177-92. doi: 10.3390/pathogens2010177. Pohorielova OO, Shevchenko OS. HUMAN-BETA-DEFENSIN-1: PROGNOSTIC MARKER OF TUBERCULOSIS SEVERITY AND TREATMENT EFFECTIVENESS IN PULMONARY TUBERCULOSIS. Wiad Lek. 2021;74(8):1839-1843. Bensch KW, Raida M, Mägert HJ, Schulz-Knappe P, Forssmann WG. hBD-1: a novel beta-defensin from human plasma. FEBS Lett. 1995 Jul 17;368(2):331-5. doi: 10.1016/0014-5793(95)00687-5. Imura Y, Choda N, Matsuzaki K. Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J. 2008 Dec 15;95(12):5757-65. doi: 10.1529/biophysj.108.133488. Aisenbrey C, Amaro M, Pospíšil P, Hof M, Bechinger B. Highly synergistic antimicrobial activity of magainin 2 and PGLa peptides is rooted in the formation of supramolecular complexes with lipids. Sci Rep. 2020 Jul 15;10(1):11652. doi: 10.1038/s41598-020-68416-1. Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO, Wang J, Xiao J, Zhang J, Bryant SH. An overview of the PubChem BioAssay resource. Nucleic Acids Res. 2010 Jan;38(Database issue):D255-66. doi: 10.1093/nar/gkp965. Dawson RM, Fox MA, Atkins HS, Liu CQ. Potent antimicrobial peptides with selectivity for Bacillus anthracis over human erythrocytes. Int J Antimicrob Agents. 2011 Sep;38(3):237-42. doi: 10.1016/j.ijantimicag.2011.05.006. Ishida Y, Inouye M. Suppression of the toxicity of Bac7 (1-35), a bovine peptide antibiotic, and its production in E. coli. AMB Express. 2016 Mar;6(1):19. doi: 10.1186/s13568-016-0190-3. Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J, Krzyżewski J, Zwierzchowski L, Bagnicka E. Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep. 2012 Dec;39(12):10957-70. doi: 10.1007/s11033-012-1997-x. Kunda NK. Antimicrobial peptides as novel therapeutics for non-small cell lung cancer. Drug Discov Today. 2020 Jan;25(1):238-247. doi: 10.1016/j.drudis.2019.11.012. Hong MJ, Kim MK, Park Y. Comparative Antimicrobial Activity of Hp404 Peptide and Its Analogs against Acinetobacter baumannii. Int J Mol Sci. 2021 May 24;22(11):5540. doi: 10.3390/ijms22115540. Kim MK, Kang HK, Ko SJ, Hong MJ, Bang JK, Seo CH, Park Y. Mechanisms driving the antibacterial and antibiofilm properties of Hp1404 and its analogue peptides against multidrug-resistant Pseudomonas aeruginosa. Sci Rep. 2018 Jan 29;8(1):1763. doi: 10.1038/s41598-018-19434-7. Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry. 1998 Mar 24;37(12):4288-98. doi: 10.1021/bi972323m. Hoek KS, Milne JM, Grieve PA, Dionysius DA, Smith R. Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother. 1997 Jan;41(1):54-9. doi: 10.1128/AAC.41.1.54. Eliassen LT, Berge G, Leknessund A, Wikman M, Lindin I, Løkke C, Ponthan F, Johnsen JI, Sveinbjørnsson B, Kogner P, Flaegstad T, Rekdal Ø. The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int J Cancer. 2006 Aug 1;119(3):493-500. doi: 10.1002/ijc.21886. Liu Y, Han F, Xie Y, Wang Y. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals. 2011 Dec;24(6):1069-78. doi: 10.1007/s10534-011-9465-y. Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P. Apidaecins: antibacterial peptides from honeybees. EMBO J. 1989 Aug;8(8):2387-91. doi: 10.1002/j.1460-2075.1989.tb08368.x. Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci. 2017 Feb 14;11:73. doi: 10.3389/fnins.2017.00073. Porcelli F, Buck B, Lee DK, Hallock KJ, Ramamoorthy A, Veglia G. Structure and orientation of pardaxin determined by NMR experiments in model membranes. J Biol Chem. 2004 Oct 29;279(44):45815-23. doi: 10.1074/jbc.M405454200. Le CF, Fang CM, Sekaran SD. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob Agents Chemother. 2017 Mar 24;61(4):e02340-16. doi: 10.1128/AAC.02340-16. Chen R, Mark AE. The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action. Eur Biophys J. 2011 Apr;40(4):545-53. doi: 10.1007/s00249-011-0677-4. Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol. 1974;19(3):277-303. doi: 10.1007/BF01869983. Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020 Oct 16;11:582779. doi: 10.3389/fmicb.2020.582779. Kumari S, Booth V. Antimicrobial Peptide Mechanisms Studied by Whole-Cell Deuterium NMR. Int J Mol Sci. 2022 Mar 1;23(5):2740. doi: 10.3390/ijms23052740. Hellman LM, Fried MG. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc. 2007;2(8):1849-61. doi: 10.1038/nprot.2007.249. Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, Scocchi M. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol. 2014 Dec 18;21(12):1639-47. doi: 10.1016/j.chembiol.2014.10.009. Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. 1993 Jul;61(7):2978-84. doi: 10.1128/iai.61.7.2978-2984.1993. Li WF, Ma GX, Zhou XX. Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides. 2006 Sep;27(9):2350-9. doi: 10.1016/j.peptides.2006.03.016 Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry. 2001 Mar 13;40(10):3016-26. doi: 10.1021/bi002656a Tsao HS, Spinella SA, Lee AT, Elmore DE. Design of novel histone-derived antimicrobial peptides. Peptides. 2009 Dec;30(12):2168-73. doi: 10.1016/j.peptides.2009.09.011. Sim S, Wang P, Beyer BN, Cutrona KJ, Radhakrishnan ML, Elmore DE. Investigating the nucleic acid interactions of histone-derived antimicrobial peptides. FEBS Lett. 2017 Mar;591(5):706-717. doi: 10.1002/1873-3468.12574. Uyterhoeven ET, Butler CH, Ko D, Elmore DE. Investigating the nucleic acid interactions and antimicrobial mechanism of buforin II. FEBS Lett. 2008 May 28;582(12):1715-8. doi: 10.1016/j.febslet.2008.04.036. Frimodt-Møller J, Campion C, Nielsen PE, Løbner-Olesen A. Translocation of non-lytic antimicrobial peptides and bacteria penetrating peptides across the inner membrane of the bacterial envelope. Curr Genet. 2022 Feb;68(1):83-90. doi: 10.1007/s00294-021-01217-9. Dar AM, Mir S. Molecular docking: approaches, types, applications and basic challenges. J Anal Bioanal Tech. 2017 Mar;8(2):1-3. Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008;443:365-82. doi: 10.1007/978-1-59745-177-2_19. Ballón Paucara WG, Grados Torrez RE. Acomplamiento molecular:: criterios prácticos para la selección de ligandos biológicamente activos e identificación de nuevos blancos terapéuticos. Revista Con-Ciencia. 2019 Nov;7(2):55-72. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Prieto-Martínez FD, Arciniega M, Medina-Franco JL. Molecular docking: current advances and challenges. TIP. Revista especializada en ciencias químico-biológicas. 2018;21. Sobolev OV, Afonine PV, Moriarty NW, Hekkelman ML, Joosten RP, Perrakis A, Adams PD. A Global Ramachandran Score Identifies Protein Structures with Unlikely Stereochemistry. Structure. 2020 Nov 3;28(11):1249-1258.e2. doi: 10.1016/j.str.2020.08.005. Chen VB, Wedell JR, Wenger RK, Ulrich EL, Markley JL. MolProbity for the masses–of data. Journal of biomolecular NMR. 2015 Sep;63:77-83. Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S, Lewis SM, Arendall WB 3rd, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson DC. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018 Jan;27(1):293-315. doi: 10.1002/pro.3330. Diaz-Flores E, Meyer T, Giorkallos A. Evolution of Artificial Intelligence-Powered Technologies in Biomedical Research and Healthcare. Adv Biochem Eng Biotechnol. 2022;182:23-60. doi: 10.1007/10_2021_189. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins. 2003 Feb 15;50(3):437-50. doi: 10.1002/prot.10286. Stewart DE, Sarkar A, Wampler JE. Occurrence and role of cis peptide bonds in protein structures. J Mol Biol. 1990 Jul 5;214(1):253-60. doi: 10.1016/0022-2836(90)90159-J. Zhao F, Yang N, Wang X, Mao R, Hao Y, Li Z, Wang X, Teng D, Fan H, Wang J. In vitro/vivo Mechanism of Action of MP1102 With Low/Nonresistance Against Streptococcus suis Type 2 Strain CVCC 3928. Front Cell Infect Microbiol. 2019 Feb 26;9:48. doi: 10.3389/fcimb.2019.00048. Yan J, Wang K, Dang W, Chen R, Xie J, Zhang B, Song J, Wang R. Two hits are better than one: membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrob Agents Chemother. 2013 Jan;57(1):220-8. doi: 10.1128/AAC.01619-12 Xie J, Gou Y, Zhao Q, Wang K, Yang X, Yan J, Zhang W, Zhang B, Ma C, Wang R. Antimicrobial activities and membrane-active mechanism of CPF-C1 against multidrug-resistant bacteria, a novel antimicrobial peptide derived from skin secretions of the tetraploid frog Xenopus clivii. J Pept Sci. 2014 Nov;20(11):876-84. doi: 10.1002/psc.2679. Ajish C, Yang S, Kumar SD, Shin SY. Proadrenomedullin N-terminal 20 peptide (PAMP) and its C-terminal 12-residue peptide, PAMP(9-20): Cell selectivity and antimicrobial mechanism. Biochem Biophys Res Commun. 2020 Jun 30;527(3):744-750. doi: 10.1016/j.bbrc.2020.04.063. Lim MP, Firdaus-Raih M, Nathan S. Nematode Peptides with Host-Directed Anti-inflammatory Activity Rescue Caenorhabditis elegans from a Burkholderia pseudomallei Infection. Front Microbiol. 2016 Sep 12;7:1436. doi: 10.3389/fmicb.2016.01436. Ryu DW, Kim HA, Ryu JH, Lee DY, Lee M. Amphiphilic peptides with arginine and valine residues as siRNA carriers. J Cell Biochem. 2012 Feb;113(2):619-28. doi: 10.1002/jcb.23389. |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_f1cf Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.extent.none.fl_str_mv |
134 p |
dc.format.mimetype.none.fl_str_mv |
application/pdf application/msword |
dc.publisher.none.fl_str_mv |
Universidad de Santander |
dc.publisher.branch.none.fl_str_mv |
Bucaramanga |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias Médicas y de la Salud |
dc.publisher.place.none.fl_str_mv |
Bucaramanga, Colombia |
dc.publisher.program.none.fl_str_mv |
Bacteriología y Laboratorio Clínico |
publisher.none.fl_str_mv |
Universidad de Santander |
institution |
Universidad de Santander |
bitstream.url.fl_str_mv |
https://repositorio.udes.edu.co/bitstreams/d35027e1-e728-42e6-879d-07f61a2d7b87/download https://repositorio.udes.edu.co/bitstreams/67cae809-96c3-46b4-868d-cb97cfe14220/download https://repositorio.udes.edu.co/bitstreams/097c766e-51c4-4b38-9a36-c568f769a6b4/download https://repositorio.udes.edu.co/bitstreams/2bbcc3be-574a-4deb-9ba4-91abcd84381e/download https://repositorio.udes.edu.co/bitstreams/0bfa5f87-709f-4f16-838b-1794fcec1b7e/download https://repositorio.udes.edu.co/bitstreams/8dd8e28e-6409-4616-98c2-3c7cf0cb0c2f/download https://repositorio.udes.edu.co/bitstreams/93d385af-411b-4188-b686-5f1edc67a668/download https://repositorio.udes.edu.co/bitstreams/a654e4c9-332c-4c3e-b4df-a6fc64e1db38/download https://repositorio.udes.edu.co/bitstreams/574e117e-18cf-4e0c-bbe2-07d573fc766f/download https://repositorio.udes.edu.co/bitstreams/60ad7d41-ebf8-4fd7-836d-0a727a2322fa/download https://repositorio.udes.edu.co/bitstreams/e177867d-a081-49b9-acc5-39afc35b965a/download https://repositorio.udes.edu.co/bitstreams/c1c8e8fd-82ec-4b20-9ead-5cdd6dc4de90/download |
bitstream.checksum.fl_str_mv |
784d3ebdb25d76b084e85397f926a73c 53bc1405b6465e4ffbc75a350340fe42 69ed5576038688cb13f2afee6e5d94b1 1788f68e43621e8225e4394db4d06a2f 60cac9c7bed06407851aa992e6695008 06c2ac640c1a78dffcef340f099d7eed e798d7f6d3b39fc4d652043768ea3287 337be0c5fdd2c4764aef1e4da9aafb28 f3db07fc9ed46c9cad5f807d9d2f8552 ea8b69e0a44f68bb2a9117af17a0a5ee 2d6d9f93abe1e1ea1c989b7d3b2c17cc 73a5432e0b76442b22b026844140d683 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Santander |
repository.mail.fl_str_mv |
soporte@metabiblioteca.com |
_version_ |
1808490884005625856 |
spelling |
Farfán-Garcia, Ana Elviraf8af4974-ba16-439c-8b0b-9a876f9b4330-1Alarcon-Aldana, Juan Sebastiand6e7f697-4d9e-49b1-ae04-2d893e99cf25-1Peña-Niño, Juan Diegoa1c46f40-c8cd-47d1-b8e6-7e5a0fa578a5-1Arias-Guerrero, Monica Yurley220d3f91-dab8-4bfe-966e-89587451af41-1Osorio-Alvarado, Carlos Enrique957fcf19-3936-442e-8af3-42aa16b3e1d9-1Nova Ciencia2024-05-29T20:41:43Z2025-11-152024-05-29T20:41:43Z2023-11-08DigitalIntroducción: En los últimos años, se ha visto un rápido aumento de la resistencia a los antimicrobianos, lo que ha generado demoras en tratamientos hospitalarios, aumento de la mortalidad y el desarrollo de superbacterias resistente a muchos antibióticos, por la cual se ha incrementado la búsqueda de nuevas alternativas terapéuticas para disminuir o eliminar este problema. En este sentido, los péptidos antimicrobianos, son moléculas formadas por residuos de aminoácidos, que tiene la capacidad de interactuar con la membrana lipídica de las bacterias y algunos tiene la capacidad de interactuar con mecanismos intracelulares. Metodología: Se realizó la extracción de los ácidos nucleicos (ADN y ARN) de E. coli ATCCC25922, mediante kits comerciales. Para los ensayos de cambio en la movilidad electroforética (EMSA) se usaron concentraciones de los péptidos en el orden μM y fijas de ADN o ARN. La interacción entre péptidos y ácidos nucleicos se realizo en tres tiempos de exposición (30, 60 y 90 minutos). Se usó el péptido Buforina II como control positivo. Luego del tratamiento, las interacciones se visualizaron mediante electroforesis en geles de agarosa. Para estimar los sitios de interacción, entre el material genético y los péptidos se realizó un docking molecular in silico en diferentes plataformas bioinformáticas. Conclusiones: Se observó retardo en la movilidad electroforética del ADN y ARN en los tiempo evaluados y esta interacción fue dosis-dependiente comparada con el control Buforina II. In silico, los péptidos interaccionan en común con los aminoácidos Arginina, Glicina, sin embargo el péptido Ib-M2, genera otras interacciones con los aminoácidos Triptófano, Glutamina generando un mayor desempeño a comparación del péptido Ib-M1.Introduction: In recent years, there has been a quick increase in antimicrobial resistance, leading to delays in hospital's treatments, increased mortality, and the development of superbugs resistant to many antibiotics. This has prompted the search for new therapeutic alternatives to reduce or eliminate this problem. One potential candidate is antimicrobial peptides, which are molecules composed of amino acid residues that have the ability to interact with the lipid membrane of bacteria, and some can also interact with intracellular mechanisms. Methodology: The genetic material (DNA/RNA) of E. coli ATCCC25922 was extracted using commercial kits. It was then used to interact with the antimicrobial peptides Ib-M1 and Ib-M2 through an electrophoretic mobility shift assay (EMSA) at the in vitro level. To estimate the interaction sites between the genetic material and peptides, a molecular docking was performed in silico through various bioinformatics platforms. Conclusions: A considerable delay was observed in the electrophoretic mobility of DNA and RNA at the evaluated times, and this interaction was dose-dependent compared to the Buforina II control. In silico the peptides commonly interact with the amino acids Arginine, Glycine. However, the Ib-M2 peptide generates other interactions with the amino acids Tryptophan, Glutamine, resulting in better performance compared to the Ib-M1 peptide.PregradoBacteriólogo(a) y Laboratorista ClínicoIntroducción 23 Planteamiento del Problema 28 Justificación 34 Objetivos 36 Objetivo General 36 Objetivos Específicos 36 Marco Referencial 37 Estado del Arte 37 Marco Conceptual 41 Escherichia coli 41 Resistencia Antibacteriana 44 Péptidos Antimicrobianos (AMPs) 47 Fuentes de los AMPs 47 Clasificación de los AMPs 50 Mecanismos de Acción de los AMPs 55 Mecanismos de Acción de AMPs no Líticos 57 Docking Molecular Péptido-DNA, Péptido-RNA 62 Metodología 65 Tipo de Estudio 65 Área de Estudio 65 Variables e Hipótesis 65 Procedimientos 66 Material Biológico 66 Péptidos y Reactivos 67 Extracción de ADN 68 Extracción de RNA 69 Ensayo de Cambio de la Movilidad Electroforética (Electrophoretic Mobility Shift Assay -EMSA) de los Ácidos Nucleicos (ADN y ARN) Tratados con Péptidos Ib-M 70 EMSA del ADN Genómico Bacteriano 70 EMSA del ARN Bacteriano 71 Docking Molecular 71 Análisis de Datos 76 Aspectos Éticos 76 Resultados 78 Extracción de ADN Genómico de E. coli 78 EMSA del ADN Genómico de E. coli ATCC 25922 Tratado con Péptidos Ib-M1 e Ib-M2 79 Extracción de ARN 81 EMSA del ARN de E. coli ATCC 25922 y los Péptidos Ib-M1 e Ib-M2. 82 Docking Molecular (Acople Molecular) 86 Modelamiento del Péptido Ib-M1 86 Modelamiento del Péptido Ib-M2 88 Acople Molecular del Péptido Ib-M1 con la Estructura de un B-DNA Dodecámero 90 Acople Molecular Entre Ib-M2 con la Estructura de un B-DNA Dodecámero 92 Acople Molecular Entre el Péptido Ib-M1 con Subunidad Ribosómica 5 S de E. coli 94 Interacción del Péptido Ib-M2 con la Subunidad Ribosómica 5 S de E. coli 96 Discusión 99 Conclusión 106 Recomendaciones 108 Referencias Bibliografía 109 Apéndices 129134 papplication/pdfapplication/mswordUniversidad de SantanderT 17.23 P261eRepositorio Digital Universidad de Santanderhttps://repositorio.udes.edu.cohttps://repositorio.udes.edu.co/handle/001/10459spaUniversidad de SantanderBucaramangaFacultad de Ciencias Médicas y de la SaludBucaramanga, ColombiaBacteriología y Laboratorio ClínicoPulingam T, Parumasivam T, Gazzali AM, Sulaiman AM, Chee JY, Lakshmanan M, Chin CF, Sudesh K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur J Pharm Sci. 2022 Mar 1;170:106103. doi: 10.1016/j.ejps.2021.106103.Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022 Feb 12;399(10325):629-655. doi: 10.1016/S0140-6736(21)02724-0.Colombia. Instituto Nacional de Salud. Protocolo de Vigilancia en Salud Pública de Resistencia Bacteriana a los antimicrobianos en el ámbito hospitalario. versión 3.European Centre for Disease Prevention and Control, Antimicrobial resistance surveillance in Europe : annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2015. Publications Office; 2017. Available from: doi/10.2900/6928Serra-Burriel M, Keys M, Campillo-Artero C, Agodi A, Barchitta M, Gikas A, Palos C, López-Casasnovas G. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS One. 2020 Jan 10;15(1):e0227139. doi: 10.1371/journal.pone.0227139.Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. 2022 Jul;12(7):3049-3062. doi: 10.1016/j.apsb.2022.02.002.Tautermann CS. Current and Future Challenges in Modern Drug Discovery. Methods Mol Biol. 2020;2114:1-17. doi: 10.1007/978-1-0716-0282-9_1.Van Norman GA. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Is it Time to Rethink Our Current Approach? JACC Basic Transl Sci. 2019 Nov 25;4(7):845-854. doi: 10.1016/j.jacbts.2019.10.008.de Sousa Oliveira K, de Lima LA, Cobacho NB, Dias SC, Franco OL. Mechanisms of antibacterial resistance: shedding some light on these obscure processes. Antibiotic Resistance. 2016;4:19-35.Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309-18. doi: 10.1179/2047773215Y.0000000030.Casellas JM. Resistencia a los antibacterianos en América Latina: consecuencias para la infectología [Antibacterial drug resistance in Latin America: consequences for infectious disease control]. Rev Panam Salud Publica. 2011 Dec;30(6):519-28.Dadgostar P. Antimicrobial Resistance: Implications and Costs. Infect Drug Resist. 2019 Dec 20;12:3903-3910. doi: 10.2147/IDR.S234610.Pons, M.J., de Toro, M., Medina, S., Sáenz, Y. y Ruiz, J. (2020). «Antimicrobianos, resistencia antibacteriana y salud sostenible». South Sustainability, 1(1), e001 DOI: 10.21142/SS-0101-2020-001Svenson J, Molchanova N, Schroeder CI. Antimicrobial Peptide Mimics for Clinical Use: Does Size Matter? Front Immunol. 2022 May 26;13:915368. doi: 10.3389/fimmu.2022.915368.Chen CH, Lu TK. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications. Antibiotics (Basel). 2020 Jan 13;9(1):24. doi: 10.3390/antibiotics9010024..Araos R, García P, Chanqueo L, Labarca J. Daptomicina: características farmacológicas y aporte en el tratamiento de infecciones por cocáceas gram positivas [Daptomycin: pharmacological characteristics and its role in the treatment of gram positive infections]. Rev Chilena Infectol. 2012 Apr;29(2):127-31. Spanish. doi: 10.4067/S0716-10182012000200001.Tailor RH, Acland DP, Attenborough S, Cammue BP, Evans IJ, Osborn RW, Ray JA, Rees SB, Broekaert WF. A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J Biol Chem. 1997 Sep 26;272(39):24480-7. doi: 10.1074/jbc.272.39.24480.Prada-Prada S, Flórez-Castillo J, Farfán-García A, Guzmán F, Hernández-Peñaranda I. Antimicrobial activity of Ib-M peptides against Escherichia coli O157: H7. PLoS One. 2020 Feb 13;15(2):e0229019. doi: 10.1371/journal.pone.0229019.Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin Microbiol Rev. 2006 Jul;19(3):491-511. doi: 10.1128/CMR.00056-05.Singh T, Choudhary P, Singh S. Antimicrobial Peptides: Mechanism of Action [Internet]. Insights on Antimicrobial Peptides. IntechOpen; 2022. Available from: doi.org/10.5772/intechopen.99190Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules. 2018 Jan 19;8(1):4. doi: 10.3390/biom8010004.Wang G, editor. Antimicrobial peptides: discovery, design and novel therapeutic strategies. Cabi; 2010.Flórez-Castillo, J.M., Perullini, M., Jobbágy, M. et al. Enhancing Antibacterial Activity Against Escherichia coli K-12 of Peptide Ib-AMP4 with Synthetic Analogues. Int J Pept Res Ther 20, 365–369 (2014). doi.org/10.1007/s10989-014-9391-2.World Health Organization B. No time to wait: securing the future from drug-resistant infections. Report to the Secretary-General of the United Nations. Interagency Coordination Group on Antimicrobial Resistance. 2019 Apr.Spaulding CN, Klein RD, Schreiber HL 4th, Janetka JW, Hultgren SJ. Precision antimicrobial therapeutics: the path of least resistance? NPJ Biofilms Microbiomes. 2018 Feb 27;4:4. doi: 10.1038/s41522-018-0048-3.Ibarzabal Lachaga G. Reacciones adversas a medicamentos en un hospital de media-larga estancia. Metas enferm. 2015:19-24.Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control. 2017 May 15;6:47. doi: 10.1186/s13756-017-0208-x.da Silva JB Jr, Espinal M, Ramón-Pardo P. Resistencia a los antimicrobianos: tiempo para la acción. Rev Panam Salud Publica. 2020 Sep 23;44:e122. Spanish. doi: 10.26633/RPSP.2020.122.Organización Panamericana de la Salud/Organización Mundial de la Salud. OPS/ OMS, (2021).Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol. 2018 Nov 30;9:2928. doi: 10.3389/fmicb.2018.02928.Santajit S, Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed Res Int. 2016;2016:2475067. doi: 10.1155/2016/2475067.Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016 Dec 27;6:194. doi: 10.3389/fcimb.2016.00194.Boparai JK, Sharma PK. Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications. Protein Pept Lett. 2020;27(1):4-16. doi: 10.2174/0929866526666190822165812.McMillan KAM, Coombs MRP. Review: Examining the Natural Role of Amphibian Antimicrobial Peptide Magainin. Molecules. 2020 Nov 20;25(22):5436. doi: 10.3390/molecules25225436.Nagaoka I, Tamura H, Reich J. Therapeutic Potential of Cathelicidin Peptide LL-37, an Antimicrobial Agent, in a Murine Sepsis Model. Int J Mol Sci. 2020 Aug 19;21(17):5973. doi: 10.3390/ijms21175973.Xhindoli D, Pacor S, Benincasa M, Scocchi M, Gennaro R, Tossi A. The human cathelicidin LL-37--A pore-forming antibacterial peptide and host-cell modulator. Biochim Biophys Acta. 2016 Mar;1858(3):546-66. doi: 10.1016/j.bbamem.2015.11.003.Raghuraman H, Chattopadhyay A. Melittin: a membrane-active peptide with diverse functions. Biosci Rep. 2007 Oct;27(4-5):189-223. doi: 10.1007/s10540-006-9030-z.Memariani H, Memariani M, Moravvej H, Shahidi-Dadras M. Melittin: a venom-derived peptide with promising anti-viral properties. Eur J Clin Microbiol Infect Dis. 2020 Jan;39(1):5-17. doi: 10.1007/s10096-019-03674-0.van den Bogaart G, Guzmán JV, Mika JT, Poolman B. On the mechanism of pore formation by melittin. J Biol Chem. 2008 Dec 5;283(49):33854-7. doi: 10.1074/jbc.M805171200.Cardoso MH, Meneguetti BT, Costa BO, Buccini DF, Oshiro KGN, Preza SLE, Carvalho CME, Migliolo L, Franco OL. Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets. Int J Mol Sci. 2019 Oct 1;20(19):4877. doi: 10.3390/ijms20194877.Jang SA, Kim H, Lee JY, Shin JR, Kim DJ, Cho JH, Kim SC. Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb. Peptides. 2012 Apr;34(2):283-9. doi: 10.1016/j.peptides.2012.01.015.Cho JH, Sung BH, Kim SC. Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim Biophys Acta. 2009 Aug;1788(8):1564-9. doi: 10.1016/j.bbamem.2008.10.025.Hao G, Shi YH, Tang YL, Le GW. The intracellular mechanism of action on Escherichia coli of BF2-A/C, two analogues of the antimicrobial peptide Buforin 2. J Microbiol. 2013 Apr;51(2):200-6. doi: 10.1007/s12275-013-2441-1.Batista Araujo J, Sastre de Souza G, Lorenzon EN. Indolicidin revisited: biological activity, potential applications and perspectives of an antimicrobial peptide not yet fully explored. World J Microbiol Biotechnol. 2022 Jan 12;38(3):39. doi: 10.1007/s11274-022-03227-2.Hsu CH, Chen C, Jou ML, Lee AY, Lin YC, Yu YP, Huang WT, Wu SH. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res. 2005 Jul 20;33(13):4053-64. doi: 10.1093/nar/gki725.Bechinger B, Gorr SU. Antimicrobial Peptides: Mechanisms of Action and Resistance. J Dent Res. 2017 Mar;96(3):254-260. doi: 10.1177/0022034516679973.Vishnepolsky B, Zaalishvili G, Karapetian M, Nasrashvili T, Kuljanishvili N, Gabrielian A, Rosenthal A, Hurt DE, Tartakovsky M, Grigolava M, Pirtskhalava M. De Novo Design and In Vitro Testing of Antimicrobial Peptides against Gram-Negative Bacteria. Pharmaceuticals (Basel). 2019 Jun 3;12(2):82. doi: 10.3390/ph12020082.Lei J, Sun L, Huang S, Zhu C, Li P, He J, Mackey V, Coy DH, He Q. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019 Jul 15;11(7):3919-3931.Andrei S, Droc G, Stefan G. FDA approved antibacterial drugs: 2018-2019. Discoveries (Craiova). 2019 Dec 31;7(4):e102. doi: 10.15190/d.2019.15.Parilti R, Caprasse J, Riva R, Alexandre M, Vandegaart H, Bebrone C, Dupont-Gillain C, Howdle SM, Jérôme C. Antimicrobial peptide encapsulation and sustained release from polymer network particles prepared in supercritical carbon dioxide. J Colloid Interface Sci. 2018 Dec 15;532:112-117. doi: 10.1016/j.jcis.2018.07.125.Fantner GE, Barbero RJ, Gray DS, Belcher AM. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol. 2010 Apr;5(4):280-5. doi: 10.1038/nnano.2010.29.Jochumsen N, Marvig RL, Damkiær S, Jensen RL, Paulander W, Molin S, Jelsbak L, Folkesson A. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. Nat Commun. 2016 Oct 3;7:13002. doi: 10.1038/ncomms13002.Mathur D, Prakash S, Anand P, Kaur H, Agrawal P, Mehta A, Kumar R, Singh S, Raghava GP. PEPlife: A Repository of the Half-life of Peptides. Sci Rep. 2016 Nov 7;6:36617. doi: 10.1038/srep36617.Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013 Nov 28;6(12):1543-75. doi: 10.3390/ph6121543.Jacob B, Rajasekaran G, Kim EY, Park IS, Bang JK, Shin SY. The stereochemical effect of SMAP-29 and SMAP-18 on bacterial selectivity, membrane interaction and anti-inflammatory activity. Amino Acids. 2016 May;48(5):1241-51. doi: 10.1007/s00726-016-2170-y.Jiang Y, Wu Y, Wang T, Chen X, Zhou M, Ma C, Xi X, Zhang Y, Chen T, Shaw C, Wang L. Brevinin-1GHd: a novel Hylarana guentheri skin secretion-derived Brevinin-1 type peptide with antimicrobial and anticancer therapeutic potential. Biosci Rep. 2020 May 29;40(5):BSR20200019. doi: 10.1042/BSR20200019.Ya-Li Tang; Yong-Hui Shi; Wei Zhao; Gang Hao; Guo-Wei Le (2009). Interaction of MDpep9, a novel antimicrobial peptide from Chinese traditional edible larvae of housefly, with Escherichia coli genomic DNA. , 115(3), 867–872. doi:10.1016/j.foodchem.2008.12.102Ma L, Xie X, Liu H, Huang Y, Wu H, Jiang M, Xu P, Ye X, Zhou C. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics. 2020 Jan 1;10(3):1373-1390. doi: 10.7150/thno.39157.Shagaghi N, Bhave M, Palombo EA, Clayton AH. Revealing the sequence of interactions of PuroA peptide with Candida albicans cells by live-cell imaging. Sci Rep. 2017 Mar 2;7:43542. doi: 10.1038/srep43542.Yan J, Liang X, Liu C, Cheng Y, Zhou L, Wang K, Zhao L. Influence of Proline Substitution on the Bioactivity of Mammalian-Derived Antimicrobial Peptide NK-2. Probiotics Antimicrob Proteins. 2018 Mar;10(1):118-127. doi: 10.1007/s12602-017-9335-1Ajish C, Yang S, Kumar SD, Shin SY. Proadrenomedullin N-terminal 20 peptide (PAMP) and its C-terminal 12-residue peptide, PAMP(9-20): Cell selectivity and antimicrobial mechanism. Biochem Biophys Res Commun. 2020 Jun 30;527(3):744-750. doi: 10.1016/j.bbrc.2020.04.063.Lee JK, Gopal R, Park SC, Ko HS, Kim Y, Hahm KS, Park Y. A proline-hinge alters the characteristics of the amphipathic α-helical AMPs. PLoS One. 2013 Jul 23;8(7):e67597. doi: 10.1371/journal.pone.0067597.Lim MP, Firdaus-Raih M, Nathan S. Nematode Peptides with Host-Directed Anti-inflammatory Activity Rescue Caenorhabditis elegans from a Burkholderia pseudomallei Infection. Front Microbiol. 2016 Sep 12;7:1436. doi: 10.3389/fmicb.2016.01436.Carroll KC, Butel JS, Morse SA. Jawetz Melnick & Adelbergs Medical Microbiology 27 E. McGraw Hill Professional; 2015 Aug 12.Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol. 2010 May;2(5):a000414. doi: 10.1101/cshperspect.a000414.Beveridge TJ. Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol. 1999 Aug;181(16):4725-33. doi: 10.1128/JB.181.16.4725-4733.1999.Sandy EH, Yao J, Zheng S, Gogra AB, Chen H, Zheng H, Yormah TB, Zhang X, Zaray G, Ceccanti B, Choi MM. A comparative cytotoxicity study of isomeric alkylphthalates to metabolically variant bacteria. J Hazard Mater. 2010 Oct 15;182(1-3):631-9. doi: 10.1016/j.jhazmat.2010.06.079.Farfán-García AE, Ariza-Rojas SC, Vargas-Cárdenas FA, Vargas-Remolina LV. Mecanismos de virulencia de Escherichia coli enteropatógena [Virulence mechanisms of enteropathogenic Escherichia coli]. Rev Chilena Infectol. 2016 Aug;33(4):438-450. Spanish. doi: 10.4067/S0716-10182016000400009.Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol. 2004 Feb;2(2):123-40. doi: 10.1038/nrmicro818.Organización Panamericana de la Salud/Organización Mundial de la Salud. OPS/ OMS, (2018). E.coli.Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018 Jun 26;4(3):482-501. doi: 10.3934/microbiol.2018.3.482.Yu VL. Guidelines for hospital-acquired pneumonia and health-care-associated pneumonia: a vulnerability, a pitfall, and a fatal flaw. Lancet Infect Dis. 2011 Mar;11(3):248-52. doi: 10.1016/S1473-3099(11)70005-6.Munita JM, Arias CA. 2016. Mechanisms of antibiotic resistance. Microbiol Spectrum 4(2):VMBF-0016-2015. doi:10.1128 /microbiolspec.VMBF-0016-2015.Kadri SS. Key Takeaways From the U.S. CDC's 2019 Antibiotic Resistance Threats Report for Frontline Providers. Crit Care Med. 2020 Jul;48(7):939-945. doi: 10.1097/CCM.0000000000004371.Maragakis LL, Perencevich EN, Cosgrove SE. Clinical and economic burden of antimicrobial resistance. Expert Rev Anti Infect Ther. 2008 Oct;6(5):751-63. doi: 10.1586/14787210.6.5.751.Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens. 2021 Oct 12;10(10):1310. doi: 10.3390/pathogens10101310.Torres C, Alonso CA, Ruiz-Ripa L, León-Sampedro R, del Campo R, Coque TM. 2018. Antimicrobial resistance in Enterococcus spp. of animal origin. Microbiol Spectrum 6(4):ARBA0032-2018. doi:10.1128/microbiolspec.ARBA-0032-2018Wu D, Ding Y, Yao K, Gao W, Wang Y. Antimicrobial Resistance Analysis of Clinical Escherichia coli Isolates in Neonatal Ward. Front Pediatr. 2021 May 25;9:670470. doi: 10.3389/fped.2021.670470.Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, Schwarz S. Antimicrobial Resistance in Escherichia coli. Microbiol Spectr. 2018 Jul;6(4). doi: 10.1128/microbiolspec.ARBA-0026-2017.Morrison L, Zembower TR. Antimicrobial Resistance. Gastrointest Endosc Clin N Am. 2020 Oct;30(4):619-635. doi: 10.1016/j.giec.2020.06.004.Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci. 2021 Oct 28;22(21):11691. doi: 10.3390/ijms222111691.Ramachander Turaga, V.N. (2020). Peptaibols: Antimicrobial Peptides from Fungi. In: Singh, J., Meshram, V., Gupta, M. (eds) Bioactive Natural products in Drug Discovery. Springer, Singapore. doi.org/10.1007/978-981-15-1394-7_26Chang CY, Lin CW, Chiang SK, Chen PL, Huang CY, Liu SJ, Chong P, Huang MH. Enzymatic stability and immunoregulatory efficacy of a synthetic indolicidin analogue with regular enantiomeric sequence. ACS Med Chem Lett. 2013 Apr 24;4(6):522-6. doi: 10.1021/ml400081f.Hsu JC, Yip CM. Molecular dynamics simulations of indolicidin association with model lipid bilayers. Biophys J. 2007 Jun 15;92(12):L100-2. doi: 10.1529/biophysj.107.108050.Agerberth B, Lee JY, Bergman T, Carlquist M, Boman HG, Mutt V, Jörnvall H. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem. 1991 Dec 18;202(3):849-54. doi: 10.1111/j.1432-1033.1991.tb16442.x.Holani R, Shah C, Haji Q, Inglis GD, Uwiera RRE, Cobo ER. Proline-arginine rich (PR-39) cathelicidin: Structure, expression and functional implication in intestinal health. Comp Immunol Microbiol Infect Dis. 2016 Dec;49:95-101. doi: 10.1016/j.cimid.2016.10.004.Veldhuizen EJ, Schneider VA, Agustiandari H, van Dijk A, Tjeerdsma-van Bokhoven JL, Bikker FJ, Haagsman HP. Antimicrobial and immunomodulatory activities of PR-39 derived peptides. PLoS One. 2014 Apr 22;9(4):e95939. doi: 10.1371/journal.pone.0095939.Wang G, Narayana JL, Mishra B, Zhang Y, Wang F, Wang C, Zarena D, Lushnikova T, Wang X. Design of Antimicrobial Peptides: Progress Made with Human Cathelicidin LL-37. Adv Exp Med Biol. 2019;1117:215-240. doi: 10.1007/978-981-13-3588-4_12.Chieosilapatham P, Ikeda S, Ogawa H, Niyonsaba F. Tissue-specific Regulation of Innate Immune Responses by Human Cathelicidin LL-37. Curr Pharm Des. 2018;24(10):1079-1091. doi: 10.2174/1381612824666180327113418.Cobo ER, Chadee K. Antimicrobial Human β-Defensins in the Colon and Their Role in Infectious and Non-Infectious Diseases. Pathogens. 2013 Mar 19;2(1):177-92. doi: 10.3390/pathogens2010177.Pohorielova OO, Shevchenko OS. HUMAN-BETA-DEFENSIN-1: PROGNOSTIC MARKER OF TUBERCULOSIS SEVERITY AND TREATMENT EFFECTIVENESS IN PULMONARY TUBERCULOSIS. Wiad Lek. 2021;74(8):1839-1843.Bensch KW, Raida M, Mägert HJ, Schulz-Knappe P, Forssmann WG. hBD-1: a novel beta-defensin from human plasma. FEBS Lett. 1995 Jul 17;368(2):331-5. doi: 10.1016/0014-5793(95)00687-5.Imura Y, Choda N, Matsuzaki K. Magainin 2 in action: distinct modes of membrane permeabilization in living bacterial and mammalian cells. Biophys J. 2008 Dec 15;95(12):5757-65. doi: 10.1529/biophysj.108.133488.Aisenbrey C, Amaro M, Pospíšil P, Hof M, Bechinger B. Highly synergistic antimicrobial activity of magainin 2 and PGLa peptides is rooted in the formation of supramolecular complexes with lipids. Sci Rep. 2020 Jul 15;10(1):11652. doi: 10.1038/s41598-020-68416-1.Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO, Wang J, Xiao J, Zhang J, Bryant SH. An overview of the PubChem BioAssay resource. Nucleic Acids Res. 2010 Jan;38(Database issue):D255-66. doi: 10.1093/nar/gkp965.Dawson RM, Fox MA, Atkins HS, Liu CQ. Potent antimicrobial peptides with selectivity for Bacillus anthracis over human erythrocytes. Int J Antimicrob Agents. 2011 Sep;38(3):237-42. doi: 10.1016/j.ijantimicag.2011.05.006.Ishida Y, Inouye M. Suppression of the toxicity of Bac7 (1-35), a bovine peptide antibiotic, and its production in E. coli. AMB Express. 2016 Mar;6(1):19. doi: 10.1186/s13568-016-0190-3.Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J, Krzyżewski J, Zwierzchowski L, Bagnicka E. Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep. 2012 Dec;39(12):10957-70. doi: 10.1007/s11033-012-1997-x.Kunda NK. Antimicrobial peptides as novel therapeutics for non-small cell lung cancer. Drug Discov Today. 2020 Jan;25(1):238-247. doi: 10.1016/j.drudis.2019.11.012.Hong MJ, Kim MK, Park Y. Comparative Antimicrobial Activity of Hp404 Peptide and Its Analogs against Acinetobacter baumannii. Int J Mol Sci. 2021 May 24;22(11):5540. doi: 10.3390/ijms22115540.Kim MK, Kang HK, Ko SJ, Hong MJ, Bang JK, Seo CH, Park Y. Mechanisms driving the antibacterial and antibiofilm properties of Hp1404 and its analogue peptides against multidrug-resistant Pseudomonas aeruginosa. Sci Rep. 2018 Jan 29;8(1):1763. doi: 10.1038/s41598-018-19434-7.Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry. 1998 Mar 24;37(12):4288-98. doi: 10.1021/bi972323m.Hoek KS, Milne JM, Grieve PA, Dionysius DA, Smith R. Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother. 1997 Jan;41(1):54-9. doi: 10.1128/AAC.41.1.54.Eliassen LT, Berge G, Leknessund A, Wikman M, Lindin I, Løkke C, Ponthan F, Johnsen JI, Sveinbjørnsson B, Kogner P, Flaegstad T, Rekdal Ø. The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo. Int J Cancer. 2006 Aug 1;119(3):493-500. doi: 10.1002/ijc.21886.Liu Y, Han F, Xie Y, Wang Y. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals. 2011 Dec;24(6):1069-78. doi: 10.1007/s10534-011-9465-y.Casteels P, Ampe C, Jacobs F, Vaeck M, Tempst P. Apidaecins: antibacterial peptides from honeybees. EMBO J. 1989 Aug;8(8):2387-91. doi: 10.1002/j.1460-2075.1989.tb08368.x.Li J, Koh JJ, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front Neurosci. 2017 Feb 14;11:73. doi: 10.3389/fnins.2017.00073.Porcelli F, Buck B, Lee DK, Hallock KJ, Ramamoorthy A, Veglia G. Structure and orientation of pardaxin determined by NMR experiments in model membranes. J Biol Chem. 2004 Oct 29;279(44):45815-23. doi: 10.1074/jbc.M405454200.Le CF, Fang CM, Sekaran SD. Intracellular Targeting Mechanisms by Antimicrobial Peptides. Antimicrob Agents Chemother. 2017 Mar 24;61(4):e02340-16. doi: 10.1128/AAC.02340-16.Chen R, Mark AE. The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action. Eur Biophys J. 2011 Apr;40(4):545-53. doi: 10.1007/s00249-011-0677-4.Boheim G. Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol. 1974;19(3):277-303. doi: 10.1007/BF01869983.Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol. 2020 Oct 16;11:582779. doi: 10.3389/fmicb.2020.582779.Kumari S, Booth V. Antimicrobial Peptide Mechanisms Studied by Whole-Cell Deuterium NMR. Int J Mol Sci. 2022 Mar 1;23(5):2740. doi: 10.3390/ijms23052740.Hellman LM, Fried MG. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc. 2007;2(8):1849-61. doi: 10.1038/nprot.2007.249.Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, Scocchi M. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol. 2014 Dec 18;21(12):1639-47. doi: 10.1016/j.chembiol.2014.10.009.Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. 1993 Jul;61(7):2978-84. doi: 10.1128/iai.61.7.2978-2984.1993.Li WF, Ma GX, Zhou XX. Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action. Peptides. 2006 Sep;27(9):2350-9. doi: 10.1016/j.peptides.2006.03.016Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry. 2001 Mar 13;40(10):3016-26. doi: 10.1021/bi002656aTsao HS, Spinella SA, Lee AT, Elmore DE. Design of novel histone-derived antimicrobial peptides. Peptides. 2009 Dec;30(12):2168-73. doi: 10.1016/j.peptides.2009.09.011.Sim S, Wang P, Beyer BN, Cutrona KJ, Radhakrishnan ML, Elmore DE. Investigating the nucleic acid interactions of histone-derived antimicrobial peptides. FEBS Lett. 2017 Mar;591(5):706-717. doi: 10.1002/1873-3468.12574.Uyterhoeven ET, Butler CH, Ko D, Elmore DE. Investigating the nucleic acid interactions and antimicrobial mechanism of buforin II. FEBS Lett. 2008 May 28;582(12):1715-8. doi: 10.1016/j.febslet.2008.04.036.Frimodt-Møller J, Campion C, Nielsen PE, Løbner-Olesen A. Translocation of non-lytic antimicrobial peptides and bacteria penetrating peptides across the inner membrane of the bacterial envelope. Curr Genet. 2022 Feb;68(1):83-90. doi: 10.1007/s00294-021-01217-9.Dar AM, Mir S. Molecular docking: approaches, types, applications and basic challenges. J Anal Bioanal Tech. 2017 Mar;8(2):1-3.Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008;443:365-82. doi: 10.1007/978-1-59745-177-2_19.Ballón Paucara WG, Grados Torrez RE. Acomplamiento molecular:: criterios prácticos para la selección de ligandos biológicamente activos e identificación de nuevos blancos terapéuticos. Revista Con-Ciencia. 2019 Nov;7(2):55-72.Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073.Prieto-Martínez FD, Arciniega M, Medina-Franco JL. Molecular docking: current advances and challenges. TIP. Revista especializada en ciencias químico-biológicas. 2018;21.Sobolev OV, Afonine PV, Moriarty NW, Hekkelman ML, Joosten RP, Perrakis A, Adams PD. A Global Ramachandran Score Identifies Protein Structures with Unlikely Stereochemistry. Structure. 2020 Nov 3;28(11):1249-1258.e2. doi: 10.1016/j.str.2020.08.005.Chen VB, Wedell JR, Wenger RK, Ulrich EL, Markley JL. MolProbity for the masses–of data. Journal of biomolecular NMR. 2015 Sep;63:77-83.Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S, Lewis SM, Arendall WB 3rd, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson DC. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018 Jan;27(1):293-315. doi: 10.1002/pro.3330.Diaz-Flores E, Meyer T, Giorkallos A. Evolution of Artificial Intelligence-Powered Technologies in Biomedical Research and Healthcare. Adv Biochem Eng Biotechnol. 2022;182:23-60. doi: 10.1007/10_2021_189.Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins. 2003 Feb 15;50(3):437-50. doi: 10.1002/prot.10286.Stewart DE, Sarkar A, Wampler JE. Occurrence and role of cis peptide bonds in protein structures. J Mol Biol. 1990 Jul 5;214(1):253-60. doi: 10.1016/0022-2836(90)90159-J.Zhao F, Yang N, Wang X, Mao R, Hao Y, Li Z, Wang X, Teng D, Fan H, Wang J. In vitro/vivo Mechanism of Action of MP1102 With Low/Nonresistance Against Streptococcus suis Type 2 Strain CVCC 3928. Front Cell Infect Microbiol. 2019 Feb 26;9:48. doi: 10.3389/fcimb.2019.00048.Yan J, Wang K, Dang W, Chen R, Xie J, Zhang B, Song J, Wang R. Two hits are better than one: membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrob Agents Chemother. 2013 Jan;57(1):220-8. doi: 10.1128/AAC.01619-12Xie J, Gou Y, Zhao Q, Wang K, Yang X, Yan J, Zhang W, Zhang B, Ma C, Wang R. Antimicrobial activities and membrane-active mechanism of CPF-C1 against multidrug-resistant bacteria, a novel antimicrobial peptide derived from skin secretions of the tetraploid frog Xenopus clivii. J Pept Sci. 2014 Nov;20(11):876-84. doi: 10.1002/psc.2679.Ajish C, Yang S, Kumar SD, Shin SY. Proadrenomedullin N-terminal 20 peptide (PAMP) and its C-terminal 12-residue peptide, PAMP(9-20): Cell selectivity and antimicrobial mechanism. Biochem Biophys Res Commun. 2020 Jun 30;527(3):744-750. doi: 10.1016/j.bbrc.2020.04.063.Lim MP, Firdaus-Raih M, Nathan S. Nematode Peptides with Host-Directed Anti-inflammatory Activity Rescue Caenorhabditis elegans from a Burkholderia pseudomallei Infection. Front Microbiol. 2016 Sep 12;7:1436. doi: 10.3389/fmicb.2016.01436.Ryu DW, Kim HA, Ryu JH, Lee DY, Lee M. Amphiphilic peptides with arginine and valine residues as siRNA carriers. J Cell Biochem. 2012 Feb;113(2):619-28. doi: 10.1002/jcb.23389.Derechos Reservados - Universidad de Santander, 2023. Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/Escherichia coliPéptidos AntimicrobianosMecanismos de AcciónResistencia AntimicrobianaDocking MolecularEnsayo de Cambio de la Movilidad ElectroforéticaEscherichia coliAntimicrobial PeptidesMechanisms Of ActionAntimicrobial ResistanceEvaluación de la Interacción de los Péptidos Ib-M1 e Ib-M2 con los Ácidos Nucleicos de Escherichia coliEvaluation of the Interaction of Ib-M1 and Ib-M2 Peptides With Escherichia coli Nucleic AcidsTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_71e4c1898caa6e32Textinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/submittedVersionTodas las AudienciasPublicationORIGINALCertificado_de_Similitud_de_Texto.pdfCertificado_de_Similitud_de_Texto.pdfapplication/pdf3942409https://repositorio.udes.edu.co/bitstreams/d35027e1-e728-42e6-879d-07f61a2d7b87/download784d3ebdb25d76b084e85397f926a73cMD54Label.pdfLabel.pdfapplication/pdf3221482https://repositorio.udes.edu.co/bitstreams/67cae809-96c3-46b4-868d-cb97cfe14220/download53bc1405b6465e4ffbc75a350340fe42MD57Evaluación_de_la_Interacción_de_los_Péptidos_Ib-M1_e_Ib-M2_con_los_Ácidos_Nucleicos_de_Escherichia coli.docxEvaluación_de_la_Interacción_de_los_Péptidos_Ib-M1_e_Ib-M2_con_los_Ácidos_Nucleicos_de_Escherichia coli.docxapplication/vnd.openxmlformats-officedocument.wordprocessingml.document13188749https://repositorio.udes.edu.co/bitstreams/097c766e-51c4-4b38-9a36-c568f769a6b4/download69ed5576038688cb13f2afee6e5d94b1MD58Evaluación_de_la_Interacción_de_los_Péptidos_Ib-M1_e_Ib-M2_con_los_Ácidos_Nucleicos_de_Escherichia coli.pdfEvaluación_de_la_Interacción_de_los_Péptidos_Ib-M1_e_Ib-M2_con_los_Ácidos_Nucleicos_de_Escherichia coli.pdfapplication/pdf4169289https://repositorio.udes.edu.co/bitstreams/2bbcc3be-574a-4deb-9ba4-91abcd84381e/download1788f68e43621e8225e4394db4d06a2fMD59TEXTCertificado_de_Similitud_de_Texto.pdf.txtCertificado_de_Similitud_de_Texto.pdf.txtExtracted texttext/plain101498https://repositorio.udes.edu.co/bitstreams/0bfa5f87-709f-4f16-838b-1794fcec1b7e/download60cac9c7bed06407851aa992e6695008MD510Label.pdf.txtLabel.pdf.txtExtracted texttext/plain740https://repositorio.udes.edu.co/bitstreams/8dd8e28e-6409-4616-98c2-3c7cf0cb0c2f/download06c2ac640c1a78dffcef340f099d7eedMD512Evaluación_de_la_Interacción_de_los_Péptidos_Ib-M1_e_Ib-M2_con_los_Ácidos_Nucleicos_de_Escherichia coli.docx.txtEvaluación_de_la_Interacción_de_los_Péptidos_Ib-M1_e_Ib-M2_con_los_Ácidos_Nucleicos_de_Escherichia coli.docx.txtExtracted texttext/plain102083https://repositorio.udes.edu.co/bitstreams/93d385af-411b-4188-b686-5f1edc67a668/downloade798d7f6d3b39fc4d652043768ea3287MD514Evaluación_de_la_Interacción_de_los_Péptidos_Ib-M1_e_Ib-M2_con_los_Ácidos_Nucleicos_de_Escherichia coli.pdf.txtEvaluación_de_la_Interacción_de_los_Péptidos_Ib-M1_e_Ib-M2_con_los_Ácidos_Nucleicos_de_Escherichia coli.pdf.txtExtracted texttext/plain101582https://repositorio.udes.edu.co/bitstreams/a654e4c9-332c-4c3e-b4df-a6fc64e1db38/download337be0c5fdd2c4764aef1e4da9aafb28MD515THUMBNAILCertificado_de_Similitud_de_Texto.pdf.jpgCertificado_de_Similitud_de_Texto.pdf.jpgGenerated Thumbnailimage/jpeg10046https://repositorio.udes.edu.co/bitstreams/574e117e-18cf-4e0c-bbe2-07d573fc766f/downloadf3db07fc9ed46c9cad5f807d9d2f8552MD511Label.pdf.jpgLabel.pdf.jpgGenerated Thumbnailimage/jpeg10343https://repositorio.udes.edu.co/bitstreams/60ad7d41-ebf8-4fd7-836d-0a727a2322fa/downloadea8b69e0a44f68bb2a9117af17a0a5eeMD513Evaluación_de_la_Interacción_de_los_Péptidos_Ib-M1_e_Ib-M2_con_los_Ácidos_Nucleicos_de_Escherichia coli.pdf.jpgEvaluación_de_la_Interacción_de_los_Péptidos_Ib-M1_e_Ib-M2_con_los_Ácidos_Nucleicos_de_Escherichia coli.pdf.jpgGenerated Thumbnailimage/jpeg8091https://repositorio.udes.edu.co/bitstreams/e177867d-a081-49b9-acc5-39afc35b965a/download2d6d9f93abe1e1ea1c989b7d3b2c17ccMD516LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.udes.edu.co/bitstreams/c1c8e8fd-82ec-4b20-9ead-5cdd6dc4de90/download73a5432e0b76442b22b026844140d683MD51001/10459oai:repositorio.udes.edu.co:001/104592024-05-30 03:01:53.388https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad de Santander, 2023. Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.udes.edu.coRepositorio Universidad de Santandersoporte@metabiblioteca.comPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |