Aplicación y evaluación de un modelo de aprendizaje de máquina enfocado para monitorear las variables medioambientales de un cultivo de café en la finca “La Tessalia” del municipio de Buenavista (Quindío)

El monitoreo manual de variables medioambientales en cultivos como el del café, pueden llegar a convertirse en una tarea de gran complejidad, si se tienen en cuenta factores como el tamaño y terreno de siembra del cultivo; además, la toma de decisiones muchas veces se encuentra sujeta a decisiones e...

Full description

Autores:
Ruiz Martínez, William
González Gómez, Arnaldo Andrés
Tipo de recurso:
Part of book
Fecha de publicación:
2021
Institución:
Universidad de Cundinamarca
Repositorio:
Repositorio UdeC
Idioma:
spa
OAI Identifier:
oai:repositorio.cun.edu.co:cun/4174
Acceso en línea:
https://repositorio.cun.edu.co/handle/cun/4174
Palabra clave:
Agricultura y tecnologías relacionadas
Internet de las cosas
Redes inalámbricas de sensores
Aprendizaje de máquina
Inteligencia artificial
Cultivos de café
Cultivos de Arroz
Cultivos de papa
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
Description
Summary:El monitoreo manual de variables medioambientales en cultivos como el del café, pueden llegar a convertirse en una tarea de gran complejidad, si se tienen en cuenta factores como el tamaño y terreno de siembra del cultivo; además, la toma de decisiones muchas veces se encuentra sujeta a decisiones empíricas y de poco valor o carácter técnico basadas en experiencias propias que muchas veces no aplican a un caso específico. Es por ello que queremos enfatizar sobre el papel de la tecnología como una herramienta preponderante y de gran importancia en todos los entornos y áreas actuales, al punto que podríamos decir que en el campo se ha convertido en un aliado indispensable del agricultor; tecnologías como el Internet de las cosas (IoT), la agricultura de precisión (PA) y las redes inalámbricas de sensores (WSN), se están convirtiendo en herramientas invaluables en la recolección de datos sobre cualquier tipo de variables en cultivos de diferente tipo. Por otro lado, la inteligencia artificial y algunas de sus ramas como el Machine Learning, apoyadas en tecnologías de manipulación de grandes volúmenes de datos como el Big Data, plantean la posibilidad de que las máquinas aprendan a interpretar datos históricos previamente introducidos por el hombre. Es por ello que el presente proyecto se enfoca en la aplicación de tecnologías como el Internet de las cosas (IoT), y el Machine Learning; en primera instancia se recolectan datos sobre las variables medioambientales de los cultivos mencionados como objeto de estudio a través de una red de sensores inalámbricos (WSN), dicha información posteriormente es cargada a una plataforma en la nube donde la información es transformada, a continuación se construyen ciertos modelos de aprendizaje según las variables a analizar y los resultados que se desean obtener, finalmente se aplican modelos de machine Learning y se analizan sus resultados, en espera de que generen soluciones que se enfoquen en la mejora y optimización de la productividad, los recursos del lugar y la sostenibilidad económica y medio ambiental.