Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.

El maíz es considerado uno de los más importantes cultivos a nivel mundial. Como en muchos otros países, Colombia ha utilizado este cereal no solo como alimento para humanos y animales sino también para fabricar diferentes productos industriales. Las plantas de maíz están bien adaptadas a las difere...

Full description

Autores:
Rodríguez López, Carina P.
Navarro de León, Alexis
Arboleda Valencia, Jorge W.
Valencia Jimenez, Arnubio
Valle Molinares, Roger H.
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad de Caldas
Repositorio:
Repositorio Institucional U. Caldas
Idioma:
spa
OAI Identifier:
oai:repositorio.ucaldas.edu.co:ucaldas/12710
Acceso en línea:
https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/view/18
https://repositorio.ucaldas.edu.co/handle/ucaldas/12710
Palabra clave:
corn crop
fungi
soil characteristics
symbiosis
cultivo de maíz
hongos
características edáficas
simbiosis
Rights
openAccess
License
Derechos de autor 2015 Carina P. Rodríguez López
id RUCALDAS2_f99abfe694b5bb2ff2b4e78e37540ee9
oai_identifier_str oai:repositorio.ucaldas.edu.co:ucaldas/12710
network_acronym_str RUCALDAS2
network_name_str Repositorio Institucional U. Caldas
repository_id_str
dc.title.spa.fl_str_mv Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
dc.title.translated.eng.fl_str_mv Arbuscular mycorrhizal fungi associated to Zea Mays L. plants in an agroecosystem of Atlántico, Colombia.
title Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
spellingShingle Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
corn crop
fungi
soil characteristics
symbiosis
cultivo de maíz
hongos
características edáficas
simbiosis
title_short Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
title_full Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
title_fullStr Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
title_full_unstemmed Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
title_sort Hongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.
dc.creator.fl_str_mv Rodríguez López, Carina P.
Navarro de León, Alexis
Arboleda Valencia, Jorge W.
Valencia Jimenez, Arnubio
Valle Molinares, Roger H.
dc.contributor.author.spa.fl_str_mv Rodríguez López, Carina P.
Navarro de León, Alexis
Arboleda Valencia, Jorge W.
Valencia Jimenez, Arnubio
Valle Molinares, Roger H.
dc.subject.eng.fl_str_mv corn crop
fungi
soil characteristics
symbiosis
topic corn crop
fungi
soil characteristics
symbiosis
cultivo de maíz
hongos
características edáficas
simbiosis
dc.subject.spa.fl_str_mv cultivo de maíz
hongos
características edáficas
simbiosis
description El maíz es considerado uno de los más importantes cultivos a nivel mundial. Como en muchos otros países, Colombia ha utilizado este cereal no solo como alimento para humanos y animales sino también para fabricar diferentes productos industriales. Las plantas de maíz están bien adaptadas a las diferentes condiciones climáticas y agroecológicas de Colombia, lo cual le permite estar ampliamente distribuido en todo el país. Algunas de sus adaptaciones naturales son atribuidas a la existencia de relaciones simbióticas con hongos micorrizógenos arbusculares (HMA), los cuales promueven la captación de nutrientes en especial de aquellos que tienen escasa movilidad tales como el fósforo (P) y el nitrógeno (N). Se identificaron HMA asociados a cultivos de maíz localizados en el municipio de Sabanalarga, Atlántico, Colombia. El número de esporas en 100 g de suelo se determinó mediante tamizado, siguiendo protocolos de centrifugación en sacarosa. El número de esporas por 100 g de suelo mostró diferencias estadísticas significativas durante los meses de muestreo (p<0,05). Se identificaron un total de 19 morfotipos correspondientes a doce especies del género Glomus, cinco del género Gigaspora y una especie para los géneros Acaulospora y Scutellospora. Se encontró correlación negativa entre temperatura y número de esporas; sin embargo no existió correlación entre el pH y las variables densidad de esporas, porcentaje de colonización y temperatura del suelo. Asimismo, se reportó bajo contenido de materia orgánica (0,99 %) y baja capacidad de intercambio catiónico (7,50 cmol.kgr-1suelo). Estos resultados, sumados al hecho de que este tipo de cultivos son grandemente dependientes de la actividad de hongos micorrizógenos, explican la densidad de esporas (400-1350 esp/100 g) y el elevado porcentaje de colonización (40-98 %) que fue encontrado durante el muestreo. Es claro que este cereal depende de la presencia de hongos micorrizógenos durante la toma de nutrientes.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2015-01-01 00:00:00
2020-12-09T16:47:51Z
dc.date.available.none.fl_str_mv 2015-01-01 00:00:00
2020-12-09T16:47:51Z
dc.date.issued.none.fl_str_mv 2015-01-01
dc.type.spa.fl_str_mv Sección Artículos
Artículo de revista
dc.type.eng.fl_str_mv Journal Article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/view/18
https://repositorio.ucaldas.edu.co/handle/ucaldas/12710
url https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/view/18
https://repositorio.ucaldas.edu.co/handle/ucaldas/12710
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationendpage.none.fl_str_mv 34
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 20
dc.relation.citationvolume.spa.fl_str_mv 23
dc.relation.ispartofjournal.spa.fl_str_mv Agronomía
dc.relation.references.spa.fl_str_mv Aguilar-Fernández, M., Jaramillo, V.J., Varela-Fregoso, L. & Gavito, M.E. 2009. Short-term consequences of slash-and-burn practices on the arbuscular mycorrhizal fungi of a tropical dry forest. Mycorrhiza. 19: 179-186.
Alarcón, A. & Ferrera-Cerrato, R. 1999. Manejo de la micorriza arbuscular en sistemas de propagación de plantas fruticolas. TERRA. 17: 179-191.
Alvarado, A., Chavarría, M., Guerrero, R., Boniche, J. & Navarro, J. 2004. Características edáficas y presencia de micorrizas. Agron Costarric. 28: 89-100.
Alvarado, G. 2010. Diversidad de maíces nativos de tres nichos ecológicos del altiplano poblano-tlaxclalteca. Instituto de Enseñanza e Investigación en Ciencias Agrícolas, México.
Arias, R.M., Heredia-Abarca, G., Sosa, V.J. & Fuentes-Ramírez, L.E. 2012. Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor Syst. 85: 179-193.
Bashan, Y. et al. 2007. Mycorrhizal characterization of the boojum tree, Fouquieria columnaris, an endemic ancient tree from the Baja California Peninsula, Mexico. Trees Struct Funct. 21: 329-335.
Becerra, A.G., Nouhra, E.R., Silva, M.P. & McKay, D. 2009. Ectomycorrhizae, arbuscular mycorrhizae, and dark-septate fungi on Salix humboldtiana in two riparian populations from central Argentina. Mycoscience. 50: 343-352.
Bhardwaj, S., Dudeja, S.S. & Khurana, A.L. 1997. Distribution of vesicular-arbuscular mycorrhizal fungi in the natural ecosystem. Folia Microbiol. 42: 589-594.
Bi Iritié, Z. et al. 2012. Arbuscular mycorrizal fungi associated with Theobroma cacao L. in the region of Yamoussoukro (Cote d’Ivoire). African J Agric Res. 7: 993-1001.
Borde, M., Dudhane, M. & Kaur, J.P. 2010. Diversity of AM fungi in some tree species from dry land area of central Maharashtra (India). Arch Phytopathol Plant Prot. 43: 1796-1808.
Camargo-Ricalde, S.L. 2002. Dispersal, distribution and establishment of arbuscular mycorrhizal fungi: A review. Boletín de la Sociedad Botánica de México. 71: 33-44.
Camargo-Ricalde, S.L. & Esperón-Rodríguez, M. 2005. Efecto de la heterogeneidad espacial y estacional del suelo sobre la abundancia de esporas de hongos micorrizógenos arbusculares en el valle semiárido de Tehuacán-Cuicatlán, México. Rev Biol Trop. 53: 339-352.
Cardona, G., Peña-Venegas, P. & Arcos, A. 2008. Ocurrencia de hongos formadores de micorriza arbuscular asociados a ají (Capsicum sp.) en la Amazonia colombiana. Agron Colomb. 26: 459-470.
Colozzi Filho, A. & Cardoso Nogueira, E.J.B. 2000. Detecção de fungos micorrízicos arbusculares em raízes de Cafeeiro e de Crotalária cultivada na entrelinha. Pesq Agropec Bras. 35: 2033-2042.
Cuadros, G.A., Gómez, S.R. & Rodríguez, L.N.F. 2011. Asociación simbiótica entre hongos micorrízicos arbusculares y el sistema radicular de plántulas de cacao (Theobroma cacao L.): efecto de la formononetina y la disponibilidad de fósforo en el suelo. Corpoica Cienc y Tecnol Agorpecuaria. 12: 77-85.
Cuervo, A.J.L. & Rivas, P.G.G. 2007. Cuantificación de hongos micorrícicos en muestras de suelo en plantaciones de Tabebuia rosea y Cordia alliodora. NOVA. 5: 1794-24701.
Davies, F.T., Calderón, C.M., Huaman, Z. & Gómez, R. 2005. Influence of a flavonoid (formononetin) on mycorrhizal activity and potato crop productivity in the highlands of Peru Sci Hortic. 106: 318-329.
Entry, J.A., Rygiewicz, P.T., Watrud, L.S. & Donnelly, P.K. 2002. Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Adv Environ Res. 7: 123-138.
Franke-Snyder, M. et al. 2001. Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol. 16: 35-48.
Guadarrama-Chávez, P., Camargo-Ricalde, S.L., Hernández-Cuevas, L. & Castillo-Argüero, S. 2007. Los hongos micorrizogenos arbusculares de la región de Nizandia, Oaxaca, México. Boletín de la Sociedad Botánica de México. 81: 131-137.
Guerrero Forero, E. & Azcon, C. 1996. Micorrizas: recurso biológico del suelo. Fondo FEN, Bogotá.
Halffter, G. (comp.). 1992. La diversidad biológica de Iberoamérica I. Instituto de Ecología, A.C., Xalapa.
Ho, I. 1987. Vesicular-Arbuscular Mycorrhizae of Halophytic Grasses in the Alvord Desert of Oregon. Northwest Sci. 61: 148-151.
Holdridge, L.R. 1967. Life zone ecology. Tropical Science Center, San José de Costa Rica.
Jenkins, W.R. 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Report. 48: 692.
Kalinhoff, C., Cáceres, A. & Lugo, L. 2009. Cambios en la biomasa de raíces y micorrizas arbusculares en cultivos itinerantes del Amazonas venezolano. Interciencia. 34: 571-576.
Kato Yamakake, T.Á., Mapes Sánchez, C., Mera Ovando, L.M., Serratos Hernández, J.A. & Bye Boettler, R.A. 2009. Origen y diversificación del maíz: una revisión analítica. Universidad Nacional Autónoma de México, Ciudad de México.
Khade, S.W. & Rodrigues, B.F. 2006. Arbuscular mycorrhizal fungi associated with varieties of Carica papaya L. IN tropical agro-based ecosystem of Goa, India. Trop Subtrop Agroecosystems. 1: 117-122.
Lovelock, C.E., Andersen, K. & Morton, J.B. 2003. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia. 135: 268-279.
Lovera, M. & Cuenca, G. 2007. Diversidad de hongos micorrízicos arbusculares (HMA) y potencial micorrízico del suelo de una sabana natural y una sabana perturbada de la gran sabana, Venezuela. Interciencia. 32: 108-114.
Martín, G. et al. 2009. Efecto de la canavalia ensiformis y micorrizas arbusculares en el cultivo del maíz. Rev Cuba Cienc Agrícola. 43: 191-199.
Merryweather, J. & Fitter, A. 1998. The arbuscular mycorrhizal fungi of Hyacinthoides non - scripta II . Seasonal and spatial patterns of fungal populations. New Phytol. 138: 131-142.
Miller, D.D., Domoto, P.A. & Walker, C. 1985. Mycorrhizal fungi at eighteen apple rootstock plantings in the United States. New Phytol. 100: 379-391.
Montaño Arias, N.M., Quiroz García, V. & Cruz-Flores, G. 2001. Colonización micorrizica arbuscular y fertilización mineral de genotipos de maíz y trigo cultivados en un andisol. TERRA. 19: 337-344.
Moreira-Souza, M., Trufem, S.F.B., Gomes-da-Costa, S.M. & Cardoso, E.J.B.N. 2003. Arbuscular mycorrhizal fungi associated with Araucaria angustifolia (Bert.) O. Ktze. Mycorrhiza. 13: 211-215.
Muleta, D., Assefa, F., Nemomissa, S. & Granhall, U. 2008. Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biol Fertil Soils. 44: 653-659.
Nair, M.G., Safir, G.R. & Siqueira, J. 1991. Isolation and Identification of Vesicular-Arbuscular Mycorrhiza- Stimulatory Compounds from Clover (Trifolium repens) Roots. Appl Environ Microbiol. 57: 434-439.
Nascimento de Oliveira, A. & de Oliveira, L. 2005. Seasonal dynamics of arbuscular mycorrhizal fungi in plants of Theobroma grandiflorum Schum and Paullinia cupana Mart. of an agroforestry system in central Amazonia, Amazonas State, Brazil. Brazilian J Microbiol. 36: 262-270.
Pande, M. & Tarafdarm, J.C. 2004. Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Appl Soil Ecol. 26: 233-241.
Peña-Venegas, C.P., Cardona, G.I., Arguelles, J.H. & Arcos, A.L. 2007. Micorrizas arbusculares del Sur de la Amazonia colombiana y su relación con algunos factores fisicoquímicos y biológicos del suelo. Inst Amaz Investig Científicas Sinchi. 37 (3): 327-326.
Pérez, A. & Vertel, M. 2010. Evaluación de la colonización de micorrizas arbusculares en pasto Bothriochloa pertusa (L) A. Camus. Rev MVZ Córdoba. 15: 2165-2174.
Phillips, J.M. & Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55: 158-161.
Picone, C. 2006. Diversity and abundance of Arbuscular-Mycorrhizal Fungus Spores in Tropical Forest and Pasture. Biotropica. 32: 734-750.
Pringle, A. & Bever, J.D. 2002. Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot. 89: 1439-1446.
Romero Martins, C., Claessen, J.C., Miranda, D. & Nobre, L. 1999. Contribution of native arbuscular mycorrhizal fungi in the stablishment of Aristida setifolia Kunth in degraded areas in the Cerrado. Pesq Agropec Bras. 34: 665-674.
Roveda, G. & Polo, C. 2010. Mecanismos de adaptación de maíz asociado a Glomus spp. en suelos con bajo fósforo disponible. Agron Colomb. 25: 349-356.
Ryan, P.D., Hammer, Ø., Harper, D.A. & Ryan, D.D. 2001. PAST: Paleontological statistics software packege for education and data analysis. Palaeontol Electron. 4: 1-7.
Sánchez de Prager, M. 1999. Endomicorrizas en agroecosistemas colombianos. Universidad Nacional de Colombia sede Palmira, Palmira.
Sangabriel-Conde, W., Trejo-Aguilar, D., Soto-Estrada, A., Ferrera-Cerrato, R. & Lara-Capistrán, L. 2010. Potencial de colonización de hongos micorrícico-arbusculares en suelos cultivados con papayo bajo diferentes manejos de producción. Rev Mex Micol. 31: 45-52.
Schenck, N.C. & Pérez, Y. 1990. Manual for the identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville.
Schenck, N.C., Graham, S.O. & Green, N.E. 1975. Temperature and light effect on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi. Mycologia. 67: 1189-1192.
Schenck, N.C. & Smith, G.S. 1982. Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytol. 92: 193-201.
Serralde, O.A.M. & Ramírez, G.M.M. 2004. Análisis de poblaciones de micorrizas en maíz (Zea mays) cultivado en suelos ácidos bajo diferentes tratamientos agronómicos. Rev Corpoica. 5: 31-40.
Sharif, M., Rubina, K. & Burni, T. 2010. Occurrence and distribution of arbuscular mycorrhizal fungi in wheat and maize crops of Malakand division of North West frontier province. Pak J Bot. 42: 1301-1312.
Sieverding, E. 1983. Manual de métodos para la investigación de la micorriza vesículo-arbuscular en el laboratorio, Centro Internacional de Agricultura Tropical (CIAT), Proyecto Micorriza.
Silva Castro, C.A. 2005. Maiz geneticamente modificado. AGRO-BIO, Bogotá.
Tapia-Goné, J. et al. 2008. Caracterización e identificación morfológica de hongos formadores de micorriza arbuscular, en cinco suelos salinos del Estado de San Luis Potosí, México. Mex Micol. 26: 1-7.
Vargas, R., Hasselquist, N., Allen, E.B. & Allen, M.F. 2010. Effects of a Hurricane disturbance on Aboveground Forest Structure, Arbuscular Mycorrhizae and Belowground Carbon in a Restored Tropical Forest. Ecosystems. 13: 118-128.
Venegas, H. 2010. El cultivo del maíz, historia e importancia. El Cereal. 93: 1-19.
Vierheilig, H., Coughlan, A.P., Wyss, U. & Piché, Y. 1998. Ink and Vinegar, a Simple Staining Technique for ArbuscularMycorrhizal Fungi. Appl Environ Microbiol. 64: 5004-5007.
Wang, Y.Y. et al. 2008. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza. 18: 59-68.
dc.relation.citationedition.spa.fl_str_mv Núm. 1 , Año 2015 : Enero - Junio
dc.relation.bitstream.none.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/download/18/7
dc.rights.spa.fl_str_mv Derechos de autor 2015 Carina P. Rodríguez López
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos de autor 2015 Carina P. Rodríguez López
https://creativecommons.org/licenses/by-nc-sa/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Agronomía
dc.source.spa.fl_str_mv https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/view/18
institution Universidad de Caldas
bitstream.url.fl_str_mv https://repositorio.ucaldas.edu.co/bitstream/ucaldas/12710/1/ORE.xml
bitstream.checksum.fl_str_mv 4444d2e949bc90db72b953aede27083c
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital de la Universidad de Caldas
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1800536794473693184
spelling Rodríguez López, Carina P.f5a399a779fa76051cbf081b26b9a899500Navarro de León, Alexis2fdb09ff44e923194d8bda9b305466eeArboleda Valencia, Jorge W.bb08ead085b1379b6cf40bedad79b328500Valencia Jimenez, Arnubiod113149f6b4badd4185831a16c434953Valle Molinares, Roger H.22864d6c0832a2df4512c345258f34512015-01-01 00:00:002020-12-09T16:47:51Z2015-01-01 00:00:002020-12-09T16:47:51Z2015-01-01https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/view/18https://repositorio.ucaldas.edu.co/handle/ucaldas/12710El maíz es considerado uno de los más importantes cultivos a nivel mundial. Como en muchos otros países, Colombia ha utilizado este cereal no solo como alimento para humanos y animales sino también para fabricar diferentes productos industriales. Las plantas de maíz están bien adaptadas a las diferentes condiciones climáticas y agroecológicas de Colombia, lo cual le permite estar ampliamente distribuido en todo el país. Algunas de sus adaptaciones naturales son atribuidas a la existencia de relaciones simbióticas con hongos micorrizógenos arbusculares (HMA), los cuales promueven la captación de nutrientes en especial de aquellos que tienen escasa movilidad tales como el fósforo (P) y el nitrógeno (N). Se identificaron HMA asociados a cultivos de maíz localizados en el municipio de Sabanalarga, Atlántico, Colombia. El número de esporas en 100 g de suelo se determinó mediante tamizado, siguiendo protocolos de centrifugación en sacarosa. El número de esporas por 100 g de suelo mostró diferencias estadísticas significativas durante los meses de muestreo (p<0,05). Se identificaron un total de 19 morfotipos correspondientes a doce especies del género Glomus, cinco del género Gigaspora y una especie para los géneros Acaulospora y Scutellospora. Se encontró correlación negativa entre temperatura y número de esporas; sin embargo no existió correlación entre el pH y las variables densidad de esporas, porcentaje de colonización y temperatura del suelo. Asimismo, se reportó bajo contenido de materia orgánica (0,99 %) y baja capacidad de intercambio catiónico (7,50 cmol.kgr-1suelo). Estos resultados, sumados al hecho de que este tipo de cultivos son grandemente dependientes de la actividad de hongos micorrizógenos, explican la densidad de esporas (400-1350 esp/100 g) y el elevado porcentaje de colonización (40-98 %) que fue encontrado durante el muestreo. Es claro que este cereal depende de la presencia de hongos micorrizógenos durante la toma de nutrientes.Corn is considered one of the most important cereal crops worldwide. As many other countries, Colombia has used this cereal not only to feed humans and animals but also to manufacture many different industrial products. Corn plants are well adapted in different climatic and ecological conditions in Colombia which allows it to be widely distributed throughout the country. Some of its natural adaptations are attributed to the existence of symbiotic relationships with Arbuscular Mycorrhizal fungi (AMF) which promote the nutrient uptake, especially those with known low mobility such as phosphorus (P) and nitrogen (N). AMFs associated to corn crops were identified in samples collected in the fields of the municipality of Sabanalarga (Atlántico, Colombia). The number of spores per 100 g of soil was determined by sieving following sucrose centrifugation standard protocols. The number of spores per 100 g of soil showed statistically significant differences during the months of sampling (p < 0.05). A total of 19 morphotypes, corresponding to twelve species of the genus Glomus, five of the genus Gigaspora, and one species of both genus Acaulospora and Scutellospora were identified. A negative correlation between temperature and number of spores was found but no correlation between pH and the spore density, percentage of colonization and soil temperature variables was found. Additionally, low organic matter content (0.99%) and low cation exchange capacity (7.50 cmol*soil-Kg-1) were reported. These results, in addition to the fact that this kind of crops are highly dependent of mycorrhizal fungi activity, explain the spore density (400-1350 spore/ 100 g) and the high percentage of colonization (40-98%) that were obtained during sampling. It is clear that this cereal crop depends on the presence of mycorrhizal fungi during nutrient uptake.application/pdfspaAgronomíaDerechos de autor 2015 Carina P. Rodríguez Lópezhttps://creativecommons.org/licenses/by-nc-sa/4.0info:eu-repo/semantics/openAccessEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.http://purl.org/coar/access_right/c_abf2https://revistasojs.ucaldas.edu.co/index.php/agronomia/article/view/18corn cropfungisoil characteristicssymbiosiscultivo de maízhongoscaracterísticas edáficassimbiosisHongos micorrizógenos arbusculares asociados a plantas de Zea Mays L. en un agroecosistema del Atlántico, Colombia.Arbuscular mycorrhizal fungi associated to Zea Mays L. plants in an agroecosystem of Atlántico, Colombia.Sección ArtículosArtículo de revistaJournal Articlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a853412023AgronomíaAguilar-Fernández, M., Jaramillo, V.J., Varela-Fregoso, L. & Gavito, M.E. 2009. Short-term consequences of slash-and-burn practices on the arbuscular mycorrhizal fungi of a tropical dry forest. Mycorrhiza. 19: 179-186.Alarcón, A. & Ferrera-Cerrato, R. 1999. Manejo de la micorriza arbuscular en sistemas de propagación de plantas fruticolas. TERRA. 17: 179-191.Alvarado, A., Chavarría, M., Guerrero, R., Boniche, J. & Navarro, J. 2004. Características edáficas y presencia de micorrizas. Agron Costarric. 28: 89-100.Alvarado, G. 2010. Diversidad de maíces nativos de tres nichos ecológicos del altiplano poblano-tlaxclalteca. Instituto de Enseñanza e Investigación en Ciencias Agrícolas, México.Arias, R.M., Heredia-Abarca, G., Sosa, V.J. & Fuentes-Ramírez, L.E. 2012. Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor Syst. 85: 179-193.Bashan, Y. et al. 2007. Mycorrhizal characterization of the boojum tree, Fouquieria columnaris, an endemic ancient tree from the Baja California Peninsula, Mexico. Trees Struct Funct. 21: 329-335.Becerra, A.G., Nouhra, E.R., Silva, M.P. & McKay, D. 2009. Ectomycorrhizae, arbuscular mycorrhizae, and dark-septate fungi on Salix humboldtiana in two riparian populations from central Argentina. Mycoscience. 50: 343-352.Bhardwaj, S., Dudeja, S.S. & Khurana, A.L. 1997. Distribution of vesicular-arbuscular mycorrhizal fungi in the natural ecosystem. Folia Microbiol. 42: 589-594.Bi Iritié, Z. et al. 2012. Arbuscular mycorrizal fungi associated with Theobroma cacao L. in the region of Yamoussoukro (Cote d’Ivoire). African J Agric Res. 7: 993-1001.Borde, M., Dudhane, M. & Kaur, J.P. 2010. Diversity of AM fungi in some tree species from dry land area of central Maharashtra (India). Arch Phytopathol Plant Prot. 43: 1796-1808.Camargo-Ricalde, S.L. 2002. Dispersal, distribution and establishment of arbuscular mycorrhizal fungi: A review. Boletín de la Sociedad Botánica de México. 71: 33-44.Camargo-Ricalde, S.L. & Esperón-Rodríguez, M. 2005. Efecto de la heterogeneidad espacial y estacional del suelo sobre la abundancia de esporas de hongos micorrizógenos arbusculares en el valle semiárido de Tehuacán-Cuicatlán, México. Rev Biol Trop. 53: 339-352.Cardona, G., Peña-Venegas, P. & Arcos, A. 2008. Ocurrencia de hongos formadores de micorriza arbuscular asociados a ají (Capsicum sp.) en la Amazonia colombiana. Agron Colomb. 26: 459-470.Colozzi Filho, A. & Cardoso Nogueira, E.J.B. 2000. Detecção de fungos micorrízicos arbusculares em raízes de Cafeeiro e de Crotalária cultivada na entrelinha. Pesq Agropec Bras. 35: 2033-2042.Cuadros, G.A., Gómez, S.R. & Rodríguez, L.N.F. 2011. Asociación simbiótica entre hongos micorrízicos arbusculares y el sistema radicular de plántulas de cacao (Theobroma cacao L.): efecto de la formononetina y la disponibilidad de fósforo en el suelo. Corpoica Cienc y Tecnol Agorpecuaria. 12: 77-85.Cuervo, A.J.L. & Rivas, P.G.G. 2007. Cuantificación de hongos micorrícicos en muestras de suelo en plantaciones de Tabebuia rosea y Cordia alliodora. NOVA. 5: 1794-24701.Davies, F.T., Calderón, C.M., Huaman, Z. & Gómez, R. 2005. Influence of a flavonoid (formononetin) on mycorrhizal activity and potato crop productivity in the highlands of Peru Sci Hortic. 106: 318-329.Entry, J.A., Rygiewicz, P.T., Watrud, L.S. & Donnelly, P.K. 2002. Influence of adverse soil conditions on the formation and function of Arbuscular mycorrhizas. Adv Environ Res. 7: 123-138.Franke-Snyder, M. et al. 2001. Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol. 16: 35-48.Guadarrama-Chávez, P., Camargo-Ricalde, S.L., Hernández-Cuevas, L. & Castillo-Argüero, S. 2007. Los hongos micorrizogenos arbusculares de la región de Nizandia, Oaxaca, México. Boletín de la Sociedad Botánica de México. 81: 131-137.Guerrero Forero, E. & Azcon, C. 1996. Micorrizas: recurso biológico del suelo. Fondo FEN, Bogotá.Halffter, G. (comp.). 1992. La diversidad biológica de Iberoamérica I. Instituto de Ecología, A.C., Xalapa.Ho, I. 1987. Vesicular-Arbuscular Mycorrhizae of Halophytic Grasses in the Alvord Desert of Oregon. Northwest Sci. 61: 148-151.Holdridge, L.R. 1967. Life zone ecology. Tropical Science Center, San José de Costa Rica.Jenkins, W.R. 1964. A rapid centrifugal-flotation technique for separating nematodes from soil. Plant Dis Report. 48: 692.Kalinhoff, C., Cáceres, A. & Lugo, L. 2009. Cambios en la biomasa de raíces y micorrizas arbusculares en cultivos itinerantes del Amazonas venezolano. Interciencia. 34: 571-576.Kato Yamakake, T.Á., Mapes Sánchez, C., Mera Ovando, L.M., Serratos Hernández, J.A. & Bye Boettler, R.A. 2009. Origen y diversificación del maíz: una revisión analítica. Universidad Nacional Autónoma de México, Ciudad de México.Khade, S.W. & Rodrigues, B.F. 2006. Arbuscular mycorrhizal fungi associated with varieties of Carica papaya L. IN tropical agro-based ecosystem of Goa, India. Trop Subtrop Agroecosystems. 1: 117-122.Lovelock, C.E., Andersen, K. & Morton, J.B. 2003. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia. 135: 268-279.Lovera, M. & Cuenca, G. 2007. Diversidad de hongos micorrízicos arbusculares (HMA) y potencial micorrízico del suelo de una sabana natural y una sabana perturbada de la gran sabana, Venezuela. Interciencia. 32: 108-114.Martín, G. et al. 2009. Efecto de la canavalia ensiformis y micorrizas arbusculares en el cultivo del maíz. Rev Cuba Cienc Agrícola. 43: 191-199.Merryweather, J. & Fitter, A. 1998. The arbuscular mycorrhizal fungi of Hyacinthoides non - scripta II . Seasonal and spatial patterns of fungal populations. New Phytol. 138: 131-142.Miller, D.D., Domoto, P.A. & Walker, C. 1985. Mycorrhizal fungi at eighteen apple rootstock plantings in the United States. New Phytol. 100: 379-391.Montaño Arias, N.M., Quiroz García, V. & Cruz-Flores, G. 2001. Colonización micorrizica arbuscular y fertilización mineral de genotipos de maíz y trigo cultivados en un andisol. TERRA. 19: 337-344.Moreira-Souza, M., Trufem, S.F.B., Gomes-da-Costa, S.M. & Cardoso, E.J.B.N. 2003. Arbuscular mycorrhizal fungi associated with Araucaria angustifolia (Bert.) O. Ktze. Mycorrhiza. 13: 211-215.Muleta, D., Assefa, F., Nemomissa, S. & Granhall, U. 2008. Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biol Fertil Soils. 44: 653-659.Nair, M.G., Safir, G.R. & Siqueira, J. 1991. Isolation and Identification of Vesicular-Arbuscular Mycorrhiza- Stimulatory Compounds from Clover (Trifolium repens) Roots. Appl Environ Microbiol. 57: 434-439.Nascimento de Oliveira, A. & de Oliveira, L. 2005. Seasonal dynamics of arbuscular mycorrhizal fungi in plants of Theobroma grandiflorum Schum and Paullinia cupana Mart. of an agroforestry system in central Amazonia, Amazonas State, Brazil. Brazilian J Microbiol. 36: 262-270.Pande, M. & Tarafdarm, J.C. 2004. Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Appl Soil Ecol. 26: 233-241.Peña-Venegas, C.P., Cardona, G.I., Arguelles, J.H. & Arcos, A.L. 2007. Micorrizas arbusculares del Sur de la Amazonia colombiana y su relación con algunos factores fisicoquímicos y biológicos del suelo. Inst Amaz Investig Científicas Sinchi. 37 (3): 327-326.Pérez, A. & Vertel, M. 2010. Evaluación de la colonización de micorrizas arbusculares en pasto Bothriochloa pertusa (L) A. Camus. Rev MVZ Córdoba. 15: 2165-2174.Phillips, J.M. & Hayman, D.S. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc. 55: 158-161.Picone, C. 2006. Diversity and abundance of Arbuscular-Mycorrhizal Fungus Spores in Tropical Forest and Pasture. Biotropica. 32: 734-750.Pringle, A. & Bever, J.D. 2002. Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot. 89: 1439-1446.Romero Martins, C., Claessen, J.C., Miranda, D. & Nobre, L. 1999. Contribution of native arbuscular mycorrhizal fungi in the stablishment of Aristida setifolia Kunth in degraded areas in the Cerrado. Pesq Agropec Bras. 34: 665-674.Roveda, G. & Polo, C. 2010. Mecanismos de adaptación de maíz asociado a Glomus spp. en suelos con bajo fósforo disponible. Agron Colomb. 25: 349-356.Ryan, P.D., Hammer, Ø., Harper, D.A. & Ryan, D.D. 2001. PAST: Paleontological statistics software packege for education and data analysis. Palaeontol Electron. 4: 1-7.Sánchez de Prager, M. 1999. Endomicorrizas en agroecosistemas colombianos. Universidad Nacional de Colombia sede Palmira, Palmira.Sangabriel-Conde, W., Trejo-Aguilar, D., Soto-Estrada, A., Ferrera-Cerrato, R. & Lara-Capistrán, L. 2010. Potencial de colonización de hongos micorrícico-arbusculares en suelos cultivados con papayo bajo diferentes manejos de producción. Rev Mex Micol. 31: 45-52.Schenck, N.C. & Pérez, Y. 1990. Manual for the identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville.Schenck, N.C., Graham, S.O. & Green, N.E. 1975. Temperature and light effect on contamination and spore germination of vesicular-arbuscular mycorrhizal fungi. Mycologia. 67: 1189-1192.Schenck, N.C. & Smith, G.S. 1982. Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytol. 92: 193-201.Serralde, O.A.M. & Ramírez, G.M.M. 2004. Análisis de poblaciones de micorrizas en maíz (Zea mays) cultivado en suelos ácidos bajo diferentes tratamientos agronómicos. Rev Corpoica. 5: 31-40.Sharif, M., Rubina, K. & Burni, T. 2010. Occurrence and distribution of arbuscular mycorrhizal fungi in wheat and maize crops of Malakand division of North West frontier province. Pak J Bot. 42: 1301-1312.Sieverding, E. 1983. Manual de métodos para la investigación de la micorriza vesículo-arbuscular en el laboratorio, Centro Internacional de Agricultura Tropical (CIAT), Proyecto Micorriza.Silva Castro, C.A. 2005. Maiz geneticamente modificado. AGRO-BIO, Bogotá.Tapia-Goné, J. et al. 2008. Caracterización e identificación morfológica de hongos formadores de micorriza arbuscular, en cinco suelos salinos del Estado de San Luis Potosí, México. Mex Micol. 26: 1-7.Vargas, R., Hasselquist, N., Allen, E.B. & Allen, M.F. 2010. Effects of a Hurricane disturbance on Aboveground Forest Structure, Arbuscular Mycorrhizae and Belowground Carbon in a Restored Tropical Forest. Ecosystems. 13: 118-128.Venegas, H. 2010. El cultivo del maíz, historia e importancia. El Cereal. 93: 1-19.Vierheilig, H., Coughlan, A.P., Wyss, U. & Piché, Y. 1998. Ink and Vinegar, a Simple Staining Technique for ArbuscularMycorrhizal Fungi. Appl Environ Microbiol. 64: 5004-5007.Wang, Y.Y. et al. 2008. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza. 18: 59-68.Núm. 1 , Año 2015 : Enero - Juniohttps://revistasojs.ucaldas.edu.co/index.php/agronomia/article/download/18/7OREORE.xmltext/xml2660https://repositorio.ucaldas.edu.co/bitstream/ucaldas/12710/1/ORE.xml4444d2e949bc90db72b953aede27083cMD51ucaldas/12710oai:repositorio.ucaldas.edu.co:ucaldas/127102020-12-09 16:47:51.757Repositorio Digital de la Universidad de Caldasbdigital@metabiblioteca.com